Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Front Cell Dev Biol ; 12: 1449156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258229

RESUMO

Introduction: Survival rates of the childhood cancer patients are improving, however cancer treatments such as chemotherapy may lead to infertility due to loss of the primordial follicle (PMF) reserve. Doxorubicin (DXR) is a gonadotoxic chemotherapy agent commonly used in childhood cancers. Anti-Müllerian Hormone (AMH) has been reported to have a protective effect on the mouse ovarian reserve against DXR in vivo. However, whether AMH can prevent PMF loss in conjunction with DXR in human ovarian tissue in vivo has not been determined. Methods: In order to investigate this, we first established an optimum dose of DXR that induced PMF loss in cultured mouse ovaries and investigated the efficacy of AMH on reducing DXR-induced PMF loss in mice in vitro. Second, we investigated the effects of DXR on pre-pubertal human ovarian tissue and the ability of AMH to prevent DXR-induced damage comparing using a mouse xenograft model with different transplantation sites. Results: Mouse ovaries treated with DXR in vitro and in vivo had reduced PMF populations and damaged follicle health. We did not observe effect of DXR-induced PMF loss or damage to follicle/stromal health in human ovarian cortex, this might have been due to an insufficient dose or duration of DXR. Although AMH does not prevent DXR-induced PMF loss in pre-pubertal and adult mouse ovaries, in mouse ovaries treated with higher concentration of AMH in vitro, DXR did not cause a significant loss in PMFs. This is the first study to illustrate an effect of AMH on DXR-induced PMF loss on pre-pubertal mouse ovaries. However, more experiments with higher doses of AMH and larger sample size are needed to confirm this finding. Discussion: We did not observe that AMH could prevent DXR-induced PMF loss in mouse ovaries in vivo. Further studies are warranted to investigate whether AMH has a protective effect against DXR in xenotransplanted human ovarian tissue. Thus, to obtain robust evidence about the potential of AMH in fertility preservation during chemotherapy treatment, alternative AMH administration strategies need to be explored alongside DXR administration to fully interrogate the effect of DXR and AMH on human xenografted tissues.

2.
J Ovarian Res ; 17(1): 189, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342320

RESUMO

BACKGROUND: Ovarian granulosa cells (GCs) play crucial roles in follicular growth and development. Their normal function is influenced by various factors, including oxidative stress, which is a significant factor. Afamin protein is a vitamin E-specific binding protein that acts as a vitamin E carrier in follicular fluid. Although the mechanism of the protective effect of afamin on human ovarian GCs is still unclear, there is evidence it has an antioxidant effect in neuronal cells. METHODS: In this study, we investigated the protective effects of afamin proteins on testosterone propionate (TP)-induced ovarian GCs using a human ovarian tumor granulosa cell line (KGN). RESULTS: The results showed that afamin reduced TP-induced oxidative stress in KGN cells by decreasing the levels of oxidative damage markers, enhancing the activity of antioxidant enzymes, and exerting a protective effect on GCs. Supplementation with afamin repaired mitochondrial dysfunction by improving mitochondrial membrane potential damage and ATP levels. It counteracted TP-induced apoptosis by decreasing the activity of Caspase-3 and upregulating the expression of the anti-apoptotic gene (BCL-2) while downregulating the expression of the pro-apoptotic gene BCL-2-associated X protein (BAX). In addition, afamin regulated the expression of genes related to ovarian steroid hormone synthesis, ameliorating the endocrine dysfunction observed in TP-induced KGN cells. CONCLUSION: Therefore, Afamin proteins may serve as important complementary factors that protect GCs from other types of damage, such as oxidative stress, and may help improve ovarian follicle quality and female reproductive function.


Assuntos
Células da Granulosa , Estresse Oxidativo , Feminino , Humanos , Estresse Oxidativo/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Albumina Sérica Humana , Proteínas de Transporte , Glicoproteínas
3.
Int Immunopharmacol ; 141: 112964, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168025

RESUMO

Curcumin (CUR) exhibits potential inhibitory effects on tumor growth; however, its hydrophobicity and instability limit its clinical applications. In the present study, we developed CUR nanoparticles (CUR-NPs) and evaluated their biochemical characteristics. Cell uptake and proliferation were assessed using scratch and Transwell assays, respectively. Western blotting was performed to investigate the expression levels of proteins related to the NF-κB/PRL-3 signaling pathway, inflammatory response, cell proliferation, and cell migration in SKOV3 cells. Our findings showed that the blank vector was not cytotoxic to cells, allowing us to disregard any effects caused by the vector itself. CUR-NPs exhibited concentration- and time-dependent inhibitory effects on cell proliferation, surpassing those of CUR alone. Increasing the concentration of CUR-NPs resulted in a reduced cell scratch-healing ability and lower chamber migration capacity. Compared to the control group, expression levels of proteins associated with NF-κB/PRL-3 signaling pathway, inflammatory response (TNF-α and IL-6), cell proliferation (cyclin E1 and cyclin A1), as well as cell migration (N-cadherin and vimentin) were significantly elevated in the lipopolysaccharide (LPS) stimulation and NF-κB p65 overexpression groups. Conversely, E-cadherin expression was significantly decreased under these conditions. However, treatment with high concentrations of CUR-NPs effectively reversed these changes. These results highlight the significant ability of CUR-NPs to inhibit human ovarian cancer cell proliferation and migration, while suppressing inflammatory responses through the regulation of the NF-κB/PRL-3 signaling pathway.


Assuntos
Movimento Celular , Proliferação de Células , Curcumina , NF-kappa B , Nanopartículas , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Curcumina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proteínas de Neoplasias/metabolismo
4.
Biochem Biophys Res Commun ; 730: 150355, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38996784

RESUMO

Aphrocallistes vastus lectin (AVL) is a Ca2+ dependent C-type lectin produced by sponges. Previous studies have demonstrated that oncolytic vaccinia virus harboring AVL (oncoVV-AVL) effectively triggers cell death in various tumors. However, the effects of oncoVV-AVL on human ovarian cancer (OV) remain unknown. This study aims to investigate the mechanism-of-action of oncoVV-AVL in human OV cell lines and in tumor-bearing nude mice. We found that oncoVV-AVL could directly induce apoptosis and autophagy in ovarian cancer cells. Additionally, our results showed that oncoVV-AVL increased the serum levels of mouse IFN-γ (mIFN-γ), leading to the activation of M1-polarized macrophages. Conversely, NADPH, a reducing agent by providing reducing equivalents, reduced the production of mIFN-γ, and suppressed M1-polarization of macrophage. Based on these findings, we propose that oncoVV-AVL not only contributes to direct cytolysis, but also enhances host immune response by promoting ROS levels.


Assuntos
Camundongos Nus , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Espécies Reativas de Oxigênio , Vaccinia virus , Humanos , Animais , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Terapia Viral Oncolítica/métodos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Lectinas/farmacologia
5.
Reprod Biomed Online ; 49(2): 103853, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38865783

RESUMO

RESEARCH QUESTION: How is the production of progesterone (P4) and 17-hydroxy-P4 (17-OH-P4) regulated between theca cells and granulosa cells during the follicular phase, during ovulation and after transformation into a corpus luteum? DESIGN: Three cohorts were examined: (i) 31 women undergoing natural and stimulated cycles, with serum hormone measurements taken every 3 days; (ii) 50 women undergoing ovarian stimulation, with hormone concentrations in serum and follicular fluid assessed at five time points during final follicle maturation; and (iii) 12 women undergoing fertility preservation, with hormone concentrations evaluated via the follicular fluid of small antral follicles. RESULTS: In the early follicular phase, theca cells primarily synthesized 17-OH-P4 while granulosa cells produced limited P4, maintaining the P4:17-OH-P4 ratio <1. As follicles reached follicle selection at a diameter of approximately 10 mm, P4 synthesis in granulosa cells was up-regulated, but P4 was mainly accumulated in follicular fluid. During final maturation, enhanced activity of the enzyme HSD3B2 in granulosa cells enhanced P4 production, with the P4:17-OH-P4 ratio increasing to >1. The concentration of 17-OH-P4 in the luteal phase was similar to that in the follicular phase, but P4 production increased in the luteal phase, yielding a P4:17-OH-P4 ratio significantly >1. CONCLUSIONS: The P4:17-OH-P4 ratio reflects the activity of granulosa cells and theca cells during the follicular phase and following luteinization in the corpus luteum. Managing the function of granulosa cells is key for reducing the concentration of P4 during ovarian stimulation, but the concerted action of FSH and LH on granulosa cells during the second half of the follicular phase makes this complex.


Assuntos
Líquido Folicular , Células da Granulosa , Progesterona , Células Tecais , Feminino , Líquido Folicular/metabolismo , Humanos , Células da Granulosa/metabolismo , Progesterona/biossíntese , Progesterona/metabolismo , Células Tecais/metabolismo , Adulto , 17-alfa-Hidroxiprogesterona/metabolismo , 17-alfa-Hidroxiprogesterona/sangue , Folículo Ovariano/metabolismo
6.
Biol Reprod ; 110(6): 1086-1099, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38537569

RESUMO

Cancer survival rates in prepubertal girls and young women have risen in recent decades due to increasingly efficient treatments. However, many such treatments are gonadotoxic, causing premature ovarian insufficiency, loss of fertility, and ovarian endocrine function. Implantation of donor ovarian tissue encapsulated in immune-isolating capsules is a promising method to restore physiological endocrine function without immunosuppression or risk of reintroducing cancer cells harbored by the tissue. The success of this approach is largely determined by follicle density in the implanted ovarian tissue, which is analyzed manually from histologic sections and necessitates specialized, time-consuming labor. To address this limitation, we developed a fully automated method to quantify follicle density that does not require additional coding. We first analyzed ovarian tissue from 12 human donors between 16 and 37 years old using semi-automated image processing with manual follicle annotation and then trained artificial intelligence program based on follicle identification and object classification. One operator manually analyzed 102 whole slide images from serial histologic sections. Of those, 77 images were assessed by a second manual operator, followed with an automated method utilizing artificial intelligence. Of the 1181 follicles the control operator counted, the comparison operator counted 1178, and the artificial intelligence counted 927 follicles with 80% of those being correctly identified as follicles. The three-stage artificial intelligence pipeline finished 33% faster than manual annotation. Collectively, this report supports the use of artificial intelligence and automation to select tissue donors and grafts with the greatest follicle density to ensure graft longevity for premature ovarian insufficiency treatment.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Folículo Ovariano , Humanos , Feminino , Adulto , Adolescente , Processamento de Imagem Assistida por Computador/métodos , Adulto Jovem , Software , Ovário/transplante
7.
Artigo em Inglês | MEDLINE | ID: mdl-38436415

RESUMO

CONTEXT: IGF signalling is known to affect human ovarian follicular function during growth and development. However, the role of the IGF system is unknown during the ovulatory peak, which is characterized by profound changes in granulosa cell (GCs) mitosis and function. OBJECTIVE: How is the IGF system expressed and regulated during the midcycle surge in women? DESIGN: Follicular fluid (FF) and granulosa cells (GCs) were collected during the ovulatory peak from two specific time-points. One sample was obtained before oocyte pick up (OPU): before ovulation trigger (OT) (T = 0 h) or at 12, 17, or 32 h after OT, and one sample was obtained at OPU 36 h after OT. SETTING: University hospital. PATIENTS/PARTICIPANTS: Fifty women undergoing ovarian stimulation were included. MAIN OUTCOME MEASURE: Gene expression profiles were assessed by microarray analysis of GCs. IGF-related proteins in the FF were assessed by using immunoassays or by determination of activity with a proteinase assay. RESULTS: Expression of proteins promoting IGF activity (i.e., IGF2, PAPPA, and IRS1) together with proliferation markers were downregulated on a transcriptional level in GCs after OT, whereas proteins inhibiting the IGF signal (i.e., IGFBPs, IGF2R, and STC1) were upregulated. STC1 gene expression and protein levels were greatly upregulated after OT with a parallel steep downregulation of PAPP-A proteolytic activity. CONCLUSIONS: These data suggest that downregulation of IGF signalling mediated by increased STC1 expression is instrumental for the sudden cessation in GC proliferation and onset of differentiation during the ovulatory peak.

8.
J Clin Med ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542015

RESUMO

Ovarian tissue cryopreservation (OTC) and subsequent transplantation (OTT) is a fertility preservation technique widely offered to prepubertal girls and young fertile women who need to undergo oncological treatment but are at a high risk of infertility. However, OTT is not considered safe in patients with certain diseases like leukemia, Burkitt's lymphoma, and ovarian cancer because of the associated risk of malignant cell reintroduction. In vitro follicle development has therefore emerged as a promising means of obtaining mature metaphase II (MII) oocytes from the primordial follicle (PMF) pool contained within cryopreserved ovarian tissue, without the need for transplantation. Despite its significant potential, this novel approach remains highly challenging, as it requires replication of the intricate process of intraovarian folliculogenesis. Recent advances in multi-step in vitro culture (IVC) systems, tailored to the specific needs of each follicle stage, have demonstrated the feasibility of generating mature oocytes (MII) from early-stage human follicles. While significant progress has been made, there is still room for improvement in terms of efficiency and productivity, and a long way to go before this IVC approach can be implemented in a clinical setting. This comprehensive review outlines the most significant improvements in recent years, current limitations, and future optimization strategies.

9.
Cytotechnology ; 76(1): 27-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304626

RESUMO

The present study assessed the supportive roles of the decellularized human ovarian tissue in homing of mouse fetal ovarian cells into the scaffold as well as the formation of the follicular-like structure. The human ovarian cortical tissues were decellularized by three freeze-thaw cycles and then, treated with Triton X-100 for 15 h and 0.5% sodium dodecyl sulfate for 72 h. After isolation and preparation of mouse fetal ovarian cells (19 dpc) they were seeded into the decellularized scaffolds and cultured for 7 days, then using a light microscope, laser confocal scanning microscope, and scanning electron microscope these scaffolds were studied. Analysis of gene expression related to oocyte and follicular cells such as Ddx4, Nobox, Gdf9, and Connexin37 was assessed by real-time RT-PCR and the DDX4 and GDF9 proteins were detected by immunohistochemistry. The result showed that the human ovarian tissue was decellularized properly and the tissue elements and integrity were well preserved. After 7 days of in vitro culture, the fetal ovarian cells attached and penetrated into different sites and depths of the scaffold. The formed organoid within the scaffold showed large round, small polyhedral, and elongated spindle cells similar to the follicle structure. The molecular analysis and immunohistochemistry were confirmed an increase in the expression of genes and proteins related to oocyte and follicular cells in these reconstructed structures. In conclusion, the recellularization of human ovarian scaffolds by mouse fetal ovarian cells could support the follicular-like structure formation and it provides an in vitro model for follicle reconstitution and offers an alternative approach for clinical usage.

10.
Front Immunol ; 15: 1346686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333210

RESUMO

The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target.


Assuntos
Neoplasias Ovarianas , Oximas , Triptofano , Feminino , Humanos , Animais , Camundongos , Triptofano/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Cinurenina/metabolismo , Sulfonamidas , Inibidores Enzimáticos/farmacologia , Carcinogênese , Microambiente Tumoral
11.
Zygote ; 32(1): 66-70, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38099429

RESUMO

At this time, with advances in medical science, many cancers and chronic diseases are treatable, but one of their side effects is infertility. Some women also want to delay pregnancy for personal reasons. There has been some evidence that kisspeptin activates broad signals by binding to its receptor, suggesting that the role of kisspeptin in direct control of ovarian function includes follicle growth and steroid production. In this study, the effect of kisspeptin on improving the quality and results for human ovarian follicles was investigated. A section of ovary was removed laparoscopically from women between 20 and 35 years of age (n = 12). Pieces were divided randomly into two groups, control and treatment (with 1 µM kisspeptin). Real-time PCR was performed for GDF9, BMP15 and mTOR gene expression assessments. Western blotting was carried out to measure AKT and FOXO3a protein expression. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test; means were considered significantly different at a P-value < 0.05. During treatment with the kisspeptin group, maturity genes are expressed. Therefore, kisspeptin is an effective substance to improve the quality of the human ovarian medium as it increases the maturity of follicles.


Assuntos
Kisspeptinas , Ovário , Gravidez , Humanos , Feminino , Kisspeptinas/genética , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Folículo Ovariano/fisiologia
12.
Front Endocrinol (Lausanne) ; 14: 1268248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964966

RESUMO

Introduction: Granulosa cells (GCs) and theca cells (TCs) play a pivotal role in human ovarian steroidogenesis, facilitating the conversion of cholesterol into sex steroids that regulate normal reproductive function. This study aims to explore the expression patterns of key enzymes that govern human ovarian steroidogenesis throughout follicle development, employing both genomic and immunological methodologies. Methods: Follicles and GCs obtained from women undergoing ovarian tissue cryopreservation (OTC) and in vitro fertilisation treatment were utilized. Gene expression data were obtained from a Chinese study using RNA sequencing and from microarray data generated in our laboratory to comprehensively analyse gene expression profiles across distinct stages of follicular development. To corroborate the localisation of key enzymes within GCs and TCs, immunohistochemistry analyses utilizing colourimetric and fluorescent techniques were conducted. Results: Steroidogenesis-related enzymes displayed low gene expression levels during early follicle development. However, a notable upregulation of HSD3B2 was observed in GCs as follicles progressed to the antral/preovulatory stage, confirmed consistently using both microarray and RNA sequencing methodologies. Furthermore, immunohistochemical analyses effectively demonstrated that HSD3B2 were not only expressed in GCs, but co-localised with CYP17A1 within a specific subset of TCs surrounding human small antral follicles. Contributing to an enhanced progesterone production during the second half of the follicular phase was a significant upregulation of CYB5A in both microarray and RNA-seq datasets as follicles transition from the antral stage to the pre-ovulatory stage. Moreover, an augmented expression of DHCR24 and LDLR in both types of data, along with HMGCR expression expression in the microarray data, indicates increased substrate availability for ovarian steroidogenesis. Discussion: This study confirms and extends that GCs gradually augment expression of HSD3B2 thereby enhancing their capacity for progesterone synthesis as follicles reach the size of selection at around 10 mm in diameter. This is supported by the expression CYB5A and possibly augmented availability of steroid precursors. A subset of TCs exhibit concurrent expression of CYP17A1 and HSD3B2, collectively contributing to the synthesis of 17-hydroxyprogesterone. These data significantly enhance our understanding of the dynamic regulation of progesterone throughout the process of follicular development.


Assuntos
Folículo Ovariano , Progesterona , Humanos , Feminino , Progesterona/metabolismo , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Ovário , Células Tecais/metabolismo
13.
J Cancer ; 14(18): 3404-3415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021163

RESUMO

Background: Ovarian cancer recurrence and metastasis are predominantly attributed to ovarian cancer stem cells; however, the mechanism by which anisomycin regulates human ovarian cancer stem cells (HuOCSCs) remains unclear. Methods: cDNA microArray was used to screen microRNAs (miRNAs) targeted by anisomycin, and RT-qPCR validated the miRNA targets. TargetScan database, GO enrichment analysis, and RT-qPCR, accompanied by a fluorescent reporter system, were employed to verify the miRNA target genes. In vitro experimental cell proliferation inhibition assay, flow cytometry, Transwell, angiogenesis assay, and in vivo transplantation tumor assay were implemented to assess the ability of the overexpressed miRNAs to hinder HuOCSC activity. Western blot, RT-qPCR, and immunofluorescence were applied to measure the transcriptional and protein-level expression of the miRNA target genes and their related genes. Bioinformatic analysis predicted and deciphered the role of the miRNA target genes and related genes in the development and prognosis of ovarian cancer. Results: The expression levels of multiple DLK1-DIO3 imprinted microRNA cluster members were altered by anisomycin, among which miR-134-3p expression was most significantly elevated. miR-134-3p overexpression significantly suppressed HuOCSC activity. The screening and validation of target genes uncovered that miR-134-3p was able to markedly suppress GPR137 expression. Additionally, miR-134-3p regulated the cytoskeleton, migration-related protein in the NDEL1/DYNEIN/TUBA1A axis through targeting GPR137. Bioinformatics prediction unveiled a close association of GPR137, NDEL1, DYNC1H1, and TUBA1A with ovarian cancer development and prognosis. Conclusions: The activity of HuOCSCs may be compromised by anisomycin through the regulation of miR-134-3p, which inhibits the GPR137/NDEL1/DYNEIN/TUBA1A axis.

14.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834202

RESUMO

The human zinc finger protein 521 (ZNF521) is a co-transcriptional factor with multiple recognized regulatory functions in a range of normal, cancer and stem cell compartments. ZNF521 regulates proliferation, progression and CSC (cancer stem cell) compartments in human ovarian cancer (hOC), which is a very aggressive and late-diagnosed female tumor. Two other important regulators of hOC are the NRF2 and NOTCH signaling pathways. In the present paper, the mRNA and protein levels of ZNF521 were correlated with those of the NRF2-NOTCH signaling components in two different hOC cell lines and in a public dataset of 381 hOC patients. The data show that high levels of ZNF521 significantly increase NRF2-NOTCH signaling expression; conversely, the silencing of ZNF521 impairs NRF2-NOTCH signaling. This experimental work shows that, in hOC, different levels of ZNF521 modulate the NRF2-NOTCH signaling pathway and also influences hOC CSC properties.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias Ovarianas , Feminino , Humanos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Ovarianas/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Dedos de Zinco
15.
JBRA Assist Reprod ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768820

RESUMO

OBJECTIVE: Ovarian cryopreservation is one of the effective methods to preserve fertility for cancer patients. Still, this approach has some problems, namely ROS, resulting in adverse effects on oocytes and ovarian follicles. Kisspeptin as an antioxidant to control ovarian function, directly or indirectly. In this study, the effect of kisspeptin on follicle maturation was evaluated in culture following ovarian cryopreservation. METHODS: Ovarian tissue samples of women between 20 and 35 years old (n=12) were laparoscopically collected. The samples were randomly divided into four groups: 1) control, 2) vitrification, 3) vitrified+1µM kisspeptin, and 4) vitrified+10µM kisspeptin. After vitrification and thawing processes, the tissues were cultured in DMEM medium for 7 days. H&E staining for histological evaluation, Real-Time PCR for GDF9 and BMP15 gene expression, and immunohistochemical staining for GDF9 and BMP15 protein expression were performed. RESULTS: In the vitrification group, ovarian tissue morphology was incoherent, and more primordial follicles than other follicle types were found. The expression of GDF9 and BMP15 genes and proteins were significantly decreased in this group compared with other groups (p<0.05). In the vitrification groups with kisspeptin (1 and 10 µM), the number of primary and secondary follicles was more than in the vitrification group. Besides, the expression of these genes and proteins was dramatically elevated in the vitrification groups with kisspeptin compared to the vitrification group alone (p<0.05). CONCLUSIONS: It seems that kisspeptin is an effective substance to improve the quality of the human ovarian cryopreservation medium by improving follicle maturation.

16.
Zygote ; 31(6): 537-543, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655529

RESUMO

Kisspeptin is characterized as a neuropeptide with a pivotal function in female and male infertility, and its antioxidant properties have been demonstrated. In this study, the effects of kisspeptin on the improvement of the vitrification and thawing results of human ovarian tissues were investigated. In this work, 12 ovaries from patients who underwent hysterectomy were collected laparoscopically, and then 32 samples from each of their tissues were taken. Haematoxylin and eosin (H&E) staining was performed to check the normality of the ovarian tissue and, subsequently, the samples were allocated randomly into four groups, including: (1) fresh (control), (2) vitrification, (3) vitrified + 1 µM kisspeptin, and (4) vitrified + 10 µM kisspeptin groups. After vitrification, thawing, and tissue culture processes, H&E staining for tissue quality assessment, terminal deoxynucleotidyl transferase dUTP nick end labelling assay for apoptosis evaluation, and malondialdehyde (MDA), superoxide dismutase (SOD), and ferric reducing ability of plasma tests for oxidative stress appraisal were carried out. Our histological results showed incoherency of ovarian tissue morphology in the vitrification group compared with other groups. Other findings implicated increased apoptosis rate and MDA concentration and reduced SOD activity and total antioxidant capacity (TAC) in the vitrification group compared with the control group (P < 0.05). Moreover, decreased apoptosis rate and MDA concentration, and increased TAC and SOD function were observed in the vitrification with kisspeptin groups (1 µM and 10 µM) compared with the vitrified group (P < 0.05). Our reports express that kisspeptin is an effective agent to overcome the negative effects of vitrification by regulating reactive oxygen species-related apoptotic processes.


Assuntos
Ovário , Vitrificação , Humanos , Masculino , Feminino , Ovário/fisiologia , Criopreservação/métodos , Kisspeptinas/farmacologia , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Superóxido Dismutase
17.
Endocrine ; 82(3): 681-694, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572199

RESUMO

PURPOSE: Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS: DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS: lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS: This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.


Assuntos
Progesterona , Estilbenos , Feminino , Humanos , Resveratrol/farmacologia , Resveratrol/metabolismo , Progesterona/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Lipossomos/metabolismo , Lipossomos/farmacologia , Estilbenos/farmacologia , Estilbenos/metabolismo , Estradiol/farmacologia , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/farmacologia
18.
Reprod Biol ; 23(3): 100790, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37478515

RESUMO

Orotic acid (OA) is a natural product that acts as a precursor in the pyrimidine nucleotide biosynthesis pathway. Most studies concerning administration of OA focus on its therapeutic effects; however, its effect on tumours is unclear. We aimed to determine whether treatment with OA influences the viability and apoptosis of normal (HGrC1) and tumour-derived (KGN) human ovarian granulosa cells. The effects of OA (10-250 µM) on viability and apoptosis of both cell lines were determined by using alamarBlue and assessing caspase-3/7 activity, respectively. Annexin V binding and loss of membrane integrity were evaluated in KGN cells. The cell cycle and proliferation of HGrC1 cells were assessed by performing flow cytometric and DNA content analyses, respectively. The influence of OA (10 and 100 µM) on cell cycle- and apoptosis-related gene expression was assessed by RT-qPCR in both cell lines. Mitochondrial activity was analysed by JC-1 staining in HGrC1 cells. In KGN cells, OA reduced viability and increased caspase-3/7 activity, but did not affect mRNA expression of Caspase 3, BAX, and BCL2. OA enhanced proliferation and mitochondrial activity in HGrC1 cells without activating apoptosis. This study demonstrates that the anti-cancer properties of OA in ovarian granulosa tumour cells are not related to changes in apoptosis-associated gene expression, but to increased caspase-3/7 activity. Thus, OA is a promising therapeutic agent for ovarian granulosa tumours. Further, our results suggest that differences in basal expression of cell cycle- and apoptosis-related genes between the two cell lines are responsible for their different responses to OA.


Assuntos
Ácido Orótico , Neoplasias Ovarianas , Feminino , Adulto , Humanos , Caspase 3/metabolismo , Ácido Orótico/metabolismo , Ácido Orótico/farmacologia , Células da Granulosa , Apoptose , Neoplasias Ovarianas/genética
19.
Plants (Basel) ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447047

RESUMO

(1) The cytotoxicity and antioxidant activity of different fractions as well as the pro-apoptotic activity of saponin fractions from Eryngium planum L. in SKOV-3 was investigated. (2) In screening studies, the cytotoxicity of six fractions on SKOV-3 was examined by LDH and SRB assays. The most active fractions-triterpenoid saponins-were selected for further investigation. To determine the mechanism of saponin fractions' cytotoxicity, their ability to induce apoptosis was examined via Annexin V assay. The effect of the saponin fractions on caspase 3 activity was measured using a Caspase 3 Assay Kit. The expression of 84 apoptosis-related genes was investigated in cancer cells exposed to saponin fractions from the roots. The radical scavenging capacity of different fractions was determined via DPPH assay. (3) The pronounced cytotoxic effects in SKOV-3 were demonstrated by saponin fractions from the leaves and roots. Those saponin fractions were chosen for further investigation. The treatment of cancer cell lines with saponins obtained from the roots provoked a significant increase in apoptotic cells. In the SKOV-3 cells, saponins caused upregulation of pro-apoptotic genes and a decrease in anti-apoptotic genes. The activation of caspase 3 was correlated with an increased DFFA expression level in the treated SKOV-3 cells. The most active fractions were phenolic acids from the shoots and roots. (4) To the best of our knowledge, the current study is the first to demonstrate that the barrigenol-type triterpenoid saponin fraction from the roots of E. planum inhibits SKOV-3 cell proliferation and induces apoptosis, which may be regulated by the expression of genes mostly specific to a mitochondria-related pathway.

20.
Antioxidants (Basel) ; 12(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37507925

RESUMO

Sedum middendorffianum Maxim (SMM) is a Korean endemic plant belonging to the Crassulaceae family. This study aimed to investigate the antitumor effects of the SMM extract on human ovarian cancer cells. Among five endemic plants grown in Korea, the SMM extract showed the most potent cytotoxicity in ovarian cancer cells and had little effect on normal ovarian surface epithelial cells. Furthermore, we revealed that the SMM extract dose-dependently induced apoptosis in human ovarian cancer A2780 and SKOV3 cells. The SMM extract markedly stimulated the activation of caspase-3/8, while the broad-spectrum caspase inhibitor and caspase-8 selective inhibitor significantly reversed SMM extract-induced apoptosis. In addition, the SMM extract significantly inhibited cell invasion and the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 in ovarian cancer cells. Notably, the SMM extract increased the generation of intracellular ROS, and pretreatment with antioxidant N-acetyl-L-cysteine (NAC) significantly suppressed SMM-induced cytotoxicity and anti-invasive activity. Moreover, NAC treatment reversed the SMM-induced inhibition of MMP-2/9 expression. Taken together, these data suggest that the SMM extract induces caspase-dependent apoptotic cell death and inhibits MMP-dependent invasion via ROS regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA