Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39285513

RESUMO

Therapeutic antibody design has garnered widespread attention, highlighting its interdisciplinary importance. Advancements in technology emphasize the critical role of designing nanobodies and humanized antibodies in antibody engineering. However, current experimental methods are costly and time-consuming. Computational approaches, while progressing, faced limitations due to insufficient structural data and the absence of a standardized protocol. To tackle these challenges, our lab previously developed IsAb1.0, an in silico antibody design protocol. Yet, IsAb1.0 lacked accuracy, had a complex procedure, and required extensive antibody bioinformation. Moreover, it overlooked nanobody and humanized antibody design, hindering therapeutic antibody development. Building upon IsAb1.0, we enhanced our design protocol with artificial intelligence methods to create IsAb2.0. IsAb2.0 utilized AlphaFold-Multimer (2.3/3.0) for accurate modeling and complex construction without templates and employed the precise FlexddG method for in silico antibody optimization. Validated through optimization of a humanized nanobody J3 (HuJ3) targeting HIV-1 gp120, IsAb2.0 predicted five mutations that can improve HuJ3-gp120 binding affinity. These predictions were confirmed by commercial software and validated through binding and neutralization assays. IsAb2.0 streamlined antibody design, offering insights into future techniques to accelerate immunotherapy development.


Assuntos
Inteligência Artificial , Engenharia de Proteínas , Humanos , Engenharia de Proteínas/métodos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Desenho de Fármacos , Simulação por Computador
2.
Cancer Sci ; 115(10): 3358-3369, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39118263

RESUMO

Cytoskeleton-associated protein 4 (CKAP4) is a cell surface receptor for Dickkopf 1 (DKK1), a secreted protein. The DKK1-CKAP4 pathway is activated in various malignant tumors, including pancreatic, lung, esophageal, and liver cancers, to promote tumor growth. Thus, CKAP4 has been expected to represent a novel molecular target of cancer therapy. Recombinant mouse anti-CKAP4 antibodies were generated based on an original mouse antibody (3F11-2B10) and inhibited DKK1-CKAP4 signaling and xenograft tumor formation induced by pancreatic cancer cells, which was comparable with 3F11-2B10. From the 3F11-2B10 nucleotide sequence, humanized anti-CKAP4 antibody (Hv1Lt1) was subsequently developed. The binding affinity of Hv1Lt1 for CKAP4 was superior to that of 3F11-2B10. Hv1Lt1 inhibited DKK1 binding to CKAP4, AKT activity, and sphere formation of pancreatic cancer cells, which was comparable with 3F11-2B10. Hv1Lt1 also suppressed xenograft tumor formation induced by human pancreatic cancer cells and tumor growth in murine cancer models, in which murine pancreatic cancer organoids were orthotopically transplanted into the pancreas. In resected tumor samples from mice treated with Hv1Lt1, anti-tumor immune reactions were modulated and cytotoxic T cells were highly infiltrated in the tumor microenvironment. Additionally, combination of Hv1Lt1 and other chemotherapy drugs exhibited stronger effects compared with monotherapy. These results suggest that Hv1Lt1 represents a promising anti-cancer therapy.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Pancreáticas , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Anticorpos Monoclonais Humanizados/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino
3.
Mol Cancer ; 23(1): 165, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138527

RESUMO

BACKGROUND: Overexpression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) contributes to cancer cell proliferation, survival and migration, playing crucial roles in tumor development. ROR1 has been proposed as a potential therapeutic target for cancer treatment. This study aimed to develop novel humanized ROR1 monoclonal antibodies and investigate their anti-tumor effects. METHODS: ROR1 expression in tumor tissues and cell lines was analyzed by immunohistochemistry and flow cytometry. Antibodies from mouse hybridomas were humanized by the complementarity-determining region (CDR) grafting technique. Surface plasmon resonance spectroscopy, ELISA assay and flow cytometry were employed to characterize humanized antibodies. In vitro cellular assay and in vivo mouse experiment were conducted to comprehensively evaluate anti-tumor activity of these antibodies. RESULTS: ROR1 exhibited dramatically higher expression in lung adenocarcinoma, liver cancer and breast cancer, and targeting ROR1 by short-hairpin RNAs significantly inhibited proliferation and migration of cancer cells. Two humanized ROR1 monoclonal antibodies were successfully developed, named h1B8 and h6D4, with high specificity and affinity to ROR1 protein. Moreover, these two antibodies effectively suppressed tumor growth in the lung cancer xenograft mouse model, c-Myc/Alb-cre liver cancer transgenic mouse model and MMTV-PyMT breast cancer mouse model. CONCLUSIONS: Two humanized monoclonal antibodies targeting ROR1, h1B8 and h6D4, were successfully developed and exhibited remarkable anti-tumor activity in vivo.


Assuntos
Anticorpos Monoclonais Humanizados , Proliferação de Células , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Movimento Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/imunologia
4.
Biochem Pharmacol ; 225: 116335, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38824968

RESUMO

Drugs specifically targeting YKL-40, an over-expressed gene (CHI3L1) in various diseases remain developed. The current study is to create a humanized anti-YKL-40 neutralizing antibody and characterize its potentially therapeutic signature. We utilized in silico CDR-grafting bioinformatics to replace the complementarity determining regions (CDRs) of human IgG1 with mouse CDRs of our previously established anti-YKL-40 antibody (mAY). In fifteen candidates (VL1-3/VH1-5) of heavy and light chain variable region combination, one antibody L3H4 named Rosazumab demonstrated strong binding affinity with YKL-40 (KD = 4.645 × 10-8 M) and high homology with human IgG (80 %). In addition, we established different overlapping amino acid peptides of YKL-40 and found that Rosazumab specifically bound to residues K337, K342, and R344, the KR-rich functional domain of YKL-40. Rosazumab inhibited migration and tube formation of YKL-40-expressing tumor cells and induced tumor cell apoptosis. Mechanistically, Rosazumab induced interaction of N-cadherin with ß-catenin and activation of downstream MST1/RASSF1/Histone H2B axis, leading to chromosomal DNA breakage and cell apoptosis. Treatment of xenografted tumor mice with Rosazumab twice a week for 4 weeks inhibited tumor growth and angiogenesis, but induced tumor apoptosis. Rosazumab injected in mice distributed to blood, tumor, and other multiple organs, but did not impact in function or structure of liver and kidney, indicating non-detectable toxicity in vivo. Collectively, the study is the first one to demonstrate that a humanized YKL-40 neutralizing antibody offers a valuable means to block tumor development.


Assuntos
Anticorpos Monoclonais Humanizados , Proteína 1 Semelhante à Quitinase-3 , Neoplasias , Animais , Feminino , Humanos , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Linhagem Celular Tumoral , Proteína 1 Semelhante à Quitinase-3/antagonistas & inibidores , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Front Immunol ; 14: 1127849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398644

RESUMO

Scleroderma 70 (Scl-70) is commonly used in the clinic for aiding systemic sclerosis (SSc) diagnosis due to its recognition as autoantibodies in the serum of SSc patients. However, obtaining sera positive for anti-Scl-70 antibody can be challenging; therefore, there is an urgent need to develop a specific, sensitive, and easily available reference for SSc diagnosis. In this study, murine-sourced scFv library were screened by phage display technology against human Scl-70, and the scFvs with high affinity were constructed into humanized antibodies for clinical application. Finally, ten high-affinity scFv fragments were obtained. Three fragments (2A, 2AB, and 2HD) were select for humanization. The physicochemical properties of the amino acid sequence, three-dimensional structural basis, and electrostatic potential distribution of the protein surface of different scFv fragments revealed differences in the electrostatic potential of their CDR regions determined their affinity for Scl-70 and expression. Notably, the specificity test showed the half-maximal effective concentration values of the three humanized antibodies were lower than that of positive patient serum. Moreover, these humanized antibodies showed high specificity for Scl-70 in diagnostic immunoassays for ANA. Among these three antibodies, 2A exhibited most positive electrostatic potential on the surface of the CDRs and highest affinity and specificity for Scl-70 but with least expression level; thus, it may provide new foundations for developing enhanced diagnostic strategies for SSc.


Assuntos
Esclerodermia Localizada , Escleroderma Sistêmico , Humanos , Animais , Camundongos , Autoanticorpos , Sequência de Aminoácidos , Imunoensaio , Anticorpos Monoclonais Humanizados
6.
Heliyon ; 9(4): e15164, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089317

RESUMO

Breast cancer is the most common malignant cancer in women. Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes and is challenging to treat. MUC1 is a therapeutic target in breast and pancreatic cancer. We developed a novel humanized antibody that specifically binds MUC1 expressed in breast cancer cells and conjugated a humanized MUC1 (HzMUC1) antibody to monomethyl auristatin (MMAE). HzMUC1-MMAE showed an anti-proliferative effect on HER2 positive trastuzumab-resistant breast cancer. Immunoprecipitation indicated that HzMUC1 recognized native MUC1 in TNBC cells. Confocal microscopy showed that HzMUC1 bound MUC1 on the surface of TNBC cells, and the conjugates exhibited the same binding ability to HCC70 as unconjugated HzMUC1 by cell-based ELISA. Treatment of TNBC cells with HzMUC1-MMAE reduced growth of MUC1-positive cells and induced G2/M cell cycle arrest and apoptosis. In a mouse model of breast cancer, HzMUC1-MMAE significantly reduced the growth of tumors established by subcutaneous injection of HCC70 TNBC cells. Therefore, HzMUC1-ADC has therapeutic potential for TNBC.

7.
Antib Ther ; 6(1): 1-12, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36683763

RESUMO

Acetaminophen (APAP) overdose is a leading cause of acute liver injury in the USA. The chitinase 3-like-1 (Chi3l1) protein contributes to APAP-induced liver injury (AILI) by promoting hepatic platelet recruitment. Here, we report the development of a Chi3l1-targeting antibody as a potential therapy for AILI. By immunizing a rabbit successively with the human and mouse Chi3l1 proteins, we isolated cross-reactive monoclonal antibodies (mAbs) from single memory B cells. One of the human and mouse Chi3l1 cross-reactive mAbs was humanized and characterized in both in vitro and in vivo biophysical and biological assays. X-ray crystallographic analysis of the lead antibody C59 in complex with the human Chi3l1 protein revealed that the kappa light contributes to majority of the antibody-antigen interaction; and that C59 binds to the 4α-5ß loop and 4α-helix of Chi3l1, which is a functional epitope and hotspot for the development of Chi3l1 blocking antibodies. We humanized the C59 antibody by complementarity-determining region grafting and kappa chain framework region reverse mutations. The humanized C59 antibody exhibited similar efficacy as the parental rabbit antibody C59 in attenuating AILI in vivo. Our findings validate Chi3l1 as a potential drug target for AILI and provide proof of concept of developing Chi3l1 blocking antibody as a therapy for the treatment of AILI.

8.
Emerg Microbes Infect ; 12(1): 2149351, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36453198

RESUMO

Marburg virus disease (MVD) is a lethal viral haemorrhagic fever caused by Marburg virus (MARV) with a case fatality rate as high as 88%. There is currently no vaccine or antiviral therapy approved for MVD. Due to high variation among MARV isolates, vaccines developed against one strain fail to protect against other strains. Here we report that three recombinant rabies virus (RABV) vector vaccines encoding two copies of GPs covering both MARV lineages induced pseudovirus neutralizing antibodies in BALB/c mice. Furthermore, high-affinity human neutralizing antibodies were isolated from a humanized mouse model. The three vaccines produced a Th1-biased serological response similar to that of human patients. Adequate sequential immunization enhanced the production of neutralizing antibodies. Virtual docking suggested that neutralizing antibodies induced by the Angola strain seemed to be able to hydrogen bond to the receptor-binding site (RBS) in the GP of the Ravn strain through hypervariable regions 2 (CDR2) and CDR3 of the VH region. These findings demonstrate that three inactivated vaccines are promising candidates against different strains of MARV, and a novel fully humanized neutralizing antibody against MARV was isolated.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Vírus da Raiva , Vacinas Virais , Humanos , Animais , Camundongos , Marburgvirus/genética , Anticorpos Neutralizantes , Vírus da Raiva/genética , Anticorpos Antivirais , Glicoproteínas , Doença do Vírus de Marburg/prevenção & controle , Vacinas Virais/genética
9.
Cell Rep ; 41(4): 111555, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288706

RESUMO

Upregulation of interleukin-17 receptor B (IL-17RB) is known to be oncogenic, while other IL-17 receptors and ligands are generally involved in pro-inflammatory pathways. We identify a mouse neutralizing monoclonal antibody (mAb) D9, which blocks the IL-17RB/IL-17B pathway and inhibits pancreatic tumorigenesis in an orthotopic mouse model. The X-ray crystal structure of the IL-17RB ectodomain in complex with its neutralizing antibody D9 shows that D9 binds to a predicted ligand binding interface and engages with the A'-A loop of IL-17RB fibronectin III domain 1 in a unique conformational state. This structure also provides important paratope information to guide the design of antibody humanization and affinity maturation of D9, resulting in a humanized 1B12 antibody with marginal affinity loss and effective neutralization of IL-17B/IL-17RB signaling to impede tumorigenesis in a mouse xenograft model.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Humanos , Camundongos , Animais , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Fibronectinas/metabolismo , Ligantes , Anticorpos Neutralizantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese , Anticorpos Monoclonais/metabolismo
10.
Hum Vaccin Immunother ; 18(6): 2122507, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36194773

RESUMO

Innovative therapies to complement current treatments are needed to curb the growing incidence of fatal overdoses related to synthetic opioids. Murine and chimeric monoclonal antibodies (mAb) specific for fentanyl and its analogs have demonstrated pre-clinical efficacy in preventing and reversing drug-induced toxicity in rodent models. However, mAb-based therapeutics require extensive engineering as well as in vitro and in vivo characterization to advance to first-in-human clinical trials. Here, novel murine anti-fentanyl mAbs were selected for development based on affinity for fentanyl, and efficacy in counteracting the pharmacological effects of fentanyl in mice. Humanization and evaluation of mutations designed to eliminate predicted post-translational modifications resulted in two humanized mAbs that were effective at preventing fentanyl-induced pharmacological effects in rats. These humanized mAbs showed favorable biophysical properties with respect to aggregation and hydrophobicity by chromatography-based assays, and thermostability by dynamic scanning fluorimetry. These results collectively support that the humanized anti-fentanyl mAbs developed herein warrant further clinical development for treatment of fentanyl toxicity.


Assuntos
Anticorpos Monoclonais Humanizados , Fentanila , Antagonistas de Entorpecentes , Animais , Humanos , Camundongos , Ratos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Proteínas do Sistema Complemento , Fentanila/imunologia , Fentanila/toxicidade , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/imunologia
11.
Front Neurol ; 13: 951423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003301

RESUMO

Introduction: Eculizumab has been shown to be an effective and typically well-tolerated medication in the treatment of neuromyelitis optica spectrum disorder (NMOSD) in maintaining disease remission in patients who are aquaporin-4 water channel autoantibody (AQP4-IgG) seropositive. The efficacy of eculizumab in an acute relapse of NMOSD however is still under review. Case: We describe a 46 year-old female who presented with acute left monocular vision loss on a background of bilateral optic neuritis treated 15 years prior as suspected NMOSD. She had very poor vision from the right eye (6/60). On presentation she was not on any long-term immunosuppressive agents. Her serum was positive for AQP4-IgG and MRI brain and spine demonstrated areas of demyelination in the corpus callosum and thoracic spine. She was treated with high dose intravenous methylprednisolone and underwent plasmapheresis for five consecutive days, but continued to clinically deteriorate with ongoing blindness in her left eye (light perception only). She was subsequently administered eculizumab with weaning oral corticosteroids. Clinically her vision improved to counting fingers and she remains on maintenance eculizumab infusions in the community. At 3 months, there is a steady improvement but still significant loss of central vision from that eye. Conclusion: The utility of eculizumab in NMOSD may assist with treating acute episodes. This theoretically accords with the mode of action in inhibiting conversion of C5-C5a/b, perhaps arresting the acute inflammatory process in this disease. Given that disease burden and mortality in NMOSD is almost entirely related to relapses, increased use of eculizumab acutely could potentially aid recovery from an attack in very severe attacks, and therefore minimize immediate stepwise accrual of disability.

12.
Front Cell Dev Biol ; 10: 945007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903548

RESUMO

Malignant pleural mesothelioma (MPM) is a highly aggressive malignant tumor, and the effective therapeutic drugs are limited. Thus, the establishment of novel therapeutic method is desired. Considerable proportion of MPMs are shown to express cell adhesion molecule 1 (CADM1), and to use CADM1 to bind to and proliferate on the pleural mesothelial surface, suggesting that CADM1 is a possible therapeutic target. Here, anti-CADM1 ectodomain chicken monoclonal antibodies, 3E1 and 9D2, were examined for their possible therapeutic utility. The full-length form of CADM1 was expressed in eight out of twelve human MPM cell lines. MPM cell lines were cultured on a confluent monolayer of mesothelial MeT-5A cells in the presence of 9D2, the neutralizing antibody. 9D2 suppressed the cell growth of CADM1-positive MPM cells with the loss and aggregation of CADM1 molecules on the MPM cell membrane, but not of CADM1-negative MPM cells. Co-addition of 3E1, lacking the neutralizing action, enhanced the growth-suppressive effect of 9D2. The two antibodies were tested as drug delivery vectors. 3E1 was converted into a humanized antibody (h3E1) and conjugated with monomethyl auristatin E (MMAE), a tubulin polymerization inhibitor. When the resulting h3E1-MMAE antibody-drug conjugate (ADC) was added to the standard cultures of CADM1-positive MPM cells, it suppressed the cell growth in a dose-dependent manner. Co-addition of 9D2 enhanced the growth-suppressive effect of h3E1-MMAE ADC. Anti-CADM1 ectodomain antibodies were suggested to serve as both antibody drugs and drug vectors in the treatment of MPM.

13.
Genes Cells ; 27(9): 549-558, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35790497

RESUMO

Recently, research has been conducted with chimeric antigen receptor (CAR)-T cells to improve efficacy against solid tumors. Humanized CAR improved the long-term survival of CAR-T cells in patients' peripheral blood, resulting in increased therapeutic efficacy. Therefore, the humanization of the CAR-gene sequence is considered an effective method. Podoplanin (PDPN) is a glycosylated transmembrane protein that is highly expressed in solid tumors and is associated with poor prognosis in patients with cancer. Therefore, PDPN is considered a biomarker and good target for cancer treatment with CAR-T cells. Previously, an anti-PDPN CAR was generated from a conventional nonhumanized antibody-NZ-1, the only anti-PDPN antibody for which a CAR was produced. In this study, we investigated other anti-PDPN CARs from the antibody NZ-27, or humanized NZ-1, to enhance the therapeutic potential of CAR-T cells. The CAR signal intensity was enhanced by the efficient expression of CAR proteins on the T-cell surface of NZ-27 CAR-T cells, which show tumor-specific cytotoxicity, proinflammatory cytokine production, and anti-tumor activity against PDPN-expressing tumor xenografts in mice that were significantly better than those in nonhumanized NZ-1 CAR-T cells.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Sci ; 113(10): 3321-3329, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35766417

RESUMO

T-cell receptor (TCR)-like Abs that specifically recognize antigenic peptides presented on MHC molecules have been developed for next-generation cancer immunotherapy. Recently, we reported a rapid and efficient method to generate TCR-like Abs using a rabbit system. We humanized previously generated rabbit-derived TCR-like Abs reacting Epstein-Barr virus peptide (BRLF1p, TYPVLEEMF) in the context of HLA-A24 molecules, produced chimeric antigen receptor (CAR)-T cells, and evaluated their antitumor effects using in vitro and in vivo tumor models. Humanization of the rabbit-derived TCR-like Abs using the complementarity-determining region grafting technology maintained their specificity and affinity. We prepared a second-generation CAR using single-chain variable fragment of the humanized TCR-like Abs and then transduced them into human T cells. The CAR-T cells specifically recognized BRLF1p/MHC molecules and lysed the target cells in an antigen-specific manner in vitro. They also demonstrated antitumor activity in a mouse xenograft model. We report the generation of CAR-T cells using humanized rabbit-derived TCR-like Abs. Together with our established and efficient generation procedure for TCR-like Abs using rabbits, our platform for the clinical application of humanized rabbit-derived TCR-like Abs to CAR-T cells will help improve next-generation cancer immunotherapy.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Animais , Regiões Determinantes de Complementaridade , Antígeno HLA-A24 , Herpesvirus Humano 4 , Humanos , Camundongos , Neoplasias/terapia , Coelhos , Receptores de Antígenos de Linfócitos T
15.
J Alzheimers Dis ; 88(1): 207-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35570492

RESUMO

BACKGROUND: Deposits of hyperphosphorylated tau fibrils are hallmarks of a broad spectrum of tauopathies, including Alzheimer's disease (AD). OBJECTIVE: To investigate heterogeneity of tau pathology across brain extracts from a broad selection of different tauopathies and examine the binding properties of the humanized pS396-tau antibody hC10.2 and six other anti-tau antibodies. METHODS: 76 individual tauopathy tissue samples were analyzed in a battery of assays: immunohistochemistry, ELISA, tau aggregation assay, western blot, [3H]PI-2620 and [3H]MK-6240 tau tracer binding, and aggregated seeding activity in RD_P301S HEK293T Biosensor cells. The efficiency of seven anti-tau antibodies to engage with pathological tau species was directly compared. RESULTS: Our data indicate that a strong correlation existed between the tau tracer binding, amount of tau aggregates, pS396-tau phosphorylation, and seeding activity. The hC10.2 antibody, which has entered clinical development, effectively engaged with its epitope across all individual cases of mid-stage and late AD, and primary tauopathies. hC10.2 was superior compared to other phospho- and total tau antibodies to prevent seeded tau aggregation in the biosensor cells. hC10.2 effectively depleted hyperphosphorylated and aggregated tau species across all tauopathy samples proportionally to the amount of tau aggregates. In AD samples, hC10.2 bound to ghost tangles which represent extracellular pathological tau species. CONCLUSION: S396 hyperphosphorylation is a feature of the formation of seeding-competent tau across different tauopathies and it is present both in intra- and extracellular pathological tau. hC10.2 represents an excellent candidate for a hyperphosphorylation-selective therapeutic tau antibody for the treatment of AD and primary tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Anticorpos/metabolismo , Encéfalo/patologia , Células HEK293 , Humanos , Tauopatias/patologia , Proteínas tau/metabolismo
16.
Oncoimmunology ; 11(1): 2008110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141051

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), a cell surface receptor, is expressed on normal epithelial tissue and highly expressed in cancers of high unmet medical need, such as non-small cell lung, pancreatic, and colorectal cancer. CEACAM receptors undergo homo- and heterophilic interactions thereby regulating normal tissue homeostasis and angiogenesis, and in cancer, tumor invasion and metastasis. CEACAM6 expression on malignant plasma cells inhibits antitumor activity of T cells, and we hypothesize a similar function on epithelial cancer cells. The interactions between CEACAM6 and its suggested partner CEACAM1 on T cells were studied. A humanized CEACAM6-blocking antibody, BAY 1834942, was developed and characterized for its immunomodulating effects in co-culture experiments with T cells and solid cancer cells and in comparison to antibodies targeting the immune checkpoints programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and T cell immunoglobulin mucin-3 (TIM-3). The immunosuppressive activity of CEACAM6 was mediated by binding to CEACAM1 expressed by activated tumor-specific T cells. BAY 1834942 increased cytokine secretion by T cells and T cell-mediated killing of cancer cells. The in vitro efficacy of BAY 1834942 correlated with the degree of CEACAM6 expression on cancer cells, suggesting potential in guiding patient selection. BAY 1834942 was equally or more efficacious compared to blockade of PD-L1, and at least an additive efficacy was observed in combination with anti-PD-1 or anti-TIM-3 antibodies, suggesting an efficacy independent of the PD-1/PD-L1 axis. In summary, CEACAM6 blockade by BAY 1834942 reactivates the antitumor response of T cells. This warrants clinical evaluation.


Assuntos
Antígenos CD , Neoplasias , Receptor de Morte Celular Programada 1 , Antígenos CD/imunologia , Antígeno B7-H1/imunologia , Moléculas de Adesão Celular/imunologia , Proteínas Ligadas por GPI/imunologia , Humanos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T
17.
Mini Rev Med Chem ; 22(15): 2012-2023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35156579

RESUMO

The lysosomal cysteine protease enzyme, named Cathepsin B, mainly degrades the protein and manages its average turnover in our body. The Cathepsin B active form is mostly present inside the lysosomal part at a cellular level, providing the slightly acidic medium for its activation. Multiple findings on Cathepsin B reveal its involvement in neurons' degeneration and a possible role as a neuronal death mediator in several neurodegenerative diseases. In this review article, we highlight the participation of Cathepsin B in the etiology/progress of AD, along with various other factors. The enzyme is involved in producing neurotoxic Aß amyloid in the AD brain by acting as the ß-secretase enzyme in the regulated secretory pathways responsible for APP processing. Aß amyloid accumulation and amyloid plaque formation lead to neuronal degeneration, one of the prominent pathological hallmarks of AD. Cathepsin B is also involved in the production of PGlu-Aß, which is a truncated and highly neurotoxic form of Aß. Some of the findings also revealed that Cathepsin B specific gene deletion decreases the level of PGlu-Aß inside the brain of experimental mice. Therefore, neurotoxicity might be considered a new pathological indication of AD due to the involvement of Cathepsin B. It also damages neurons present in the CNS region by producing inflammatory responses and generating mitochondrial ROS. However, Cathepsin B inhibitors, i.e., CA-074, can prevent neuronal death in AD patients. The other natural inhibitors are also equally effective against neuronal damage with higher selectivity. Its synthetic inhibitors are specific for their target; however, they lose their selectivity in the presence of quite a few reducing agents. Therefore, a humanized monoclonal antibody is used as a selective Cathepsin B inhibitor to overcome the problem experienced. The use of Cathepsin B for the treatment of AD and other neurodegenerative diseases could be considered a rational therapeutic target.


Assuntos
Doença de Alzheimer , Catepsina B , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Catepsina B/metabolismo , Humanos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico
18.
Cancer Metab ; 10(1): 3, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109923

RESUMO

BACKGROUND: Hypoxia in the tumor microenvironment (TME) is often the main factor in the cancer progression. Moreover, low levels of oxygen in tumor tissue may signal that the first- or second-line therapy will not be successful. This knowledge triggers the inevitable search for different kinds of treatment that will successfully cure aggressive tumors. Due to its exclusive expression on cancer cells, carbonic anhydrase IX belongs to the group of the most precise targets in hypoxic tumors. CA IX possesses several exceptional qualities that predetermine its crucial role in targeted therapy. Its expression on the cell membrane makes it an easily accessible target, while its absence in healthy corresponding tissues makes the treatment practically harmless. The presence of CA IX in solid tumors causes an acidic environment that may lead to the failure of standard therapy. METHODS: Parental mouse hybridomas (IV/18 and VII/20) were humanized to antibodies which were subsequently named CA9hu-1 and CA9hu-2. From each hybridoma, we obtained 25 clones. Each clone was tested for antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activity, affinity, extracellular pH measurement, multicellular aggregation analysis, and real-time monitoring of invasion with the xCELLigence system. RESULTS: Based on the results from in vivo experiments, we have selected mouse monoclonal antibodies VII/20 and IV/18. The first one is directed at the conformational epitope of the catalytic domain, internalizes after binding to the antigen, and halts tumor growth while blocking extracellular acidification. The second targets the sequential epitope of the proteo-glycan domain, does not internalize, and is able to block the attachment of cancer cells to the matrix preventing metastasis formation. In vitro experiments prove that humanized versions of the parental murine antibodies, CA9hu-1 and CA9hu-2, have preserved these characteristics. They can reverse the failure of standard therapy as a result of an acidic environment by modulating the TME, and both are able to induce an immune response and have high affinity, as well as ADCC and CDC activity. CONCLUSION: CA9hu-1 and CA9hu-2 are the very first humanized antibodies against CA IX that are likely to become suitable therapies for hypoxic tumors. These antibodies can be applied in the treatment therapy of primary tumors and suppression of metastases formation.

19.
J Nanobiotechnology ; 20(1): 58, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101043

RESUMO

BACKGROUND: Humanization of mouse monoclonal antibodies (mAbs) is crucial for reducing their immunogenicity in humans. However, humanized mAbs often lose their binding affinities. Therefore, an in silico humanization method that can prevent the loss of the binding affinity of mAbs is needed. METHODS: We developed an in silico V(D)J recombination platform in which we used V(D)J human germline gene sequences to design five humanized candidates of anti-tumor necrosis factor (TNF)-α mAbs (C1-C5) by using different human germline templates. The candidates were subjected to molecular dynamics simulation. In addition, the structural similarities of their complementarity-determining regions (CDRs) to those of original mouse mAbs were estimated to derive the weighted interatomic root mean squared deviation (wRMSDi) value. Subsequently, the correlation of the derived wRMSDi value with the half maximal effective concentration (EC50) and the binding affinity (KD) of the humanized anti-TNF-α candidates was examined. To confirm whether our in silico estimation method can be used for other humanized mAbs, we tested our method using the anti-epidermal growth factor receptor (EGFR) a4.6.1, anti-glypican-3 (GPC3) YP9.1 and anti-α4ß1 integrin HP1/2L mAbs. RESULTS: The R2 value for the correlation between the wRMSDi and log(EC50) of the recombinant Remicade and those of the humanized anti-TNF-α candidates was 0.901, and the R2 value for the correlation between wRMSDi and log(KD) was 0.9921. The results indicated that our in silico V(D)J recombination platform could predict the binding affinity of humanized candidates and successfully identify the high-affinity humanized anti-TNF-α antibody (Ab) C1 with a binding affinity similar to that of the parental chimeric mAb (5.13 × 10-10). For the anti-EGFR a4.6.1, anti-GPC3 YP9.1, and anti-α4ß1 integrin HP1/2L mAbs, the wRMSDi and log(EC50) exhibited strong correlations (R2 = 0.9908, 0.9999, and 0.8907, respectively). CONCLUSIONS: Our in silico V(D)J recombination platform can facilitate the development of humanized mAbs with low immunogenicity and high binding affinities. This platform can directly transform numerous mAbs with therapeutic potential to humanized or even human therapeutic Abs for clinical use.


Assuntos
Inibidores do Fator de Necrose Tumoral , Recombinação V(D)J , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados , Camundongos , Fator de Necrose Tumoral alfa
20.
Microbiol Immunol ; 66(4): 179-192, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35084739

RESUMO

Antibodies against hepatitis B virus S protein can protect against hepatitis B virus (HBV) infection. Therefore, hepatitis B immunoglobulin (HBIG), which contains HBsAb, is used clinically as a therapy for HBV infection. In this study, a series of monoclonal antibodies that recognize multiple HBV genotypes was obtained. All the antibodies recognized conformational epitopes of S protein, but not linear epitopes. Several antibodies neutralized HBV infection and exhibited strong affinities and neutralizing activities. Antigenic epitope analysis demonstrated that they recognized residue Ile152 of S protein, which is localized outside the "a" determinant. Ile152 is highly conserved, and a mutation in this residue resulted in reduced expression of large hepatitis B surface proteins (L protein), suggesting that the amino acid at this position is involved in the expression of L protein. In addition, the antibodies neutralized the infection of hepatitis D virus possessing a Gly145 mutation to Arg in S protein, which is a well-known escape mutation against HBIG treatment. Using mouse monoclonal antibodies, a humanized antibody possessing affinities and neutralizing activities similar to those of the original mouse antibody was successfully established. The antibodies generated in this study may have the potential for use in alternative antibody therapies for HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA