Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.309
Filtrar
1.
Respir Med ; : 107735, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977108

RESUMO

INTRODUCTION: Chronic effects of noninvasive ventilation on myocardial function in patients with obesity hypoventilation syndrome (OHS) are scarcely understood. The aim of the present study was to evaluate the long-term effects of volume-targeted bilevel positive airway pressure ventilation (BiPAP) on cardiac parameters and myocardial biomarkers in patients with OHS. METHODS: Clinically stable patients with OHS referred to the tertiary center for the initiation of long-term BiPAP therapy were consecutively enrolled. At baseline, all participants underwent overnight cardiorespiratory polygraphy. BiPAP therapy using volume-targeted spontaneous/timed mode delivered via an oro-nasal mask was initiated. Beat-to-beat noninvasive monitoring by impedance cardiography was used to assess heart function at baseline and after 3 and 12 months of BiPAP use. Serum troponin 1, N-Terminal Pro-B-Type Natriuretic Peptide (NT-ProBNP), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) were monitored. RESULTS: Thirteen patients (10 men; mean age, 55.8 ± 9.8 years; mean body mass index of 47.8 ± 5.9 kg/m2) were recruited. From baseline to 3, and to 12 months of BiPAP use, left ventricular stroke volume (SV), ejection time (LVET), and ejection time index significantly increased (P = 0.030; P < 0.001; P = 0.003, respectively), while heart rate and systolic time ratio significantly decreased (P = 0.004; P = 0.034, respectively). Reductions in serum NT-proBNP, IL-6 and TNF-α were observed (P = 0.045; P = 0.018; P = 0.003, respectively). No significant changes in serum troponin were detected throughout the study. CONCLUSIONS: The present findings of increased SV, in association with lengthening of LVET, reductions of NT-proBNP and reductions in circulatory inflammatory markers in patients with stable OHS and chronic moderate-to-severe daytime hypercapnia treated with BiPAP over 1 year support the role of this therapeutic mode in such patients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38961823

RESUMO

Prior studies have identified variable effects of healthy aging on neurovascular coupling (NVC). Carbon dioxide (CO2) affects both cerebral blood velocity (CBv) and NVC, but the effects of age on NVC under different CO2 conditions are unknown. Therefore, we investigated the effects of aging on NVC in different CO2 states in healthy controls during cognitive paradigms. 78 healthy participants (18-78 years) underwent continuous recordings of CBv by bilateral insonation of middle (MCA) and posterior (PCA) cerebral arteries (transcranial Doppler), blood pressure, end-tidal CO2, and heart rate during poikilocapnia, hypercapnia (5% CO2 inhalation) and hypocapnia (paced hyperventilation). Neuroactivation via visuospatial (VS) and attention tasks (AT) augmented CBv. Peak percentage change in MCAv/PCAv, were compared between CO2 conditions and age groups (< 30, 31-60, and >60 years). For the VS task, in normocapnia, younger adults had a lower NVC response compared to older adults (mean difference (MD): -7.92% (standard deviation (SD): 2.37), p=0.004), but comparable between younger and middle-aged groups. In hypercapnia, both younger (MD: -4.75% (SD: 1.56), p=0.009) and middle (MD: -4.58% (SD: 1.69), p=0.023) age groups had lower NVC responses compared to older adults. Finally, in hypocapnia, both older (MD: 5.92% (SD: 2.21), p=0.025) and middle (MD: 5.44% (SD: 2.27), p=0.049) age groups had greater NVC responses, compared to younger adults. In conclusion, the middle-aged adults demonstrated a variable NVC response, comparable to younger adults under hypercapnia, and older adults under hypocapnia. This may owe to a more cognitively favourable profile while under hypercapnic conditions, compared to hypocapnia.

3.
Neurobiol Dis ; : 106592, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971479

RESUMO

Failure to recover from repeated hypercapnia and hypoxemia challenges caused by severe GCS and postictal apneas may contribute to sudden unexpected death in epilepsy (SUDEP). Our previous studies found orexinergic dysfunction contributes to respiratory abnormalities in a preclinical model of SUDEP, Kcna1-/-mice. Here, we developed two gas challenges consisting of repeated HH exposures and used wholebody plethysmography to determine whether Kcna1-/-mice would have detrimental ventilatory responses. Kcna1-/- mice exhibited an elevated ventilatory response to a mild repeated hypercapnia-hypoxia (HH) challenge compared to WT. Moreover, 71% of Kcna1-/- mice failed to survive a severe repeated HH challenge, whereas all WT mice recovered. We next determined whether orexin was involved in these differences. Pretreatment of Kcna1-/- mice with a dual orexin receptor antagonist rescued the ventilatory response during the mild challenge and all subjects survived the severe challenge. In ex vivo extracellular recordings in the lateral hypothalamus of coronal brain slices, we found reducing pH either inhibits or stimulates putative orexin neurons similar to other chemosensitive neurons; however, a significantly greater percentage of putative orexin neurons from Kcna1-/-mice were stimulated and the magnitude of stimulation was increased resulting in augmentation of the calculated chemosensitivity index relative to WT. Collectively, our data suggest that increased chemosensitive activity of orexin neurons may be pathologic in the Kcna1-/- mouse model of SUDEP, and contribute to elevated ventilatory responses. Our data suggest that individuals at high risk for SUDEP may be more sensitive to HH challenges, whether induced by seizures or other means; and the depth and length of the HH exposure could dictate the probability of survival.

4.
Cureus ; 16(5): e60617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38894798

RESUMO

Therapeutic hypercapnia has been proposed as a potential strategy to enhance cerebral perfusion and improve outcomes in patients after cardiac arrest. However, the effects of targeted hypercapnia remain unclear. We conducted a systematic review and meta-analysis to evaluate the impact of hypercapnia compared to normocapnia on mortality and length of stay in post-cardiac arrest patients. We searched major databases for randomized controlled trials and observational studies comparing outcomes between hypercapnia and normocapnia in adult post-cardiac arrest patients. Data on in-hospital mortality and the ICU and hospital length of stay were extracted and pooled using random-effects meta-analysis. Five studies (two randomized controlled trials (RCTs) and three observational studies) with a total of 1,837 patients were included. Pooled analysis showed hypercapnia was associated with significantly higher in-hospital mortality compared to normocapnia (56.2% vs. 50.5%, OR 1.24, 95% CI 1.12-1.37, p<0.001). There was no significant heterogeneity (I2 = 25%, p = 0.26). No statistically significant differences were found for ICU length of stay (mean difference 0.72 days, 95% CI -0.51 to 1.95) or hospital length of stay (mean difference 1.13 days, 95% CI -0.67 to 2.93) between the groups. Sensitivity analysis restricted to mild hypercapnia studies did not alter the mortality findings. This meta-analysis did not find a mortality benefit with targeted hypercapnia compared to normocapnia in post-cardiac arrest patients. The results align with current guidelines recommending a normal partial pressure of arterial carbon dioxide (PaCO2) target range and do not support routinely targeting higher carbon dioxide levels in this setting.

5.
J Intensive Care Med ; : 8850666241252741, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847047

RESUMO

Background: This study aimed to investigate the associations between dyscapnia, ventilatory variables, and mortality. We hypothesized that the association between mechanical power or ventilatory ratio and survival is mediated by dyscapnia. Methods: Patients with moderate or severe acute respiratory distress syndrome (ARDS), who received mechanical ventilation within the first 48 h after admission to the intensive care unit for at least 48 h, were included in this retrospective single-center study. Values of arterial carbon dioxide (PaCO2) were categorized into "hypercapnia" (PaCO2 ≥ 50 mm Hg), "normocapnia" (PaCO2 36-49 mmHg), and "hypocapnia" (PaCO2 ≤ 35 mm Hg). We used path analyses to assess the associations between ventilatory variables (mechanical power and ventilatory ratio) and mortality, where hypocapnia or hypercapnia were included as mediating variables. Results: Between December 2017 and April 2021, 435 patients were included. While there was a significant association between mechanical power and hypercapnia (BEM = 0.24 [95% CI: 0.15; 0.34], P < .01), there was no significant association between mechanical power or hypercapnia and ICU mortality. The association between mechanical power and intensive care unit (ICU) mortality was fully mediated by hypocapnia (BEM = -0.10 [95% CI: -0.19; 0.00], P = .05; BMO = 0.38 [95% CI: 0.13; 0.63], P < .01). Ventilatory ratio was significantly associated with hypercapnia (B = 0.23 [95% CI: 0.14; 0.32], P < .01). There was no significant association between ventilatory ratio, hypercapnia, and mortality. There was a significant effect of ventilatory ratio on mortality, which was fully mediated by hypocapnia (BEM = -0.14 [95% CI: -0.24; -0.05], P < .01; BMO = 0.37 [95% CI: 0.12; 0.62], P < .01). Conclusion: In mechanically ventilated patients with moderate or severe ARDS, the association between mechanical power and mortality was fully mediated by hypocapnia. Likewise, there was a mediating effect of hypocapnia on the association between ventilatory ratio and ICU mortality. Our results indicate that the debate on dyscapnia and outcome after ARDS should consider the impact of ventilatory variables.

6.
Intern Med J ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856155

RESUMO

BACKGROUND: Identification of hypoxaemia and hypercapnia is essential for the diagnosis and treatment of acute respiratory failure. While arterial blood gas (ABG) analysis is standard for PO2 and PCO2 measurement, venous blood gas (VBG) analysis is increasingly used as an alternative. Previous systematic reviews established that VBG reporting of PO2 and PCO2 is less accurate, but the impacts on clinical management and patient outcomes are unknown. AIMS: This study aimed to systematically review available evidence of the clinical impacts of using ABGs or VBGs and examine the arteriovenous difference in blood gas parameters. METHODS: A comprehensive search of the MEDLINE, Embase and Cochrane Library databases since inception was conducted. Included studies were prospective or cross-sectional studies comparing peripheral ABG to peripheral VBG in adult non-critical care inpatients presenting with respiratory symptoms. RESULTS: Of 15 119 articles screened, 15 were included. No studies were found that examined clinical impacts resulting from using VBG compared to ABG. Included studies focused on the agreement between ABG and VBG measurements of pH, PO2, PCO2 and HCO3 -. Due to the heterogeneity of the included studies, qualitative evidence synthesis was performed. While the arteriovenous difference in pH and HCO3 - was generally predictable, the difference in PO2 and PCO2 was more significant and less predictable. CONCLUSIONS: Our study reinforces the notion that VBG is not comparable to ABG for physiological measurements. However, a key revelation from our research is the significant lack of data regarding the clinical implications of using VBG instead of ABG, a common scenario in clinical practice. This highlights a critical knowledge gap.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38908504

RESUMO

CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.

8.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928217

RESUMO

The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.


Assuntos
Hipercapnia , Hipóxia , Humanos , Hipóxia/metabolismo , Animais , Dióxido de Carbono/metabolismo , Expectativa de Vida , Envelhecimento , Longevidade , Transdução de Sinais
9.
Resuscitation ; : 110295, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936652

RESUMO

PURPOSE: Mild hypercapnia did not improve neurological outcomes for resuscitated out-of-hospital cardiac arrest (OHCA) patients in the Targeted Therapeutic Mild Hypercapnia After Resuscitated Cardiac Arrest (TAME) trial. However, the effects of hypercapnic acidosis on myocardial injury in patients with cardiac arrest is unexplored. We investigated whether mild hypercapnia compared to normocapnia, following emergency coronary intervention, increased myocardial injury in comatose OHCA-patients with AMI. METHODS: Single-centre, prospective, pre-planned sub-study of the TAME trial. Patients were randomised to targeted mild hypercapnia (PaCO2 =6.7-7.3 kPa) or normocapnia (PaCO2 =4.7-6.0 kPa) for 24 hours. Myocardial injury was assessed with high-sensitive cardiac troponin T (hs-cTnT) measured at baseline, 24, 48 and 72 hours. Haemodynamics were assessed with right heart catheterisation and blood-gas analyses every 4th hour for 48 hours. RESULTS: We included 125 OHCA-patients. 57 (46%) had an AMI, with 31 and 26 patients randomised to hypercapnia and normocapnia, respectively. Median peak hs-cTnT in AMI-patients was 58% lower in the hypercapnia-group: 2136 (IQR: 861-4462) versus 5165 ng/L (IQR: 2773-7519), p =0.007. Lower average area under the hs-cTnT curve was observed in the hypercapnia-group: 2353 (95% CI 1388-3319) versus 4953 ng/L (95% CI 3566-6341), P-group =0.002. Hypercapnia was associated with increased cardiac power output (CPO) and lower lactate levels in patients with AMI (P-group <0.05). hs-cTnT, lactate and CPO were not significantly different between intervention groups in OHCA-patients without AMI (p >0.05). CONCLUSIONS: Mild hypercapnia was not associated with increased myocardial injury in resuscitated OHCA-patients. In AMI-patients, mild hypercapnia was associated with lower hs-cTnT and lactate, and improved cardiac performance. TRIAL REGISTRATION NUMBER: NCT03114033 Take-home-message: In this single-centre, prospective sub-study of a randomised cardiac arrest trial targeting mild hypercapnia was not associated with increased myocardial injury after out-of-hospital cardiac arrest. Compared to targeted normocapnia, mild hypercapnia was associated with lower hs-cTnT levels in patients with acute myocardial infarction as the cause of cardiac arrest.

10.
Rev Mal Respir ; 2024 Jun 25.
Artigo em Francês | MEDLINE | ID: mdl-38926023

RESUMO

Humidified high-flow nasal oxygen therapy (HFNO) has, in recent years, come to assume a key role in the management of hypoxemic acute respiratory failure (ARF). While non-invasive ventilation (NIV) currently represents the first-line ventilatory strategy in patients exhibiting hypercapnic ARF, the operating principles and physiological effects of HFNO could be interesting and useful in the initial management of hypercapnic ARF and/or after extubation, particularly in acute exacerbations of chronic obstructive pulmonary disease. Under these conditions, HFNO could be used either alone continuously or in combination with NIV during breaks in spontaneous breathing, depending on the severity and etiology of the underlying hypercapnic ARF.

11.
J Pers Med ; 14(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38929821

RESUMO

BACKGROUND: Overlap syndrome (OS), the coexistence of chronic obstructive pulmonary disease and obstructive sleep apnea, is frequently characterized by the presence of daytime hypercapnia (pCO2 ≥ 45 mmHg). The aim of this study was to investigate potential differences in anthropometric, sleep and respiratory characteristics between hypercapnic and normocapnic patients with OS. METHODS: Consecutive patients who underwent polysomnography, pulmonary function testing and arterial blood gases and had been diagnosed with OS were enrolled in the study. RESULTS: According to pCO2 levels in wakefulness, the patients were divided into group A, consisting of OS patients without hypercapnia (n = 108) or group B, consisting of OS patients with hypercapnia (n = 55). The majority of included patients in both groups were males (n = 92 in group A vs. n = 50 in group B). Group B had increased BMI (p = 0.001), neck (p = 0.017) and waist circumference (p = 0.013), higher scores in Epworth sleepiness scale (ESS) (p = 0.008), increased sleep efficiency (p = 0.033), oxygen desaturation index (p = 0.004) and time with oxyhemoglobin saturation <90% (p = 0.006) than group A. Also, Group B had decreased average and minimum oxyhemoglobin saturation during sleep (p < 0.001). Hypercapnic patients had lower FEV1% (p = 0.003), FVC% (p = 0.004), pO2 and pCO2 (p < 0.001 for both) values compared with normocapnic patients. In binary regression analysis, which assessed various predictors on the likelihood of having hypercapnia, it was found that BMI (OR: 1.313, 95% CI: 1.048-1.646, p = 0.018) and FVC (OR: 0.913, 95% CI: 0.845-0.986, p = 0.020) were the major determinants of hypercapnia in OS patients. CONCLUSIONS: Hypercapnic OS patients were more obese and sleepy and presented worse respiratory function in wakefulness and sleep hypoxia characteristics compared with normocapnic OS patients.

12.
Crit Care ; 28(1): 198, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863072

RESUMO

BACKGROUND: Current continuous kidney replacement therapy (CKRT) protocols ignore physiological renal compensation for hypercapnia. This study aimed to explore feasibility, safety, and clinical benefits of pCO2-adapted CKRT for hypercapnic acute respiratory distress syndrome (ARDS) patients with indication for CKRT. METHODS: We enrolled mechanically ventilated hypercapnic ARDS patients (pCO2 > 7.33 kPa) receiving regional citrate anticoagulation (RCA) based CKRT in a prospective, randomized-controlled pilot-study across five intensive care units at the Charité-Universitätsmedizin Berlin, Germany. Patients were randomly assigned 1:1 to the control group with bicarbonate targeted to 24 mmol/l or pCO2-adapted-CKRT with target bicarbonate corresponding to physiological renal compensation. Study duration was six days. Primary outcome was bicarbonate after 72 h. Secondary endpoints included safety and clinical endpoints. Endpoints were assessed in all patients receiving treatment. RESULTS: From September 2021 to May 2023 40 patients (80% male) were enrolled. 19 patients were randomized to the control group, 21 patients were randomized to pCO2-adapted-CKRT. Five patients were excluded before receiving treatment: three in the control group (consent withdrawal, lack of inclusion criteria fulfillment (n = 2)) and two in the intervention group (lack of inclusion criteria fulfillment, sudden unexpected death) and were therefore not included in the analysis. Median plasma bicarbonate 72 h after randomization was significantly higher in the intervention group (30.70 mmol/l (IQR 29.48; 31.93)) than in the control group (26.40 mmol/l (IQR 25.63; 26.88); p < 0.0001). More patients in the intervention group received lung protective ventilation defined as tidal volume < 8 ml/kg predicted body weight. Thirty-day mortality was 10/16 (63%) in the control group vs. 8/19 (42%) in the intervention group (p = 0.26). CONCLUSION: Tailoring CKRT to physiological renal compensation of respiratory acidosis appears feasible and safe with the potential to improve patient care in hypercapnic ARDS. TRIAL REGISTRATION: The trial was registered in the German Clinical Trials Register (DRKS00026177) on September 9, 2021 and is now closed.


Assuntos
Dióxido de Carbono , Hipercapnia , Terapia de Substituição Renal , Síndrome do Desconforto Respiratório , Humanos , Masculino , Feminino , Projetos Piloto , Pessoa de Meia-Idade , Hipercapnia/terapia , Hipercapnia/tratamento farmacológico , Idoso , Dióxido de Carbono/sangue , Dióxido de Carbono/análise , Dióxido de Carbono/uso terapêutico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Estudos Prospectivos , Terapia de Substituição Renal/métodos , Terapia de Substituição Renal/estatística & dados numéricos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Terapia de Substituição Renal Contínua/métodos , Terapia de Substituição Renal Contínua/estatística & dados numéricos
13.
Sleep Med ; 121: 42-47, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908270

RESUMO

BACKGROUND: The current standard treatment for obstructive sleep apnea (OSA), continuous positive airway pressure (CPAP), is characterized by a low adherence rate due to various factors including circuit-dependent carbon dioxide (CO2) rebreathing, which can exacerbated by disparate factors, such as low PAP, use of auto-titrating PAP or ramps. However, risk factors for rebreathing are often overlooked or poorly understood in clinical practice. Therefore, our objective was to evaluate the extent of rebreathing occurring with commonly used CPAP masks across varying PAPs, tidal volumes, and respiratory rates. METHODS: In a bench study, we assessed the rebreathing rate of nine masks interfacing a CPAP with a lung simulator providing different breathing respiratory rates (15 or 20 breaths/min) and tidal volumes (400, 500, 600, 700 and 750 mL). Additionally, a theoretical model was developed to describe the likelihood of CO2 rebreathing from four different masks at various breathing settings. RESULTS: Overall, all masks performed worse in situations characterized by low PAPs, high tidal volumes, and high respiratory rates. However, Dreamwear, Nuance, Siesta, Vitera, and particularly V2 masks exhibited greater susceptibility to rebreathing compared to F20, P10, Brevida, and Rio masks for the same variations of PAPs or ventilatory parameters. The mathematical model suggested that the risk of rebreathing for Rio, P10 and Nuance mask is negligible for respiratory rates of 10 breaths/min or below. CONCLUSIONS: Circuit-dependent CO2 rebreathing can be a common occurrence and warrants careful mask selection upon CPAP therapy initiation for optimal clinical outcomes.

14.
Diving Hyperb Med ; 54(2): 110-119, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870953

RESUMO

Introduction: Inhalation of high concentrations of carbon dioxide (CO2) at atmospheric pressure can be toxic with dose-dependent effects on the cardiorespiratory system or the central nervous system. Exposure to both hyperbaric and hypobaric environments can result in decompression sickness (DCS). The effects of CO2 on DCS are not well documented with conflicting results. The objective was to review the literature to clarify the effects of CO2 inhalation on DCS in the context of hypobaric or hyperbaric exposure. Methods: The systematic review included experimental animal and human studies in hyper- and hypobaric conditions evaluating the effects of CO2 on bubble formation, denitrogenation or the occurrence of DCS. The search was based on MEDLINE and PubMed articles with no language or date restrictions and also included articles from the underwater and aviation medicine literature. Results: Out of 43 articles, only 11 articles were retained and classified according to the criteria of hypo- or hyperbaric exposure, taking into account the duration of CO2 inhalation in relation to exposure and distinguishing experimental work from studies conducted in humans. Conclusions: Before or during a stay in hypobaric conditions, exposure to high concentrations of CO2 favors bubble formation and the occurrence of DCS. In hyperbaric conditions, high CO2 concentrations increase the occurrence of DCS when exposure occurs during the bottom phase at maximum pressure, whereas beneficial effects are observed when exposure occurs during decompression. These opposite effects depending on the timing of exposure could be related to 1) the physical properties of CO2, a highly diffusible gas that can influence bubble formation, 2) vasomotor effects (vasodilation), and 3) anti-inflammatory effects (kinase-nuclear factor and heme oxygenase-1 pathways). The use of O2-CO2 breathing mixtures on the surface after diving may be an avenue worth exploring to prevent DCS.


Assuntos
Dióxido de Carbono , Doença da Descompressão , Animais , Humanos , Pressão Atmosférica , Mergulho/efeitos adversos , Mergulho/fisiologia
15.
JMA J ; 7(2): 290-291, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38721088
16.
Conserv Physiol ; 12(1): coae026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779432

RESUMO

The mechanisms that determine the temperature tolerances of fish are poorly understood, creating barriers to disentangle how additional environmental challenges-such as CO2-induced aquatic acidification and fluctuating oxygen availability-may exacerbate vulnerability to a warming climate and extreme heat events. Here, we explored whether two acute exposures (~0.5 hours or ~72 hours) to increased CO2 impact acute temperature tolerance limits in a freshwater fish, rainbow trout (Oncorhynchus mykiss). We separated the potential effects of acute high CO2 exposure on critical thermal maximum (CTmax), caused via either respiratory acidosis (reduced internal pH) or O2 supply capacity (aerobic scope), by exposing rainbow trout to ~1 kPa CO2 (~1% or 10 000 µatm) in combination with normoxia or hyperoxia (~21 or 42 kPa O2, respectively). In normoxia, acute exposure to high CO2 caused a large acidosis in trout (blood pH decreased by 0.43 units), while a combination of hyperoxia and ~1 kPa CO2 increased the aerobic scope of trout by 28%. Despite large changes in blood pH and aerobic scope between treatments, we observed no impacts on the CTmax of trout. Our results suggest that the mechanisms that determine the maximum temperature tolerance of trout are independent of blood acid-base balance or the capacity to deliver O2 to tissues.

17.
Sleep Med Clin ; 19(2): 339-356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692757

RESUMO

An emerging body of literature describes the prevalence and consequences of hypercapnic respiratory failure. While device qualifications, documentation practices, and previously performed clinical studies often encourage conceptualizing patients as having a single "cause" of hypercapnia, many patients encountered in practice have several contributing conditions. Physiologic and epidemiologic data suggest that sleep-disordered breathing-particularly obstructive sleep apnea (OSA)-often contributes to the development of hypercapnia. In this review, the authors summarize the frequency of contributing conditions to hypercapnic respiratory failure among patients identified in critical care, emergency, and inpatient settings with an aim toward understanding the contribution of OSA to the development of hypercapnia.


Assuntos
Cuidados Críticos , Hipercapnia , Insuficiência Respiratória , Apneia Obstrutiva do Sono , Humanos , Hipercapnia/complicações , Insuficiência Respiratória/terapia , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/etiologia , Apneia Obstrutiva do Sono/terapia , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/fisiopatologia , Cuidados Críticos/métodos , Pacientes Internados , Pacientes Ambulatoriais
18.
Sleep Med Clin ; 19(2): 357-369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692758

RESUMO

Hypoventilation is a complication that is not uncommon in chronic obstructive pulmonary disease and calls for both medical treatment of the underlying disease and, frequently, noninvasive ventilation either during exacerbations requiring hospitalization or in a chronic state in the patient at home. Obesity hypoventilation syndrome by definition is associated with ventilatory failure and hypercapnia. It may or may not be accompanied by obstructive sleep apnea, which when detected becomes an additional target for positive airway pressure treatment. Intensive research has not completely resolved the best choice of treatment, and the simplest modality, continuous positive airway pressure, may still be entertained.


Assuntos
Hipercapnia , Síndrome de Hipoventilação por Obesidade , Doença Pulmonar Obstrutiva Crônica , Humanos , Pressão Positiva Contínua nas Vias Aéreas/métodos , Hipercapnia/terapia , Síndrome de Hipoventilação por Obesidade/terapia , Síndrome de Hipoventilação por Obesidade/complicações , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/complicações
19.
J Neurophysiol ; 132(1): 23-33, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748407

RESUMO

The apolipoprotein E (APOE) gene has been studied due to its influence on Alzheimer's disease (AD) development and work in an APOE mouse model recently demonstrated impaired respiratory motor plasticity following spinal cord injury (SCI). Individuals with AD often copresent with obstructive sleep apnea (OSA) characterized by cessations in breathing during sleep. Despite the prominence of APOE genotype and sex as factors in AD progression, little is known about the impact of these variables on respiratory control. Ventilation is tightly regulated across many systems, with respiratory rhythm formation occurring in the brainstem but modulated in response to chemoreception. Alterations within these modulatory systems may result in disruptions of appropriate respiratory control and ultimately, disease. Using mice expressing two different humanized APOE alleles, we characterized how sex and the presence of APOE3 or APOE4 influences ventilation during baseline breathing (normoxia) and during respiratory challenges. We show that sex and APOE genotype influence breathing during hypoxic challenge, which may have clinical implications in the context of AD and OSA. In addition, female mice, while responding robustly to hypoxia, were unable to recover to baseline respiratory levels, emphasizing sex differences in disordered breathing.NEW & NOTEWORTHY This study is the first to use whole body plethysmography (WBP) to measure the impact of APOE alleles on breathing under normoxia and during adverse respiratory challenges in a targeted replacement Alzheimer's model. Both sex and genotype were shown to affect breathing under normoxia, hypoxic challenge, and hypoxic-hypercapnic challenge. This work has important implications regarding the impact of genetics on respiratory control as well as applications pertaining to conditions of disordered breathing including sleep apnea and neurotrauma.


Assuntos
Hipóxia , Animais , Feminino , Masculino , Hipóxia/fisiopatologia , Camundongos , Apolipoproteína E4/genética , Genótipo , Hipercapnia/fisiopatologia , Camundongos Transgênicos , Caracteres Sexuais , Respiração , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Fatores Sexuais , Camundongos Endogâmicos C57BL
20.
Curr Mol Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757326

RESUMO

Obstructive sleep apnea [OSA] is widespread in the population and affects as many as one billion people worldwide. OSA is associated with dysfunction of the brain system that controls breathing, which leads to intermittent hypoxia [IH], hypercapnia, and oxidative stress [OS]. The number of NOD-like receptor family pyrin domain-containing [NLRP3] inflammasome was increased after IH, hypercapnia, and OS. NLRP3 inflammasome is closely related to inflammation. NLRP3 inflammasome causes a series of inflammatory diseases by activating IL-1ß and IL-18. Subsequently, NLRP3 inflammasome plays an important role in the complications of OSA, including Type 2 diabetes [T2DM], coronary heart disease [CHD], hypertension, neuroinflammation, and depression. This review will introduce the basic composition and structure of the NLRP3 inflammasome and focus on the relationship between the NLRP3 inflammasome and OSA and OSA complications. We can deeply understand how NLRP3 inflammasome is strongly associated with OSA and OSA complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...