RESUMO
BACKGROUND: The hypothesis of decreased neural inhibition in dementia has been sparsely studied in functional magnetic resonance imaging (fMRI) data across patients with different dementia subtypes, and the role of social and demographic heterogeneities on this hypothesis remains to be addressed. METHODS: We inferred regional inhibition by fitting a biophysical whole-brain model (dynamic mean field model with realistic inter-areal connectivity) to fMRI data from 414 participants, including patients with Alzheimer's disease, behavioral variant frontotemporal dementia, and controls. We then investigated the effect of disease condition, and demographic and clinical variables on the local inhibitory feedback, a variable related to the maintenance of balanced neural excitation/inhibition. RESULTS: Decreased local inhibitory feedback was inferred from the biophysical modeling results in dementia patients, specific to brain areas presenting neurodegeneration. This loss of local inhibition correlated positively with years with disease, and showed differences regarding the gender and geographical origin of the patients. The model correctly reproduced known disease-related changes in functional connectivity. CONCLUSIONS: Results suggest a critical link between abnormal neural and circuit-level excitability levels, the loss of grey matter observed in dementia, and the reorganization of functional connectivity, while highlighting the sensitivity of the underlying biophysical mechanism to demographic and clinical heterogeneities in the patient population.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Encéfalo/patologia , Imageamento por Ressonância Magnética , Substância Cinzenta/patologia , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Inibição NeuralRESUMO
Previous studies have demonstrated that acute colonic inflammation leads to an increase in dorsal root ganglia (DRG) neuronal excitability. However, the signaling elements implicated in this hyperexcitability have yet to be fully unraveled. Extracellular adenosine 5'-triphosphate (ATP) is a well-recognized sensory signaling molecule that enhances the nociceptive response after inflammation through activation of P2X3 receptors, which are expressed mainly by peripheral sensory neurons. The aim of this study is to continue investigating how P2X3 affects neuronal hypersensitivity in an acute colitis animal model. To achieve this, DNBS (Dinitrobenzene sulfonic acid; 200 mg/kg) was intrarectally administered to C57BL/6 mice, and inflammation severity was assessed according to the following parameters: weight loss, macroscopic and microscopic scores. Perforated patch clamp technique was used to evaluate neuronal excitability via measuring changes in rheobase and action potential firing in T8-L1 DRG neurons. A-317491, a well-established potent and selective P2X3 receptor antagonist, served to dissect their contribution to recorded responses. Protein expression of P2X3 receptors in DRG was evaluated by western blotting and immunofluorescence. Four days post-DNBS administration, colons were processed for histological analyses of ulceration, crypt morphology, goblet cell density, and immune cell infiltration. DRG neurons from DNBS-treated mice were significantly more excitable compared with controls; these changes correlated with increased P2X3 receptor expression. Furthermore, TNF-α mRNA expression was also significantly higher in inflamed colons compared to controls. Incubation of control DRG neurons with TNF-α resulted in similar cell hyperexcitability as measured in DNBS-derived neurons. The selective P2X3 receptor antagonist, A-317491, blocked the TNF-α-induced effect. These results support the hypothesis that TNF-α enhances colon-innervating DRG neuron excitability via modulation of P2X3 receptor activity.
Assuntos
Colite , Gânglios Espinais , Trifosfato de Adenosina , Animais , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X3 , Células Receptoras Sensoriais , Fator de Necrose Tumoral alfaRESUMO
Intracellular amyloid beta oligomer (iAßo) accumulation and neuronal hyperexcitability are two crucial events at early stages of Alzheimer's disease (AD). However, to date, no mechanism linking iAßo with an increase in neuronal excitability has been reported. Here, the effects of human AD brain-derived (h-iAßo) and synthetic (iAßo) peptides on synaptic currents and action potential firing were investigated in hippocampal neurons. Starting from 500 pM, iAßo rapidly increased the frequency of synaptic currents and higher concentrations potentiated the AMPA receptor-mediated current. Both effects were PKC-dependent. Parallel recordings of synaptic currents and nitric oxide (NO)-associated fluorescence showed that the increased frequency, related to pre-synaptic release, was dependent on a NO-mediated retrograde signaling. Moreover, increased synchronization in NO production was also observed in neurons neighboring those dialyzed with iAßo, indicating that iAßo can increase network excitability at a distance. Current-clamp recordings suggested that iAßo increased neuronal excitability via AMPA-driven synaptic activity without altering membrane intrinsic properties. These results strongly indicate that iAßo causes functional spreading of hyperexcitability through a synaptic-driven mechanism and offers an important neuropathological significance to intracellular species in the initial stages of AD, which include brain hyperexcitability and seizures.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Animais , Feminino , Humanos , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Ratos WistarRESUMO
Parkinson's disease (PD) is characterized by a degeneration of nigrostriatal dopaminergic neurons that results in a hypercholinergic state in the striatum. This hypercholinergic state contributes to the clinical signs of PD. However, the mechanisms that underlie this state remain unknown. Cholinergic interneurons (ChIs) are the main source of acetylcholine in the striatum. Many studies have highlighted the importance of their normal physiological activity to guarantee a normal motor control and goal-directed behaviour. Moreover, recent studies with optogenetic and chemogenetic approaches have shown that reducing ChIs activity ameliorates parkinsonian symptoms and modifies L-dopa induced dyskinesia in PD animal models. Here, we review the described alterations in ChIs physiology that may contribute to a hypercholinergic state in PD. The best-established finding is an increase of ChIs intrinsic membrane excitability after dopaminergic denervation of striatum. Understanding the molecular basis of ChIs dysfunction in PD could help to develop new therapeutic tools to restore their normal activity and decrease parkinsonian symptoms, improving life quality of PD patients.
Assuntos
Doença de Parkinson , Animais , Colinérgicos , Neurônios Colinérgicos , Corpo Estriado , Humanos , InterneurôniosRESUMO
Severe traumatic brain injury (TBI) results in significant functional disturbances in the hippocampus. Studies support that sodium cromoglycate (CG) induces neuroprotective effects. This study focused on investigating the effects of post-TBI subchronic administration of CG on hippocampal hyperexcitability and damage as well as on sensorimotor impairment in rats. In contrast to the control group (Sham+SS group), animals undergoing severe TBI (TBI+SS group) showed sensorimotor dysfunction over the experimental post-TBI period (day 2, 55%, p < 0.001; day 23, 39.5%, p < 0.001; day 30, 38.6%, p < 0.01). On day 30 post-TBI, TBI+SS group showed neuronal hyperexcitability (63.3%, p < 0.01). The hippocampus ipsilateral to the injury showed volume reduction (14.4%, p < 0.001) with a volume of damage of 0.15 ± 0.09 mm3. These changes were associated with neuronal loss in the dentate gyrus (ipsilateral, 33%, p < 0.05); hilus (ipsilateral, 77%, p < 0.001; contralateral, 51%, p < 0.001); Cornu Ammonis (CA)1 (ipsilateral, 40%, p < 0.01), and CA3 (ipsilateral, 52%, p < 0.001; contralateral, 34%, p < 0.01). Animals receiving subchronic treatment with CG (50 mg/kg, s.c. daily for 10 days) after TBI (TBI+CG group) displayed a sensorimotor dysfunction less evident than that of the TBI+SS group (p < 0.001). Their hippocampal excitability was similar to that of the Sham+SS group (p = 0.21). The TBI+CG group presented hippocampal volume reduction (12.7%, p = 0.94) and damage (0.10 ± 0.03 mm3, p > 0.99) similar to the TBI+SS group. However, their hippocampal neuronal preservation was similar to that of the Sham+SS group. These results indicate that CG represents an appropriate and novel pharmacological strategy to reduce the long-term sensorimotor impairment and hippocampal damage and hyperexcitability that result as consequences of severe TBI.
Assuntos
Lesões Encefálicas Traumáticas/patologia , Cromolina Sódica/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
Peripheral nerve hyperexcitability syndrome comprises a heterogeneous group of diseases, clinically characterised by myokymia, fasciculation, muscle cramps and stiffness. The causes are either immune mediated or non-immune mediated. Non-immune-mediated forms are mostly genetic, relating to two main genes: KCNQ2 and KCNA1 Patients with KCNQ2 gene mutations typically present with epileptic encephalopathy, benign familial neonatal seizures and myokymia, though occasionally with purely peripheral nerve hyperexcitability. We report a woman with marked facial myokymia and distal upper limb contractures whose mother also had subtle facial myokymia; both had the c.G620A (p.R207Q) variant in the KCNQ2 gene. Patients with familial myokymia and peripheral nerve hyperexcitability syndrome should be investigated for KCNQ2 variants. This autosomal dominant condition may respond to antiepileptic medications acting at potassium channels.
Assuntos
Doenças do Nervo Facial/diagnóstico , Doenças do Nervo Facial/genética , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Adolescente , Doenças do Nervo Facial/complicações , Feminino , Humanos , Doenças do Sistema Nervoso Periférico/complicações , Gravação em Vídeo/métodosRESUMO
Epilepsy is a neurological disease related to the occurrence of pathological oscillatory activity, but the basic physiological mechanisms of seizure remain to be understood. Our working hypothesis is that specific sensory processing circuits may present abnormally enhanced predisposition for coordinated firing in the dysfunctional brain. Such facilitated entrainment could share a similar mechanistic process as those expediting the propagation of epileptiform activity throughout the brain. To test this hypothesis, we employed the Wistar audiogenic rat (WAR) reflex animal model, which is characterized by having seizures triggered reliably by sound. Sound stimulation was modulated in amplitude to produce an auditory steady-state-evoked response (ASSR; -53.71Hz) that covers bottom-up and top-down processing in a time scale compatible with the dynamics of the epileptic condition. Data from inferior colliculus (IC) c-Fos immunohistochemistry and electrographic recordings were gathered for both the control Wistar group and WARs. Under 85-dB SLP auditory stimulation, compared to controls, the WARs presented higher number of Fos-positive cells (at IC and auditory temporal lobe) and a significant increase in ASSR-normalized energy. Similarly, the 110-dB SLP sound stimulation also statistically increased ASSR-normalized energy during ictal and post-ictal periods. However, at the transition from the physiological to pathological state (pre-ictal period), the WAR ASSR analysis demonstrated a decline in normalized energy and a significant increase in circular variance values compared to that of controls. These results indicate an enhanced coordinated firing state for WARs, except immediately before seizure onset (suggesting pre-ictal neuronal desynchronization with external sensory drive). These results suggest a competing myriad of interferences among different networks that after seizure onset converge to a massive oscillatory circuit.
Assuntos
Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos , Colículos Inferiores/fisiopatologia , Convulsões/fisiopatologia , Estimulação Acústica , Animais , Córtex Auditivo/metabolismo , Sincronização Cortical , Modelos Animais de Doenças , Eletroencefalografia , Colículos Inferiores/metabolismo , Vias Neurais/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos WistarRESUMO
Given that the medial olivocochlear efferent system reduces the amplitude of otoacoustic emissions (OAE), the aim of this study was to establish whether such a pathway is affected in women with migraine and phonophobia by means of OAE suppression testing. In this prospective case-control study, 55 women (29 with migraine and phonophobia and 26 healthy women) were subjected to transient-evoked otoacoustic emission (TEOAE) testing at frequencies from 1 to 4 kHz. The amplitudes of the TEOAE response before and after exposure to contralateral noise and the magnitude of TEOAE suppression were assessed. The average TEOAE amplitudes in conditions with and without exposure to contralateral noise were not significantly different between the groups. However, the magnitude of TEOAE suppression was lower in the group with migraine; that difference was only statistically significant for frequencies 1 and 1.5 kHz (p = 0.042 and p = 0.004, respectively). In this study, women with migraine and phonophobia exhibited deficits in OAE suppression, which points to a disorder affecting the medial olivocochlear efferent system.
Assuntos
Hiperacusia/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Emissões Otoacústicas Espontâneas/fisiologia , Estimulação Acústica , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Lateralidade Funcional , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Psicoacústica , Adulto JovemRESUMO
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motoneurons starting in adulthood. Recent studies using cell or animal models document that astrocytes expressing disease-causing mutations of human superoxide dismutase 1 (hSOD1) contribute to the pathogenesis of ALS by releasing a neurotoxic factor(s). Neither the mechanism by which this neurotoxic factor induces motoneuron death nor its cellular site of action has been elucidated. Here we show that acute exposure of primary wild-type spinal cord cultures to conditioned medium derived from astrocytes expressing mutant SOD1 (ACM-hSOD1(G93A)) increases persistent sodium inward currents (PC(Na)), repetitive firing, and intracellular calcium transients, leading to specific motoneuron death days later. In contrast to TTX, which paradoxically increased twofold the amplitude of calcium transients and killed motoneurons, reduction of hyperexcitability by other specific (mexiletine) and nonspecific (spermidine and riluzole) blockers of voltage-sensitive sodium (Na(v)) channels restored basal calcium transients and prevented motoneuron death induced by ACM-hSOD1(G93A). These findings suggest that riluzole, the only FDA-approved drug with known benefits for ALS patients, acts by inhibiting hyperexcitability. Together, our data document that a critical element mediating the non-cell-autonomous toxicity of ACM-hSOD1(G93A) on motoneurons is increased excitability, an observation with direct implications for therapy of ALS.
Assuntos
Potenciais de Ação , Astrócitos/metabolismo , Neurônios Motores/efeitos dos fármacos , Mutação , Superóxido Dismutase/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular , Células Cultivadas , Meios de Cultivo Condicionados/toxicidade , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologiaRESUMO
La epilepsia del lóbulo temporal es la forma más común de epilepsia que padece el ser humano. El sustrato fisiopatológico que la caracteriza es la esclerosis del hipocampo, que se distingue por pérdida neuronal, gliosis y disminución del volumen del hipocampo y áreas vecinas como la amígdala, el giro parahipocámpico y la corteza entorrinal. Lo anterior ocasiona atrofia y esclerosis del hilus del giro dentado y de las áreas CA1 y CA3 del hipocampo. Además se establece cierta reorganización de las vías neuronales que favorecen la neoespinogénesis, la morfogénesis, la neosinaptogénesis y la neurogénesis, con desarrollo aberrante de células y fibras, que contribuyen a la formación de un foco cuyo componente neuronal muestra un significativo aumento en la excitabilidad. El interés por entender el proceso de la epileptogénesis ha motivado al diseño de modelos de este tipo de epilepsia en animales de experimentación. La epileptogénesis evoluciona en el tiempo y muestra que la reorganización dinámica de las vías neuronales establece una red neuronal con cambios funcionales y anatómicos muy significativos. En este trabajo se realiza una revisión de la información obtenida por estudios electrofisiológicos que combinan el marcaje celular mediante el registro intra o extracelular en el hipocampo y en particular de las áreas CA1 y CA3 involucradas estrechamente con la epileptogénesis.
Temporal Lobe Epilepsy is the most common form of human epilepsy. Hippocampal sclerosis, neuronal loss, gliosis and hippocampal volume reduction are the representative changes of this pathology. Also some other near areas like amygdala, gyrus parahipocampal and entorrinal cortex are affected. Furthermore the neural circuits undergo activity-dependent reorganization during epileptogenesis. This brain circuits remodeling include neuronal loss (acute and delayed), neurogenesis, gliosis, plasticity (axonal and dendritic), inflammation and molecular reorganization. Two significant changes are evident, aberrant sprouting of granule cell axons in the dentate gyrus and hilar ectopic granular cells. Because temporal lobe epilepsy commonly develops after brain injury, most experimental animal models involve use of this factor. The pilocarpine-induced status epilepticus rat model may be the most widely used model of temporal lobe epilepsy. In the present work, we review the experimental support for seizure-induced plasticity in neural circuits, and then turn to evidence that seizure-induced plasticity occurs in human temporal-lobe.
RESUMO
The sudden interruption of increase in the concentration of the synaptic cleft of the inhibitory neurotransmitter in the cerebral cortex, the γ-amino butyric acid (GABA), determines an increase in the neuronal activity. GABA withdrawal is a heuristic analogy with withdrawal symptoms developed by other GABA receptor-agonists such as benzodiazepines, barbiturates, neurosteroids and alcohol. GABA withdrawal is a model of neuronal hyperexcitability in complete animal validated by EEG, in which complex spikes-wide of high- frequency and amplitude appear. In brain slices, GABA withdrawal was identified by increased firing synchronization of pyramidal neurons and by changes in the active properties of the neuronal membrane. The increase in neuronal excitability of this model is the result of dynamic changes in consecutive pre- and post-synaptic components such as: a) the decrease in the synthesis/release of GABA; b) the decrease in the expression and composition of GABA A receptors associated with increased calcium entry into the cell. This model is an excellent bioassay to study partial epilepsy, epilepsy refractory to drug treatment and a model to reverse or prevent the generation of abstinence from different drugs.
La interrupción abrupta del incremento de la concentración en el espacio sináptico del neurotransmisor inhibitorio de la corteza cerebral, el ácido γ-amino butírico (GABA), condiciona un incremento en la actividad de las neuronas. La abstinencia al GABA es una analogía heurística con los síndromes de abstinencia desarrollados por otros agonistas del receptor GABA A como: las benzodiacepinas, los barbitúricos, los neuroesteroides y el alcohol. La abstinencia a GABA es un modelo de hiperexcitabilidad neuronal validado en animal íntegro por medio del EEG, en el cual aparecen complejos espigas-onda de amplia frecuencia y amplitud. En rebanadas de cerebro se identifica por incremento en la sincronización de disparo de neuronas piramidales y por cambios en las propiedades activas de la membrana neuronal. El incremento de la excitabilidad neuronal de este modelo es la consecuencia de cambios dinámicos y consecutivos en los componentes presinápticos y postsinápticos como son: a) la disminución en la síntesis/liberación de GABA; b) la disminución en la expresión y la composición de receptores GABA asociado al incremento en la entrada de calcio a la célula. Este modelo es un excelente bioensayo para estudiar epilepsias parciales, epilepsias refractarias a tratamiento farmacológico y un modelo para revertir o prevenir la generación de la abstinencia de diferentes drogas.