Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36144029

RESUMO

Knowing exactly how much solar radiation reaches a particular area is helpful when planning solar energy installations. In recent years the use of renewable energies, especially those related to photovoltaic systems, has had an impressive up-tendency. Therefore, mechanisms that allow us to predict solar radiation are essential. This work aims to present results for predicting solar radiation using optimization with the Random Forest (RF) algorithm. Moreover, it compares the obtained results with other machine learning models. The conducted analysis is performed in Queretaro, Mexico, which has both direct solar radiation and suitable weather conditions more than three quarters of the year. The results show an effective improvement when optimizing the hyperparameters of the RF and Adaboost models, with an improvement of 95.98% accuracy compared to conventional methods such as linear regression, with 54.19%, or recurrent networks, with 53.96%, without increasing the computational time and performance requirements to obtain the prediction. The analysis was successfully repeated in two different scenarios for periods in 2020 and 2021 in Juriquilla. The developed method provides robust performance with similar results, confirming the validity and effectiveness of our approach.

2.
J Digit Imaging ; 35(3): 623-637, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35199257

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide, and it is characterized by the production of immature malignant cells in the bone marrow. Computer vision techniques provide automated analysis that can help specialists diagnose this disease. Microscopy image analysis is the most economical method for the initial screening of patients with ALL, but this task is subjective and time-consuming. In this study, we propose a hybrid model using a genetic algorithm (GA) and a residual convolutional neural network (CNN), ResNet-50V2, to predict ALL using microscopy images available in ALL-IDB dataset. However, accurate prediction requires suitable hyperparameters setup, and tuning these values manually still poses challenges. Hence, this paper uses GA to find the best hyperparameters that lead to the highest accuracy rate in the models. Also, we compare the performance of GA hyperparameter optimization with Random Search and Bayesian optimization methods. The results show that GA optimization improves the accuracy of the classifier, obtaining 98.46% in terms of accuracy. Additionally, our approach sheds new perspectives on identifying leukemia based on computer vision strategies, which could be an alternative for applications in a real-world scenario.


Assuntos
Redes Neurais de Computação , Leucemia-Linfoma Linfoblástico de Células Precursoras , Teorema de Bayes , Criança , Progressão da Doença , Humanos , Processamento de Imagem Assistida por Computador/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico
3.
Artif Intell Med ; 119: 102154, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34531013

RESUMO

Deep learning plays a critical role in medical image segmentation. Nevertheless, manually designing a neural network for a specific segmentation problem is a very difficult and time-consuming task due to the massive hyperparameter search space, long training time and large volumetric data. Therefore, most designed networks are highly complex, task specific and over-parametrized. Recently, multiobjective neural architecture search (NAS) methods have been proposed to automate the design of accurate and efficient segmentation architectures. However, they only search for either the micro- or macro-structure of the architecture, do not use the information produced during the optimization process to increase the efficiency of the search, or do not consider the volumetric nature of medical images. In this work, we present EMONAS-Net, an Efficient MultiObjective NAS framework for 3D medical image segmentation that optimizes both the segmentation accuracy and size of the network. EMONAS-Net has two key components, a novel search space that considers the configuration of the micro- and macro-structure of the architecture and a Surrogate-assisted Multiobjective Evolutionary based Algorithm (SaMEA algorithm) that efficiently searches for the best hyperparameter values. The SaMEA algorithm uses the information collected during the initial generations of the evolutionary process to identify the most promising subproblems and select the best performing hyperparameter values during mutation to improve the convergence speed. Furthermore, a Random Forest surrogate model is incorporated to accelerate the fitness evaluation of the candidate architectures. EMONAS-Net is tested on the tasks of prostate segmentation from the MICCAI PROMISE12 challenge, hippocampus segmentation from the Medical Segmentation Decathlon challenge, and cardiac segmentation from the MICCAI ACDC challenge. In all the benchmarks, the proposed framework finds architectures that perform better or comparable with competing state-of-the-art NAS methods while being considerably smaller and reducing the architecture search time by more than 50%.


Assuntos
Imageamento Tridimensional , Redes Neurais de Computação , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Masculino
4.
Sensors (Basel) ; 21(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34450928

RESUMO

Deep Learning is a very active and important area for building Computer-Aided Diagnosis (CAD) applications. This work aims to present a hybrid model to classify lung ultrasound (LUS) videos captured by convex transducers to diagnose COVID-19. A Convolutional Neural Network (CNN) performed the extraction of spatial features, and the temporal dependence was learned using a Long Short-Term Memory (LSTM). Different types of convolutional architectures were used for feature extraction. The hybrid model (CNN-LSTM) hyperparameters were optimized using the Optuna framework. The best hybrid model was composed of an Xception pre-trained on ImageNet and an LSTM containing 512 units, configured with a dropout rate of 0.4, two fully connected layers containing 1024 neurons each, and a sequence of 20 frames in the input layer (20×2018). The model presented an average accuracy of 93% and sensitivity of 97% for COVID-19, outperforming models based purely on spatial approaches. Furthermore, feature extraction using transfer learning with models pre-trained on ImageNet provided comparable results to models pre-trained on LUS images. The results corroborate with other studies showing that this model for LUS classification can be an important tool in the fight against COVID-19 and other lung diseases.


Assuntos
COVID-19 , Diagnóstico por Computador , Humanos , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , SARS-CoV-2
5.
Sensors (Basel) ; 21(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804609

RESUMO

Convolutional Neural Networks (CNNs) have been successfully applied in the medical diagnosis of different types of diseases. However, selecting the architecture and the best set of hyperparameters among the possible combinations can be a significant challenge. The purpose of this work is to investigate the use of the Hyperband optimization algorithm in the process of optimizing a CNN applied to the diagnosis of SARS-Cov2 disease (COVID-19). The test was performed with the Optuna framework, and the optimization process aimed to optimize four hyperparameters: (1) backbone architecture, (2) the number of inception modules, (3) the number of neurons in the fully connected layers, and (4) the learning rate. CNNs were trained on 2175 computed tomography (CT) images. The CNN that was proposed by the optimization process was a VGG16 with five inception modules, 128 neurons in the two fully connected layers, and a learning rate of 0.0027. The proposed method achieved a sensitivity, precision, and accuracy of 97%, 82%, and 88%, outperforming the sensitivity of the Real-Time Polymerase Chain Reaction (RT-PCR) tests (53-88%) and the accuracy of the diagnosis performed by human experts (72%).


Assuntos
COVID-19/diagnóstico , Aprendizado Profundo , Diagnóstico por Computador , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA