Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153104

RESUMO

The request for novel hyphenated instruments and techniques, capable of affording exhaustive information and results, is a focus continuously watched out. In this context, the present work aimed at the development of an integrated system combining gas chromatographic (GC) separation with mass spectrometry (MS) and (solid deposition) Fourier transform infrared spectroscopy (FTIR) detection. An external transfer line was designed in the lab for the parallel coupling of the two detectors, in such a way to obtain complementary analytical information consisting of an MS spectrum, an IR spectrum and linear retention indices (LRI), within a single analysis. The instrument performance was demonstrated for the analysis of a commercial mixture consisting of 139 hydrocarbons, comprising linear, branched, unsaturated and aromatic compounds. A 100-m poly(dimethylsiloxane) column was employed for the separation, and the outlet flow was split 95:5 between the IR and MS detectors using two uncoated capillaries. The IR spectra were acquired from solid deposits on a zinc selenide disc (-90 °C), over a spot (detector area) of about 0.1 mm2, in the range of 4000-700 cm-1 and at a resolution of 4 cm-1. Final identification of the separated compounds by a library search was achieved by excluding incorrect results, sequentially using a three-filter approach (85% similarity against reference MS and IR library spectra and ±10 LRI unit tolerance). Based on these preliminary results, the GC-MS/sd-FTIR system is a promising tool for the characterization of complex matrix constituents, for which identification is cumbersome, by using only one detection technique.

2.
Molecules ; 28(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446825

RESUMO

The present review explores the growing interest in the techniques employed for extracting natural products. It emphasizes the limitations of conventional extraction methods and introduces superior non-conventional alternatives, particularly ultrasound-assisted extraction. Characterization and quantification of bioactive constituents through chromatography coupled with spectroscopy are recommended, while the importance of method development and validation for biomarker quantification is underscored. At present, electrospun fibers provide a versatile platform for incorporating bioactive extracts and have extensive potential in diverse fields due to their unique structural and functional characteristics. Thus, the review also highlights the fabrication of electrospun fibers containing bioactive extracts. The preparation of biologically active extracts under optimal conditions, including the selection of safe solvents and cost-effective equipment, holds promising potential in the pharmaceutical, food, and cosmetic industries. Integration of experimental design into extraction procedures and formulation development is essential for the efficient production of health products. The review explores potential applications of encapsulating natural product extracts in electrospun fibers, such as wound healing, antibacterial activity, and antioxidant properties, while acknowledging the need for further exploration and optimization in this field. The findings discussed in this review are anticipated to serve as a valuable resource for the processing industry, enabling the utilization of affordable and environmentally friendly, natural, and raw materials.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Solventes , Extratos Vegetais/química
3.
Molecules ; 28(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299015

RESUMO

The optimization and application of a new hyphenated procedure for iron ionic speciation, i.e., high performance liquid chromatography (HPLC) with short cation-exchange column (50 mm × 4 mm) coupled to high resolution inductively coupled plasma optical emission spectrometry (ICP hrOES), is presented in this paper. Fe(III) and Fe(II) species were separated on the column with the mobile phase containing pyridine-2,6-dicarboxylic acid (PDCA). The total time of the analysis was approx. 5 min, with a significantly low eluent flow rate (0.5 mL min-1) compared to the literature. Additionally, a long cation-exchange column (250 mm × 4.0 mm) was used as reference. Depending on the total iron content in the sample, two plasma views were chosen, e.g., an attenuated axial (<2 g kg-1) and an attenuated radial. The standard addition method was performed for the method's accuracy studies, and the applicability was presented on three types of samples: sediments, soils, and archaeological pottery. This study introduces a fast, efficient, and green method for leachable iron speciation in both geological and pottery samples.


Assuntos
Ferro , Cromatografia Líquida de Alta Pressão/métodos , Ferro/análise , Análise Espectral , Cátions
4.
Anal Chim Acta ; 1268: 341359, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37268338

RESUMO

Ion-mobility (IM) separations-performed in conjunction with mass spectrometry (MS)-increase selectivity of MS analyses. However, IM-MS instruments are costly, and many laboratories are only equipped with standard MS instruments without an IM separation stage. Therefore, it is appealing to upgrade the existing mass spectrometers with low-cost IM separation devices. Such devices can be constructed using widely available materials such as printed-circuit boards (PCBs). We demonstrate coupling of an economical PCB-based IM spectrometer (disclosed previously) with a commercial triple quadrupole (QQQ) mass spectrometer. The presented PCB-IM-QQQ-MS system incorporates an atmospheric pressure chemical ionization (APCI) source, drift tube comprising desolvation and drift regions, ion gates, and transfer line to the mass spectrometer. The ion gating is accomplished with the aid of two floated pulsers. The separated ions are divided into packets, which are sequentially introduced to the mass spectrometer. Volatile organic compounds (VOCs) are transferred with the aid of nitrogen gas flow from the sample chamber to the APCI source. The operation of the system has been demonstrated using standard compounds. The limits of detection for 2,4-lutidine, (-)-nicotine, and pyridine are 2.02 × 10-7 M, 1.54 × 10-9 mol, and 4.79 × 10-10 mol, respectively. The system was also used to monitor VOCs emitted from the porcine skin after exposure to nicotine patches, and VOCs released from meat undergoing the spoilage process. We believe this simple APCI-PCB-IM-QQQ-MS platform can be reproduced by others to augment the capabilities of the existing MS instrumentation.

5.
J Chromatogr A ; 1696: 463986, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059047

RESUMO

The simultaneous quantification of amino acids (AAs) in solid beverages without prior derivatization was explored by high-performance liquid chromatography (HPLC) coupled to a potentiometric detector. Included were threonine, leucine, methionine, phenylalanine, and histidine. The potentiometric detector was made consisting of a copper(II)-selective electrode based on a polyvinyl chloride (PVC) membrane, and the potential changes in the detector were determined according to the coordination interactions between cupric copper ions released from the inner filling solution of the electrode and AAs. Conditions were optimized for effective separation and sensitive detection. Fundamental characteristics such as linearity, limits of detection, limits of quantitation, accuracy, precision, and robustness were validated experimentally. The calibration curves showed a linear relationship between peak heights and the injection concentrations of the AAs. The detection limits down to the sub-micromolar range were achieved under isocratic conditions, outperforming ultraviolet detection. The copper(II)-selective electrode had a minimum lifetime of one month. Some real samples were examined to further demonstrate the feasibility of the proposed approach. The measurement results obtained by the present method were in good agreement with those obtained by the HPLC-mass spectrometry (MS), indicating that the combined HPLC-potentiometric method is a potential option for quantifying AAs.


Assuntos
Aminoácidos , Cobre , Cromatografia Líquida de Alta Pressão/métodos , Aminoácidos/química , Espectrometria de Massas , Eletrodos
6.
Environ Sci Technol ; 56(15): 10818-10828, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35852947

RESUMO

Nanoplastics are emerging pollutants that pose potential threats to the environment and organisms. However, in-depth research on nanoplastics has been hindered by the absence of feasible and reliable analytical methods, particularly for trace nanoplastics. Herein, we propose a hyphenated method involving membrane filtration and surface-enhanced Raman spectroscopy (SERS) to analyze trace nanoplastics in water. In this method, a bifunctional Ag nanowire membrane was employed to enrich nanoplastics and enhance their Raman spectra in situ, which omitted sample transfer and avoided losing smaller nanoplastics. Good retention rates (86.7% for 50 nm and approximately 95.0% for 100-1000 nm) and high sensitivity (down to 10-7 g/L for 50-1000 nm and up to 105 SERS enhancement factor) of standard polystyrene (PS) nanoplastics were achieved using the proposed method. PS nanoplastics with concentrations from 10-1 to 10-7 g/L and sizes ranging from 50 to 1000 nm were successfully detected by Raman mapping. Moreover, PS micro- and nanoplastics in environmental water samples collected from the seafood market were also detected at the µg/L level. Consequently, the proposed method provides more possibilities for analyzing low-concentration nanoplastics in aquatic environments with high enrichment efficiency, minimal sample loss, and high sensitivity.


Assuntos
Nanofios , Prata , Microplásticos , Poliestirenos , Prata/química , Análise Espectral Raman/métodos , Água
7.
J Chromatogr A ; 1677: 463211, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35810640

RESUMO

Syzygium malaccense (L.) Merr. & L.M. Perry is a native tree to Malaysia, but also occurs in other tropical regions of the world, including Brazil. The increasing interest in the consumption of its leaves motivated the investigation of compounds of the plant. Metabolite profiling of S. malaccense leaves was achieved by high-speed countercurrent chromatography (HSCCC) fractionation coupled off-line to electrospray mass-spectrometry (ESI-MS) detection and nuclear magnetic resonance (NMR) analysis. The ethanolic leaf extract was submitted to HSCCC using a three-phase solvent system (TPSS) composed by n-hexane - ethyl acetate - acetonitrile - H2O (2:1:1:1, v/v). The stepwise gradient elution was employed due to the extract's chemical complexity. HSCCC fractions were further analyzed by ESI-MS/MS using a flow injection experiment and by NMR acquiring 1H, HSQC and HMBC spectra. MS based dereplication was achieved by comparing acquired data to those available in public and commercial databases. Results were also correlated to previously isolated compounds described for the Syzygium genus. This process led to the annotation of 90 compounds. The NMR data provided structural confirmation and substitution patterns for some of them. Extract chemical composition is characterized by having flavonoids, benzoic acids, hydroxycinnamic acids, quinic acids, hydrolizable tannins, fatty acids, anacardic acids and others primary metabolites. Most of these compounds were described for the first time in the plant. This approach greatly facilitates phytochemical analysis and could be applied to improve metabolite discovery in other studies.


Assuntos
Distribuição Contracorrente , Syzygium , Cromatografia Líquida de Alta Pressão/métodos , Distribuição Contracorrente/métodos , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Plantas Comestíveis , Solventes/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos
8.
Ying Yong Sheng Tai Xue Bao ; 33(12): 3448-3456, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36601853

RESUMO

Platinum group metals (PGMs) present a variety of forms in the environment, and analysis of speciation is essential for identifying their ecological risk. Here, we reviewed the methods for the morphological analysis of three major PGMs (platinum, palladium and rhodium) in the environment, including chemical sequential extraction, hyphenated techniques for instruments, computer simulations. We outlined the types, characteristics and applications of these methods, elaborated the weaknesses, and provided prospects for future development. Among them, chemical sequential extraction is universally applied in the morphological analysis of solid-phase samples, with diverse extraction conditions and procedures proposed in the current study. However, it has not been well standardized. The hyphenated techniques for instruments have significant advantages for the determination of elemental forms in solution, of which capillary electrophoresis system can separate similar substances with the same electrophoresis ability. Liquid chromatography systems have better performance in terms of separation capacity and detection limit. The computer simulations further expand the access to morphological analysis, enabling complex morphological calculations. It was proposed to combine multiple methods in the future to continuously improve the accuracy of analytical techniques by complementing and optimizing each other.


Assuntos
Platina , Ródio , Platina/análise , Paládio/análise , Ródio/análise
9.
J Sep Sci ; 44(16): 3031-3040, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34102001

RESUMO

A new and efficient reversed-phase high-performance liquid chromatography-inductively coupled plasma-optical emission spectrometry method was developed for the simultaneous separation and determination of SeO3 2- and seleno-dl-methionine in kefir grains. For the system, limits of detection and quantitation values for SeO3 2- and seleno-dl-methionine were calculated as 0.52/1.73 mg/kg (as Se) and 0.26/0.87 mg/kg (as Se), respectively. After performing the system analytical performance, recovery experiment was done for kefir grains and percent recovery results for SeO3 2- and seleno-dl-methionine were calculated as 98.4 ± 0.8% and 93.6 ± 1.0%, respectively. It followed by the feeding studies that the kefir grains were exposed to three different concentrations of SeO3 2- (20, 30, and 50 mg/kg) for approximately 4 days at room temperature to investigate the conversion/non-conversion of SeO3 2- to seleno-dl-methionine. Next, the fed grains were extracted with tetramethylammonium hydroxide pentahydrate solution (20%, w/w) and then sent to the developed system. There was no detectable seleno-dl-methionine found in fed kefir grains at different concentrations of SeO3 2- while inorganic or elemental selenium in the fed kefir grains was determined between 1579.5 - 3116.0 mg/kg (as Se). Selenium species in the kefir grains samples was found in the form of SeO3 2- proved by using an anion exchange column.


Assuntos
Análise de Alimentos/métodos , Kefir/análise , Ácido Selenioso/análise , Selenometionina/análise , Antioxidantes , Técnicas de Química Analítica , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Desenho de Equipamento , Limite de Detecção , Selênio , Espectrofotometria/métodos
10.
Talanta ; 219: 121306, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887047

RESUMO

The effect-directed analysis on a planar chromatogram allows for fast non-target screening, multi-imaging detection of effects (bioprofiling) and highly targeted characterization and isolation of bioactive compounds. For direct characterization by high-resolution mass spectrometry (HRMS), however, the orthogonal hyphenation of two different liquid chromatographic techniques (planar and column chromatography) is still underexplored. In particular, it can be helpful in case of coeluting compounds. Exemplarily, lemon balm (Melissa officinalis L.) leaf extract was analysed by high-performance thin-layer chromatography in combination with bioactivity assays for antibacterial (against the Gram-positive Bacillus subtilis and the Gram-negative Aliivibrio fischeri) and α-glucosidase-inhibitory compounds (HPTLC-UV/Vis/FLD-EDA). High-resolution mass spectra of two bioactive compound zones were directly recorded via an elution head-based interface. By HPTLC-HESI-HRMS, the compound in zone a inhibited A. fischeri and was identified as linolenic acid, whereas the two closely related constitutional isomers oleanolic acid and ursolic acid were present in zone b. This was proven by two-dimensional liquid chromatography. Heart-cutting HPTLC-UV/Vis/FLD-HPLC-DAD-MS allowed the separation of the two isomers and proved both to be present in the bioactive zone with ursolic acid at a much higher abundance.


Assuntos
Antibacterianos , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Espectrometria de Massas
11.
Food Chem ; 319: 126537, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32193059

RESUMO

Since selenium (Se) is an essential mineral, animals must be able to metabolize the various selenocompounds in meat, fish and vegetables. It is unclear how animals, including humans, utilize selenocompound efficiently, but we hypothesized that gut microflora might contribute to these processes. In this study, we revealed that Se-methylselenocysteine and selenocyanate were metabolized to selenomethionine (SeMet) by intestinal microflora, suggesting selenocompounds might be metabolized to SeMet, which can be used by the host organism. The major urinary selenosugar, 1ß-methylseleno-N-acetyl-d-galactosamine, was utilized less in microflora-suppressed than healthy rats, suggesting that this sugar can be transformed to a nutritionally available form by gut microflora in animals with a healthy microbiota. We concluded that, in rats at least, gut microflora has a role in the metabolism of Se in the host animal, and this finding might be worth investigating in humans.


Assuntos
Microbioma Gastrointestinal , Selênio/metabolismo , Animais , Cianatos/metabolismo , Masculino , Valor Nutritivo , Ratos , Ratos Wistar , Compostos de Selênio/metabolismo , Selenocisteína/análogos & derivados , Selenocisteína/metabolismo , Selenometionina/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-31905046

RESUMO

A method for the analysis of different species of antimony (Sb) that couples liquid chromatography with an inductively coupled plasma-optical emission spectrometry (LC-ICP-OES) system is presented. The method is simple and reliable to separate and quantify directly and simultaneously Sb(III) and Sb(V) in aqueous samples. The calibration curves showed high linearity at the three wavelengths tested. The limits of detection ranged from 24.9 to 32.3 µg/L for Sb(III) and from 36.2 to 46.0 µg/L for Sb(V), at the three wavelengths evaluated. The limit of detection for this method varied depending on the wavelength used. The lowest limit of quantification for Sb(V) (49.9 µg/L) and Sb(III) (80.7 µg/L) was obtained at a wavelength of 217.582 nm. The method sensitivity for Sb(V) was higher compared to Sb(III) at all the wavelengths considered. Samples containing different concentrations of Sb(III) and Sb(V) in three different matrices, i.e., water, basal culture medium, and anaerobic sludge plus basal medium, were analyzed. The coefficients of variation were low and ranged from 0.1 to 5.0 depending on the sample matrix. Recoveries of Sb(III) and Sb(V) were higher than 90% independently of the matrix analyzed and the wavelength used in the analysis.


Assuntos
Antimônio/análise , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise , Calibragem , Meios de Cultura/química , Limite de Detecção , Reprodutibilidade dos Testes , Esgotos/química , Água/química
13.
Molecules ; 24(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866421

RESUMO

In order to obtain a well understanding of the toxicity and ecological effects of trace elements in the environment, it is necessary to determine not only the total amount, but also their existing species. Speciation analysis has become increasingly important in making risk assessments of toxic elements since the toxicity and bioavailability strongly depend on their chemical forms. Effective separation of different species in combination with highly sensitive detectors to quantify these particular species is indispensable to meet this requirement. In this paper, we present the recent progresses on the speciation analysis of trace arsenic, mercury, selenium and antimony in environmental and biological samples with an emphasis on the separation and detection techniques, especially the recent applications of high performance liquid chromatography (HPLC) hyphenated to atomic spectrometry or mass spectrometry.


Assuntos
Poluentes Ambientais/análise , Compostos Inorgânicos/análise , Oligoelementos/análise , Antimônio/análise , Arsênio/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Mercúrio/análise , Selênio/análise
14.
Zhongguo Zhong Yao Za Zhi ; 44(24): 5441-5445, 2019 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-32237392

RESUMO

This study aims to establish a method for the determination of As B,As C,DMA,As( Ⅲ),MMA and As( Ⅴ) by using HPLC-ICP-MS. A Dioncx Ion PacTMAS7( 4 mm×250 mm) column was used for the HPLC-ICP-MS method. The mobile phase was 100 mmol·L-1 ammonium carbonate-1. 5 mmol·L-1 ammonium dibasic phosphate( gradient elution) at a flow rate of 1 m L·min-1. The injection volume was 10 µL. The linear relationships of As B,As C,DMA,As( Ⅲ),MMA,As( Ⅴ) were good with the concentration of10-500 µg·L-1. The average recovery rates( n = 6) were 105. 7%,100. 5%,102. 9%,105. 7%,100. 2%,92. 69%. The RSD were0. 50%,2. 4%,0. 93%,1. 3%,0. 89%,1. 5%. The precision and repeatability of this method were good. In this study,six forms of arsenic were separated effectively by this method. With methodological validation and sample determination,this method can be used to determine the morphological valence of arsenic in content determination.


Assuntos
Arsênio/análise , Arsenicais/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008418

RESUMO

This study aims to establish a method for the determination of As B,As C,DMA,As( Ⅲ),MMA and As( Ⅴ) by using HPLC-ICP-MS. A Dioncx Ion PacTMAS7( 4 mm×250 mm) column was used for the HPLC-ICP-MS method. The mobile phase was 100 mmol·L-1 ammonium carbonate-1. 5 mmol·L-1 ammonium dibasic phosphate( gradient elution) at a flow rate of 1 m L·min-1. The injection volume was 10 μL. The linear relationships of As B,As C,DMA,As( Ⅲ),MMA,As( Ⅴ) were good with the concentration of10-500 μg·L-1. The average recovery rates( n = 6) were 105. 7%,100. 5%,102. 9%,105. 7%,100. 2%,92. 69%. The RSD were0. 50%,2. 4%,0. 93%,1. 3%,0. 89%,1. 5%. The precision and repeatability of this method were good. In this study,six forms of arsenic were separated effectively by this method. With methodological validation and sample determination,this method can be used to determine the morphological valence of arsenic in content determination.


Assuntos
Arsênio/análise , Arsenicais/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
16.
J Chromatogr A ; 1508: 163-168, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28619585

RESUMO

High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Alanina/química , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética/métodos , Sensibilidade e Especificidade , Razão Sinal-Ruído
17.
Talanta ; 171: 262-269, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28551139

RESUMO

It has been broadly recognized that the antagonism between selenium (Se) and mercury (Hg) can reduce the toxicity of mercury in organism. Glutathione (GSH) can participate in the metabolism of Se and Hg in vivo and promote the formation of low-toxic Hg-Se complexes, which is a vital way of detoxification for Hg. In this paper, the reaction mechanism of GSH-Se(IV) binary system, GSH-Hg(II) binary system and GSH-Se(IV)-Hg(II) ternary system were systematically studied from the aspects of stoichiometry, thermodynamics and kinetics, via hyphenated techniques including high performance liquid chromatography (HPLC)-ultraviolet (UV) detection, HPLC-inductively coupled plasma mass spectrometry (ICP-MS) and HPLC-electrospray ionization mass spectrometry (ESI-MS). For GSH-Se(IV) binary system, selenodiglutathione (GSSeSG) was the crucial intermediate; the reaction was exothermic and irreversible at constant pressure; it followed second-order kinetics with a fast kinetics (rate constant (k)=4534.2mol-1Ls-1). For GSH-Se(IV)-Hg(II) ternary system, GSSeSeSG would form by the extremely weak dissociation of two molecules of GSSeSG; Hg(II) would rapidly coordinate with GSSeSeSG to generate (HgxSey)n(GS)m precipitates. The mechanism of GSH-Se(IV)-Hg(II) antagonism system involves two processes, the competitive combination of Hg and Se with GSH and the formation of (HgxSey)n(GS)m complexes.


Assuntos
Glutationa/química , Cloreto de Mercúrio/química , Cloreto de Mercúrio/farmacologia , Selenito de Sódio/química , Selenito de Sódio/farmacologia , Ligação Competitiva , Cinética , Reprodutibilidade dos Testes , Termodinâmica
18.
Talanta ; 161: 177-204, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769396

RESUMO

Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS.


Assuntos
Arsênio/análise , Halogênios/análise , Metais/análise , Selênio/análise , Animais , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Ambientais/análise , Humanos , Espectrometria de Massas/métodos
19.
J Pharm Biomed Anal ; 122: 126-40, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26855285

RESUMO

The rapid determination of key physical properties of lead compounds is essential to the drug discovery process. Solubility is one of the most important properties since good solubility is needed not only for obtaining reliable in vitro and in vivo assay results in early discovery but also to ensure sufficient concentration of the drug being in circulation to get the desired therapeutic exposure at the target of interest. In order for medicinal chemists to tune solubility of lead compounds, a rapid assay is needed to provide solubility data that is accurate and predictive so that it can be reliably used for designing the next generation of compounds with improved properties. To ensure speed and data quality, we developed a high throughput solubility assay that utilizes a single calibration UHPLC-UV-CLND method and a 24h shake-flask format for rapid quantification. A set of 46 model compounds was used to demonstrate that the method is accurate, reproducible and predictive. Here we present development of the assay, including evaluation of quantification method, filtration membranes, equilibrium times, DMSO concentrations, and buffer conditions. A comparison of thermodynamic solubility results to our high throughput 24h shake-flask solubility assay results is also discussed.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Descoberta de Drogas/métodos , Medições Luminescentes/métodos , Nitrogênio/química , Preparações Farmacêuticas/química , Espectrofotometria Ultravioleta/métodos , Bioensaio/métodos , Calibragem , Dimetil Sulfóxido/química , Solubilidade , Termodinâmica
20.
Pharm Methods ; 1(1): 2-13, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23781411

RESUMO

The hyphenated technique is developed from the coupling of a separation technique and an on-line spectroscopic detection technology. The remarkable improvements in hyphenated analytical methods over the last two decades have significantly broadened their applications in the analysis of biomaterials, especially natural products. In this article, recent advances in the applications of various hyphenated techniques, e.g., GC-MS, LC-MS, LC-FTIR, LC-NMR, CE-MS, etc. in the context of pre-isolation analyses of crude extracts or fraction from various natural sources, isolation and on-line detection of natural products, chemotaxonomic studies, chemical fingerprinting, quality control of herbal products, dereplication of natural products, and metabolomic studies are discussed with appropriate examples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...