Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.751
Filtrar
1.
J Gastrointest Oncol ; 15(3): 1035-1049, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989423

RESUMO

Background: B7-H3 (or CD276) represents an important costimulatory molecule expressed in many malignant solid tumors, including colorectal cancer (CRC). The receptor of B7-H3 is not known, and the intracellular function of B7-H3 remains obscure. Herein, we report that B7-H3 upregulated the epidermal growth factor heparin-binding epidermal growth factor (HB-EGF), likely by regulating hypoxia-inducible factor 1α (HIF-1α) and thereby promoting the progression of CRC. Methods: Lentiviral transfection was performed on CRC cells to establish stable low-B7-H3 expression cells. A mechanistic analysis with an Agilent human gene expression profiling chip was conducted on them. Clinical data and specimens were collected to detect the connection between B7-H3 and HB-EGF in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the messenger RNA (mRNA) level of B7-H3, HB-EGF, and HIF-1α. Chromatin immunoprecipitation (ChIP) quantitative real-time PCR was conducted. The protein level of HIF-1α and the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) pathway were detected by western blot. HIF-1α was recovered by lentiviral transfection, and the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis ability were detected. Results: B7-H3 promoted tumor progression through HB-EGF and the PI3K-AKT pathway. As B7-H3 was downregulated, HB-EGF levels were significantly reduced simultaneously, a growth trend that was shown by both CRC cell lines and cancer tissues. In addition, B7-H3 and HB-EGF had significant associations with tumor-node-metastasis (TNM) stage and lymph node metastasis in 50 CRC patients. The binding ability of HIF-1α to the HB-EGF promoter region was significantly decreased in the shB7-H3 RKO group. Western blot revealed that PI3K, AKT, and mammalian target of rapamycin (mTOR) protein amounts and p-AKT and p-mTOR phosphorylation were also downregulated in shB7-H3 RKO cells, suggesting that B7-H3 may regulate HIF-1α via PI3K-AKT signaling. After recovery of the HIF-1α level by lentiviral transfection, the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis in CRC cells recovered as well. Conclusions: B7-H3 may transmit intracellular signals through PI3K-AKT-mTOR-HIF-1α signaling, upregulating HB-EGF. As the final transcription factor of the pathway, HIF-1α regulates the transcription of the HB-EGF gene, thereby promoting HB-EGF expression, which eventually mediates cell proliferation, invasion, and angiogenesis and promotes the progression of CRC.

2.
Acta Physiol (Oxf) ; : e14202, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016532

RESUMO

AIM: The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS: Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a+/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS: We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a+/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION: These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.

3.
J Ethnopharmacol ; 334: 118517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972525

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The limitations of modern medicine in mitigating the pathological process of diabetic kidney disease (DKD) necessitate novel, precise, and effective prevention and treatment methods. Huangqi, the root of Astragalus membranaceus Fisch. ex Bunge has been used in traditional Chinese medicine for various kidney ailments. Astragaloside IV (AS-IV), the primary pharmacologically active compound in A. membranaceus, is involved in lipid metabolism regulation; however, its potential in ameliorating renal damage in DKD remains unexplored. AIM OF THE STUDY: To elucidate the specific mechanism by which AS-IV moderates DKD progression. MATERIALS AND METHODS: A murine model of DKD and high glucose-induced HK-2 cells were treated with AS-IV. Furthermore, multiomics analysis, molecular docking, and molecular dynamics simulations were performed to elucidate the mechanism of action of AS-IV in DKD, which was validated using molecular biological methods. RESULTS: AS-IV regulated glucose and lipid metabolism in DKD, thereby mitigating lipid deposition in the kidneys. Proteomic analysis identified 12 proteins associated with lipid metabolism regulated by AS-IV in the DKD renal tissue. Additionally, lipid metabolomic analysis revealed that AS-IV upregulated and downregulated 4 beneficial and 79 harmful lipid metabolites, respectively. Multiomics analysis further indicated a positive correlation between the top-ranked differential protein heme oxygenase (HMOX)1 and the levels of various harmful lipid metabolites and a negative correlation with the levels of beneficial lipid metabolites. Furthermore, enrichment of both ferroptosis and hypoxia-inducible factor (HIF)-1 signaling pathways during the AS-IV treatment of DKD was observed using proteomic analysis. Validation results showed that AS-IV effectively reduced ferroptosis in DKD-affected renal tubular epithelial cells by inhibiting HIF-1α/HMOX1 pathway activity, upregulating glutathione peroxidase-4 and ferritin heavy chain-1 expression, and downregulating acyl-CoA synthetase long-chain family member-4 and transferrin receptor-1 expression. Our findings demonstrate the potential of AS-IV in mitigating DKD pathology by downregulating the HIF-1α/HMOX1 signaling pathway, thereby averting ferroptosis in renal tubular epithelial cells. CONCLUSIONS: AS-IV is a promising treatment strategy for DKD via the inhibition of ferroptosis in renal tubular epithelial cells. The findings of this study may help facilitate the development of novel therapeutic strategies.

4.
J Transl Med ; 22(1): 649, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992710

RESUMO

BACKGROUND: Renal interstitial fibrosis (RIF) is a progressive, irreversible terminal kidney disease with a poor prognosis and high mortality. Angiopoietin-like 4 (ANGPTL4) is known to be associated with fibrosis in various organs, but its impact on the RIF process remains unclear. This study aimed to elucidate the role and underlying mechanisms of ANGPTL4 in the progression of RIF. METHODS: In vivo, a chronic kidney disease (CKD) rat model of renal interstitial fibrosis was established via intragastric administration of adenine at different time points (4 and 6 weeks). Blood and urine samples were collected to assess renal function and 24-h urinary protein levels. Kidney tissues were subjected to HE and Masson staining for pathological observation. Immunohistochemistry and real-time quantitative PCR (qRT‒PCR) were performed to evaluate the expression of ANGPTL4 and hypoxia-inducible factor-1α (HIF-1α), followed by Pearson correlation analysis. Subsequently, kidney biopsy tissues from 11 CKD patients (6 with RIF and 5 without RIF) were subjected to immunohistochemical staining to validate the expression of ANGPTL4. In vitro, a fibrosis model of human renal tubular epithelial cells (HK2) was established through hypoxic stimulation. Subsequently, an HIF-1α inhibitor (2-MeOE2) was used, and ANGPTL4 was manipulated using siRNA or plasmid overexpression. Changes in ANGPTL4 and fibrosis markers were analyzed through Western blotting, qRT‒PCR, and immunofluorescence. RESULTS: ANGPTL4 was significantly upregulated in the CKD rat model and was significantly positively correlated with renal injury markers, the fibrotic area, and HIF-1α. These results were confirmed by clinical samples, which showed a significant increase in the expression level of ANGPTL4 in CKD patients with RIF, which was positively correlated with HIF-1α. Further in vitro studies indicated that the expression of ANGPTL4 is regulated by HIF-1α, which in turn is subject to negative feedback regulation by ANGPTL4. Moreover, modulation of ANGPTL4 expression influences the progression of fibrosis in HK2 cells. CONCLUSION: Our findings indicate that ANGPTL4 is a key regulatory factor in renal fibrosis, forming a loop with HIF-1α, potentially serving as a novel therapeutic target for RIF.


Assuntos
Proteína 4 Semelhante a Angiopoietina , Fibrose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Rim , Ratos Sprague-Dawley , Animais , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Humanos , Masculino , Rim/patologia , Rim/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Ratos , Linhagem Celular , Nefropatias/patologia , Nefropatias/metabolismo , Pessoa de Meia-Idade
5.
Cells ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38994928

RESUMO

Activation of the CXCL12/CXCR4/ACKR3 axis is known to aid myocardial repair through ischemia-triggered hypoxia-inducible factor-1α (HIF-1α). To enhance the upregulation of HIF-1α, we administered roxadustat, a novel prolyl hydroxylase inhibitor (PHI) clinically approved by the European Medicines Agency 2021 for the treatment of renal anemia, with the purpose of improving LV function and attenuating ischemic cardiomyopathy. METHODS: We evaluated roxadustat's impact on HIF-1 stimulation, cardiac remodeling, and function after MI. Therefore, we analyzed nuclear HIF-1 expression, the mRNA and protein expression of key HIF-1 target genes (RT-PCR, Western blot), inflammatory cell infiltration (immunohistochemistry), and apoptosis (TUNEL staining) 7 days after MI. Additionally, we performed echocardiography in male and female C57BL/6 mice 28 days post-MI. RESULTS: We found a substantial increase in nuclear HIF-1, associated with an upregulation of HIF-1α target genes like CXCL12/CXCR4/ACKR3 at the mRNA and protein levels. Roxadustat increased the proportion of myocardial reparative M2 CD206+ cells, suggesting beneficial alterations in immune cell migration and a trend towards reduced apoptosis. Echocardiography showed that roxadustat treatment significantly preserved ejection fraction and attenuated subsequent ventricular dilatation, thereby reducing adverse remodeling. CONCLUSIONS: Our findings suggest that roxadustat is a promising clinically approved treatment option to preserve myocardial function by attenuating adverse remodeling.


Assuntos
Glicina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Isoquinolinas , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Remodelação Ventricular , Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Camundongos , Remodelação Ventricular/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Glicina/uso terapêutico , Masculino , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Apoptose/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Miocárdio/patologia , Miocárdio/metabolismo
6.
Nat Sci Sleep ; 16: 917-933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006248

RESUMO

Obstructive sleep apnea (OSA), a common sleep-disordered breathing condition, is characterized by intermittent hypoxia (IH) and sleep fragmentation and has been implicated in the pathogenesis and severity of nonalcoholic fatty liver disease (NAFLD). Abnormal molecular changes mediated by IH, such as high expression of hypoxia-inducible factors, are reportedly involved in abnormal pathophysiological states, including insulin resistance, abnormal lipid metabolism, cell death, and inflammation, which mediate the development of NAFLD. However, the relationship between IH and NAFLD remains to be fully elucidated. In this review, we discuss the clinical correlation between OSA and NAFLD, focusing on the molecular mechanisms of IH in NAFLD progression. We meticulously summarize clinical studies evaluating the therapeutic efficacy of continuous positive airway pressure treatment for NAFLD in OSA. Additionally, we compile potential molecular biomarkers for the co-occurrence of OSA and NAFLD. Finally, we discuss the current research progress and challenges in the field of OSA and NAFLD and propose future directions and prospects.

7.
J Cell Physiol ; : e31384, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012048

RESUMO

l-2-Hydroxyglutarate (l-2-HG) has been regarded as a tumor metabolite, and it plays a crucial role in adaptation of tumor cells to hypoxic conditions. However, the role of l-2-HG in tumor radioresistance and the underlying mechanism have not yet been revealed. Here, we found that l-2-HG exhibited to have radioresistance effect on U87 human glioblastoma cells, which could reduce DNA damage and apoptosis caused by irradiation, promote cell proliferation and migration, and impair G2/M phase arrest. Mechanistically, l-2-HG upregulated the protein level of hypoxia-inducible factor-1α (HIF-1α) and the expression levels of HIF-1α downstream target genes. The knockdown of l-2-hydroxyglutarate dehydrogenase (L2HGDH) gene promoted the tumor growth and proliferation of U87 cells in nude mice by increasing HIF-1α expression level in vivo. In addition, the low expression level of L2HGDH gene was correlated with the short survival of patients with glioma or kidney cancer. In conclusion, our study revealed the role and mechanism of l-2-HG in tumor radioresistance and may provide a new perspective for overcoming tumor radioresistance and broaden our comprehension of the role of metabolites in tumor microenvironment.

8.
Sci Rep ; 14(1): 15952, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987284

RESUMO

Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has therapeutic effects in different paradigms of brain injury, acting as a neuroprotectant. As oxidative stress is a primary risk factor for brain damage after neonatal hypoxia, we tested the effect of CBD on oxidative status and non-protein-bound iron accumulation in the immature brain after hypoxia. Moreover, we tested whether cannabidiol affects the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) which plays a key role in the regulation of cellular adaptation to hypoxia and oxidative stress. We used 7-day-old mice randomly assigned to hypoxic or control groups. Immediately after hypoxia or control exposure, pups were randomly assigned to a vehicle or CBD treatment. 24 h later, they were decapitated and the brains were immediately removed and stored for further biochemical analyses. We found that CBD reduced lipid peroxidation and prevented antioxidant depletion. For the first time, we also demonstrated that CBD upregulated HIF-1α protein level. This study indicates that CBD may effective agent in attenuating the detrimental consequences of perinatal asphyxia.


Assuntos
Canabidiol , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia , Estresse Oxidativo , Animais , Canabidiol/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Hipóxia/metabolismo , Hipóxia/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/farmacologia , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
9.
BMC Oral Health ; 24(1): 756, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951854

RESUMO

OBJECTIVE: Oral lichen planus carries a risk for malignancy. The pathogenesis of the disease is mediated by various inflammatory mediators. Several mediators could be responsible for the oncogenic behavior in certain cases. Hypoxia-inducible factor-1a (HIF-1), and its possible correlation to Galactin-3 (Gal-3) and matrix metalloproteinase-9 (MMP-9) over expression represents an important indicator for malignant transformation. The investigation of these factors may present evidence-based information on malignant transformation of the disease. SUBJECTS AND METHODS: The study investigated the expression of HIF-1, Gla-3 and MMP-9 in tissue samples of OLP compared to control subjects of un-inflamed gingival overgrowth. 20 biospecimen were allocated in each group. RESULTS: Immunohistochemical findings of OLP showed immunoreactivity for Galectin 3, HIF1a and MMP-9 by most of the epithelial cells. There was a positive correlation between HIF1α and MMP-9, r = 0.9301 (P-value < 0.00001). A positive correlation was detected between Galectin 3 and MMP-9, r = 0.7292 (P-value = 0.000264) between Galectin 3 and HIF1α, r = 0.5893 (P-value = 0.006252). CONCLUSION: These findings confirm the hypothesis that the adaptive pathways to hypoxia as Gal 3 and MMP-9 expressions and their HIF-1 may play a crucial role in carcinogenesis of OLP.


Assuntos
Galectina 3 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Líquen Plano Bucal , Metaloproteinase 9 da Matriz , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Líquen Plano Bucal/metabolismo , Líquen Plano Bucal/patologia , Galectina 3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Galectinas/metabolismo , Adulto , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Estudos de Casos e Controles , Imuno-Histoquímica , Proteínas Sanguíneas
10.
Front Cell Dev Biol ; 12: 1409287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015652

RESUMO

Introduction: Intervertebral disc degeneration often occurs in the elderly population, but in recent years, there has been an increasing incidence of disc degeneration in younger individuals, primarily with mild degeneration. Methods: In order to explore the underlying mechanisms of disc degeneration in both young and aging individuals, we collected four types of nucleus pulposus (NP) single-cell sequencing samples for analysis based on Pfirrmann grading: normal-young (NY) (Grade I), normal-old (NO) (Grade I), mild degenerative-young (MY) (Grade II-III), and mild degenerative-old (MO) (Grade II-III). Results: We found that most NP cells in NO and MY samples exhibited oxidative stress, which may be important pathogenic factors in NO and MY groups. On the other hand, NP cells in MO group exhibited endoplasmic reticulum stress. In terms of inflammation, myeloid cells were mainly present in the degenerative group, with the MY group showing a stronger immune response compared to the MO group. Interestingly, dendritic cells in the myeloid lineage played a critical role in the process of mild degeneration. Discussion: Our study investigated the molecular mechanisms of intervertebral disc degeneration from an age perspective, providing insights for improving treatment strategies for patients with disc degeneration at different age groups.

11.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 757-764, 2024 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-39014954

RESUMO

OBJECTIVES: To investigate the protective effects of 2-methoxyestradiol (2ME) against hypoxic pulmonary hypertension (HPH) in neonatal rats. METHODS: Ninety-six Wistar neonatal rats were randomly divided into a normoxia group, a hypoxia group, and a hypoxia + 2ME group, with each group further subdivided into 3-day, 7-day, 14-day, and 21-day subgroups, containing eight rats each. The hypoxia and hypoxia + 2ME groups received daily subcutaneous injections of saline and 2ME (240 µg/kg), respectively, while the normoxia group was raised in a normoxic environment with daily saline injections. Right ventricular systolic pressure (RVSP) was measured using the direct pressure method. Pulmonary vascular morphology was assessed using hematoxylin and eosin staining, with metrics including the percentage of medial thickness of small pulmonary arteries relative to the external diameter (MT%) and the cross-sectional area of the media of small pulmonary arteries relative to the total cross-sectional area (MA%). Immunohistochemistry was used to detect the expression levels of hypoxia-inducible factor-1α (HIF-1α) and proliferating cell nuclear antigen (PCNA) proteins, while real-time quantitative PCR was used to to assess HIF-1α and PCNA mRNA levels. RESULTS: Compared to the normoxia group, the hypoxia and hypoxia + 2ME groups showed increased RVSP and upregulated HIF-1α and PCNA protein and mRNA expression levels at 3, 7, 14, and 21 days after hypoxia (P<0.05). Furthermore, at 7, 14, and 21 days after hypoxia, the hypoxia group showed increased MT% and MA% (P<0.05). In comparison to the hypoxia group, the hypoxia + 2ME group exhibited reduced RVSP and downregulated HIF-1α and PCNA protein and mRNA expression levels, along with decreased MT% and MA% at 7, 14, and 21 days after hypoxia (P<0.05). CONCLUSIONS: 2ME may protect against HPH in neonatal rats by inhibiting the expression of HIF-1α and PCNA and reducing pulmonary vascular remodeling. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 757-764.


Assuntos
2-Metoxiestradiol , Animais Recém-Nascidos , Hipertensão Pulmonar , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia , Antígeno Nuclear de Célula em Proliferação , Artéria Pulmonar , Ratos Wistar , Animais , 2-Metoxiestradiol/farmacologia , Ratos , Hipertensão Pulmonar/prevenção & controle , Hipertensão Pulmonar/tratamento farmacológico , Antígeno Nuclear de Célula em Proliferação/análise , Antígeno Nuclear de Célula em Proliferação/genética , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Masculino , Feminino , Estradiol/farmacologia , Estradiol/análogos & derivados , RNA Mensageiro/análise
12.
Avian Pathol ; : 1-10, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887084

RESUMO

Ascites syndrome (AS) in broiler chickens, also known as pulmonary arterial hypertension (PAH), is a significant disease in the poultry industry. It is a nutritional metabolic disease that is closely associated with hypoxia-inducible factors and rapid growth. The rise in pulmonary artery pressure is a crucial characteristic of AS and is instrumental in its development. Hypoxia-inducible factor 1α (HIF-1α) is an active subunit of a key transcription factor in the oxygen-sensing pathway. HIF-1α plays a vital role in oxygen homeostasis and the development of pulmonary hypertension. Studying the effects of HIF-1α on pulmonary hypertension in humans or mammals, as well as ascites in broilers, can help us understand the pathogenesis of AS. Therefore, this review aims to (1) summarize the mechanism of HIF-1α in the development of pulmonary hypertension, (2) provide theoretical significance in explaining the mechanism of HIF-1α in the development of pulmonary arterial hypertension (ascites syndrome) in broilers, and (3) establish the correlation between HIF-1α and pulmonary arterial hypertension (ascites syndrome) in broilers. HIGHLIGHTSExplains the hypoxic mechanism of HIF-1α.Linking HIF-1α to pulmonary hypertension in broilers.Explains the role of microRNAs in pulmonary arterial hypertension in broilers.

13.
Front Immunol ; 15: 1404441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933270

RESUMO

Succinate, traditionally viewed as a mere intermediate of the tricarboxylic acid (TCA) cycle, has emerged as a critical mediator in inflammation. Disruptions within the TCA cycle lead to an accumulation of succinate in the mitochondrial matrix. This excess succinate subsequently diffuses into the cytosol and is released into the extracellular space. Elevated cytosolic succinate levels stabilize hypoxia-inducible factor-1α by inhibiting prolyl hydroxylases, which enhances inflammatory responses. Notably, succinate also acts extracellularly as a signaling molecule by engaging succinate receptor 1 on immune cells, thus modulating their pro-inflammatory or anti-inflammatory activities. Alterations in succinate levels have been associated with various inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, obesity, and atherosclerosis. These associations are primarily due to exaggerated immune cell responses. Given its central role in inflammation, targeting succinate pathways offers promising therapeutic avenues for these diseases. This paper provides an extensive review of succinate's involvement in inflammatory processes and highlights potential targets for future research and therapeutic possibilities development.


Assuntos
Inflamação , Transdução de Sinais , Ácido Succínico , Humanos , Ácido Succínico/metabolismo , Inflamação/metabolismo , Inflamação/imunologia , Animais , Ciclo do Ácido Cítrico , Receptores Acoplados a Proteínas G
14.
Zhen Ci Yan Jiu ; 49(6): 585-593, 2024 Jun 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38897802

RESUMO

OBJECTIVES: To observe the effect of heat-reinforcing needling (HRN) on synovial inflammation, hypoxia-inducible factor-1α (HIF-1α) and glycolytic activity in serum and synovial tissue in rabbits with cold syndrome of rheumatoid arthritis (RA), so as to explore its mechanisms underlying improvement of RA. METHODS: A total of 32 rabbits were randomly divided into normal, model, inhibitor and HRN groups, with 8 rabbits in each group. The RA with cold syndrome model was induced by injecting ovalbumin dry powder and Freund's complete adjuvant combined with cold freezing. Rabbits in the inhibitor group were intraperitoneally injected with 2-methoxyestradiol (2.5 mg/kg), rabbits in the HRN group were received HRN at bilateral "Zusanli" (ST36) for 30 min. The treatments were conducted once daily for 14 consecutive days. After the interventions, the knee circumference and pain threshold were measured. The contents of nicotinamide adenine dinucleotide phosphoric (NADPH), Hexokinase II (HK2) and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) in serum of rabbits were detected by ELISA. The pathological morphology of synovial tissue of the knee joints were observed by HE staining. The positive expressions of tumor necrosis factor (TNF-α), interleukin (IL)-1ß, IL-6 and IL-17 in synovial tissue of knee joint were detected by immunohistochemistry. The content of lactic acid in synovial tissue of rabbit knee joint was detected by spectrophotometry. The expression levels of HIF-1α, pyruvate kinase 2 (PKM2) and lactate dehydrogenase (LDHA) in synovial tissue of knee joint were detected by Western blot. RESULTS: After intervention, compared with the normal group, the knee circumference was significantly enlarged (P<0.05), the pain threshold was significantly decreased (P<0.05);the synovial tissue of knee joints showed significant cell proliferation and inflammatory infiltration, the pathological score was significantly increased (P<0.05);positive expressions of TNF-α, IL-1ß, IL-6 and IL-17, the content of lactic acid in synovial tissue, the contents of NADPH, HK2 and PFKFB3 in serum, and the protein expression levels of HIF-1α, PKM2 and LDHA in synovial tissue were increased (all P<0.05) in the model group. Compared with model group, the circumference of knee joint was significantly decreased (P<0.05), the pain threshold was significantly increased (P<0.05);in synovial tissue, the pathological score was decreased (P<0.05);the positive expressions of TNF-α, IL-1ß, IL-6 and IL-17 in synovial tissue were decreased (P<0.05), the lactic acid content in synovial tissue was decreased (P<0.05);the contents of NADPH, HK2 and PFKFB3 in serum and the protein expression levels of HIF-1α, PKM2 and LDHA in synovial tissue were decreased (P<0.05) in inhibitor group and HRN group. Compared with the inhibitor group, the synovial pathological score was significantly increased (P<0.05), positive expressions of TNF-α, IL-1ß, IL-6 and IL-17, the content of lactic acid in synovial tissue, the contents of NADPH, HK2 and PFKFB3 in serum, and the protein expression levels of HIF-1α, PKM2 and LDHA in synovial tissue were increased (all P<0.05) in HRN group. CONCLUSIONS: HRN can increase the pain threshold, reduce the knee circumference and inhibit the inflammatory response in rabbits with cold syndrome of RA. The possible mechanism is related to the down-regulation of HIF-1α and glycolysis activity.


Assuntos
Terapia por Acupuntura , Artrite Reumatoide , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Coelhos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Humanos , Artrite Reumatoide/terapia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Masculino , Feminino , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Pontos de Acupuntura , Interleucina-6/genética , Interleucina-6/metabolismo
15.
Chem Biol Interact ; 398: 111096, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844257

RESUMO

Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 µM) and CPF (0.05, 0.5, 5 and 50 µM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.


Assuntos
Clorpirifos , Ciclo-Oxigenase 2 , Hexaclorobenzeno , Subunidade alfa do Fator 1 Induzível por Hipóxia , Receptores de Hidrocarboneto Arílico , Neoplasias de Mama Triplo Negativas , Fator A de Crescimento do Endotélio Vascular , Clorpirifos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Hexaclorobenzeno/metabolismo , Hexaclorobenzeno/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Ligantes , Óxido Nítrico Sintase Tipo II/metabolismo , Feminino , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
16.
J Therm Biol ; 122: 103881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38870755

RESUMO

Heat stress (HS) poses a substantial threat to animal growth and development, resulting in declining performance and economic losses. The intestinal system is susceptible to HS and undergoes intestinal hyperthermia and pathological hypoxia. Hypoxia-inducible factor-1α (HIF-1α), a key player in cellular hypoxic adaptation, is influenced by prolyl-4-hydroxylase 2 (PHD2) and heat shock protein 90 (HSP90). However, the comprehensive regulation of HIF-1α in the HS intestine remains unclear. This study aims to explore the impact of HS on pig intestinal mucosa and the regulatory mechanism of HIF-1α. Twenty-four Congjiang Xiang pigs were divided into the control and five HS-treated groups (6, 12, 24, 48, and 72 h). Ambient temperature and humidity were maintained in a thermally-neutral state (temperature-humidity index (THI) < 74) in the control group, whereas the HS group experienced moderate HS (78 < THI <84). Histological examination revealed villus exfoliation after 12 h of HS in the duodenum, jejunum, and ileum, with increasing damage as HS duration extended. The villus height to crypt depth ratio (V/C) decreased and goblet cell number increased with prolonged HS. Quantitative real-time PCR, Western blot, and immunohistochemistry analysis indicated increased expression of HIF-1α and HSP90 in the small intestine with prolonged HS, whereas PHD2 expression decreased. Further investigation in IPEC-J2 cells subjected to HS revealed that overexpressing PHD2 increased PHD2 mRNA and protein expression, while it decreases HIF-1α. Conversely, interfering with HSP90 expression substantially decreased both HSP90 and HIF-1α mRNA and protein levels. These results suggest that HS induces intestinal hypoxia with concomitant small intestinal mucosal damage. The expression of HIF-1α in HS-treated intestinal epithelial cells may be co-regulated by HSP90 and PHD2 and is possibly linked to intestinal hyperthermia and hypoxia.


Assuntos
Células Epiteliais , Proteínas de Choque Térmico HSP90 , Resposta ao Choque Térmico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Intestino Delgado , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Suínos , Intestino Delgado/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Linhagem Celular
17.
Biochem Biophys Res Commun ; 726: 150229, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38908346

RESUMO

OBJECTIVE: Mesenchymal stem cells (MSCs) can treat osteoarthritis (OA), but their therapeutic efficacy is poor to date due to low migration efficiency. This study aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) could ameliorate cartilage repair efficiency through facilitating the migration of MSCs via hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis regulatory pathway in OA model rats. METHODS: OA rats were treated with MSCs alone or in combination with UTMD, respectively, for 4 weeks. Cartilage histopathology, MSCs migration efficiency, von Frey fiber thresholds, and the expression levels of collagen II and MMP-13 were measured. Further, MSCs were extracted from the bone marrow of rats, cocultured with osteoarthritic chondrocytes, transfected to siRNA-HIF-1α, and subjected to UTMD for 4 days. Glucose consumption, lactate production, and cell migration efficiency were assessed. The protein expression levels of HIF-1α, HK2, PKM2, and GLUT1 were measured, respectively. RESULTS: In OA rat model, NC-MSCs + UTMD improved migration efficiency, increased collagen II expression, decreased MMP-13 expression, and delayed osteoarthritis progression. Silencing HIF-1α attenuated the effects induced by UTMD. In vitro, UTMD led to increases in MSC activity and migration, glucose consumption, lactate production, and the protein expression of HIF-1α, HK2, PKM2, and GLUT1 expression, all of which were reversed upon HIF-1α silencing. CONCLUSION: UTMD enhances MSCs migration and improves cartilage repair efficiency through the HIF-1α-mediated glycolytic regulatory pathway, providing a novel therapy strategy for knee osteoarthritis.


Assuntos
Movimento Celular , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Células-Tronco Mesenquimais , Microbolhas , Osteoartrite , Ratos Sprague-Dawley , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ratos , Osteoartrite/metabolismo , Osteoartrite/terapia , Osteoartrite/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Ondas Ultrassônicas , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Células Cultivadas
18.
Cell Mol Immunol ; 21(7): 770-786, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839914

RESUMO

The hallmarks of spondyloarthritis (SpA) are type 3 immunity-driven inflammation and new bone formation (NBF). Macrophage migration inhibitory factor (MIF) was found to be a key driver of the pathogenesis of SpA by amplifying type 3 immunity, yet MIF-interacting molecules and networks remain elusive. Herein, we identified hypoxia-inducible factor-1 alpha (HIF1A) as an interacting partner molecule of MIF that drives SpA pathologies, including inflammation and NBF. HIF1A expression was increased in the joint tissues and synovial fluid of SpA patients and curdlan-injected SKG (curdlan-SKG) mice compared to the respective controls. Under hypoxic conditions in which HIF1A was stabilized, human and mouse neutrophils exhibited substantially increased expression of MIF and IL-23, an upstream type 3 immunity-related cytokine. Similar to MIF, systemic overexpression of IL-23 induced SpA pathology in SKG mice, while the injection of a HIF1A-selective inhibitor (PX-478) into curdlan-SKG mice prevented or attenuated SpA pathology, as indicated by a marked reduction in the expression of MIF and IL-23. Furthermore, genetic deletion of MIF or HIF1A inhibition with PX-478 in IL-23-overexpressing SKG mice did not induce evident arthritis or NBF, despite the presence of psoriasis-like dermatitis and blepharitis. We also found that MIF- and IL-23-expressing neutrophils infiltrated areas of the NBF in curdlan-SKG mice. These neutrophils potentially increased chondrogenesis and cell proliferation via the upregulation of STAT3 in periosteal cells and ligamental cells during endochondral ossification. Together, these results provide supporting evidence for an MIF/HIF1A regulatory network, and inhibition of HIF1A may be a novel therapeutic approach for SpA by suppressing type 3 immunity-mediated inflammation and NBF.


Assuntos
Condrogênese , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia , Fatores Inibidores da Migração de Macrófagos , Neutrófilos , Animais , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Humanos , Camundongos , Espondilartrite/imunologia , Espondilartrite/patologia , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Interleucina-23/metabolismo , beta-Glucanas/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Feminino , Imunidade
19.
Chin J Integr Med ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850481

RESUMO

OBJECTIVE: To investigate whether Buthus martensii karsch (Scorpiones), Scolopendra subspinipes mutilans L. Koch (Scolopendra) and Gekko gecko Linnaeus (Gekko) could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α (PI3K/AKT/mTOR/HIF-1α) signaling pathway. METHODS: Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models, with rapamycin and cyclophosphamide as positive controls. Carboxy methyl cellulose solutions of Scorpiones, Scolopendra and Gekko were administered intragastrically as 0.33, 0.33, and 0.83 g/kg, respectively once daily for 21 days. Fluorescent expression were detected every 7 days after inoculation, and tumor growth curves were plotted. Immunohistochemistry was performed to determine CD31 and HIF-1α expressions in tumor tissue and microvessel density (MVD) was analyzed. Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1α signaling pathway-related proteins. Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor (bFGF), transforming growth factor-ß1 (TGF-ß1) and vascular endothelial growth factor (VEGF) in mice. RESULTS: Scorpiones, Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α (all P<0.01). Moreover, Scorpiones, Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase (p70S6K) (P<0.05 or P<0.01). In addition, they also decreased the expression of CD31, MVD, bFGF, TGF-ß1 and VEGF compared with the model group (P<0.05 or P<0.01). CONCLUSION: Scorpiones, Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1α signaling pathway.

20.
Front Microbiol ; 15: 1410504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912347

RESUMO

The potentially lethal zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode larval stages of the tapeworm Echinococcus multilocularis. Metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular parasite-host interactions. The host has developed various ways to resist a parasitic infection, and the production of reactive oxygen species (ROS) is one of the most important strategies. Here, we found that scavenging of ROS reduced metacestode larval growth and germinative cell proliferation in in vivo models. Furthermore, using in vitro-cultured metacestode vesicles, we found that increased ROS levels enhanced metacestode growth and germinative cell proliferation, which was achieved by positively activating the ROS-EmERK-EmHIF1α axis. These results indicate that, beside its capacity to damage the parasite, ROS also play critical roles in metacestode growth and germinative cell proliferation. This study suggests that the effects of ROS on parasite may be bidirectional during AE infection, reflecting the parasite's adaptation to the oxidative stress microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...