Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.007
Filtrar
1.
Adv Sci (Weinh) ; : e2402025, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976572

RESUMO

As a significant infectious disease in livestock, porcine reproductive and respiratory syndrome (PRRS) imposes substantial economic losses on the swine industry. Identification of diagnostic markers and therapeutic targets has been a focal challenge in PPRS prevention and control. By integrating metabolomic and lipidomic serum analyses of clinical pig cohorts through a machine learning approach with in vivo and in vitro infection models, lysophosphatidic acid (LPA) is discovered as a serum metabolic biomarker for PRRS virus (PRRSV) clinical diagnosis. PRRSV promoted LPA synthesis by upregulating the autotaxin expression, which causes innate immunosuppression by dampening the retinoic acid-inducible gene I (RIG-I) and type I interferon responses, leading to enhanced virus replication. Targeting LPA demonstrated protection against virus infection and associated disease outcomes in infected pigs, indicating that LPA is a novel antiviral target against PRRSV. This study lays a foundation for clinical prevention and control of PRRSV infections.

2.
Front Immunol ; 15: 1416820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947312

RESUMO

Background: Traumatic and thermal injuries result in a state of systemic immune suppression, yet the mechanisms that underlie its development are poorly understood. Released from injured muscle and lysed red blood cells, heme is a damage associated molecular pattern with potent immune modulatory properties. Here, we measured plasma concentrations of total heme in over 200 traumatic and thermally-injured patients in order to examine its relationship with clinical outcomes and post-injury immune suppression. Methods: Blood samples were collected from 98 burns (≥15% total body surface area) and 147 traumatically-injured (injury severity score ≥8) patients across the ultra-early (≤1 hour) and acute (4-72 hours) post-injury settings. Pro-inflammatory cytokine production by lipopolysaccharide (LPS) challenged whole blood leukocytes was studied, and plasma concentrations of total heme, and its scavengers haptoglobin, hemopexin and albumin measured, alongside the expression of heme-oxygenase-1 (HO-1) in peripheral blood mononuclear cells (PBMCs). LPS-induced tumour necrosis factor-alpha (TNF-α) production by THP-1 cells and monocytes following in vitro heme treatment was also examined. Results: Burns and traumatic injury resulted in significantly elevated plasma concentrations of heme, which coincided with reduced levels of hemopexin and albumin, and correlated positively with circulating levels of pro and anti-inflammatory cytokines. PBMCs isolated from trauma patients 4-12 and 48-72 hours post-injury exhibited increased HO-1 gene expression. Non-survivors of burn injury and patients who developed sepsis, presented on day 1 with significantly elevated heme levels, with a difference of 6.5 µM in heme concentrations corresponding to a relative 52% increase in the odds of post-burn mortality. On day 1 post-burn, heme levels were negatively associated with ex vivo LPS-induced TNF-α and interleukin-6 production by whole blood leukocytes. THP-1 cells and monocytes pre-treated with heme exhibited significantly reduced TNF-α production following LPS stimulation. This impairment was associated with decreased gene transcription, reduced activation of extracellular signal-regulated kinase 1/2 and an impaired glycolytic response. Conclusions: Major injury results in elevated plasma concentrations of total heme that may contribute to the development of endotoxin tolerance and increase the risk of poor clinical outcomes. Restoration of the heme scavenging system could be a therapeutic approach by which to improve immune function post-injury.


Assuntos
Queimaduras , Heme , Humanos , Heme/metabolismo , Queimaduras/sangue , Queimaduras/imunologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Citocinas/sangue , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/sangue , Adulto Jovem , Idoso , Células THP-1 , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Biomarcadores/sangue , Lipopolissacarídeos , Heme Oxigenase-1/sangue
3.
Arch Dermatol Res ; 316(7): 458, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967866

RESUMO

BACKGROUND: Alopecia areata (AA) is an autoimmune pathology manifested by loss of hair. OBJECTIVE: To evaluate and compare the efficacy and safety of tofacitinib and azathioprine in patients with AA and variants. METHODS: In this double-blind randomized controlled trail (RCT) carried out at the Department of Dermatology, Medical Teaching Institute-Lady Reading Hospital (MTI-LRH), Peshawar, Pakistan, patients aged ≥ 12 years diagnosed with AA, alopecia totalis (AT) or alopecia universalis (AU) with minimum 50% scalp hair loss for a period ≥ 06 years were included. Patients were randomly assigned to receive oral tofacitinib 5 mg twice daily (Group I) or oral azathioprine 2 mg/kg body weight once daily (Group II). The primary endpoint was Severity of Alopecia Tool (SALT) score, evaluated at baseline and 06 months follow-up. Safety was consistently assessed during the study. RESULTS: A total of 104 patients underwent random allocation into either the tofacitinib group (n = 52) or the azathioprine group (n = 52). The mean (SD) age of patients was 20.23 (7.14) years and 22.26 (8.07) years, while the mean (SD) disease duration was 6.59 (4.01) years and 7.98 (4.40) years in in Group I and II, respectively. Overall, 40 (38.5%) patients were adolescents while 70 (67.3%) were male. 52 (50%) had AA, 37 (35.5%) had AT and 15 (14.5%) had AU. Mean baseline SALT score in tofacitinib group was 91.02 ± 10.21 and azathioprine group was 91.02 ± 10.63, which at 06 months follow-up improved to 14.1 ± 24.6 and 63.9 ± 33.9, respectively (difference, 11.5 points; 95% confidence interval, 38.3-61.3, p < 0.0001). Overall, no major adverse effects and no difference among the minor adverse effects in the two groups (04 adverse events for tofacitinib group and 08 for azathioprine group: p = 0.23) was observed. CONCLUSIONS: Efficacy of tofacitinib was significantly higher than azathioprine, whilst both drugs were well-tolerated in patients with AA and variants.


Assuntos
Alopecia em Áreas , Alopecia , Azatioprina , Piperidinas , Pirimidinas , Humanos , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Pirimidinas/uso terapêutico , Piperidinas/administração & dosagem , Piperidinas/efeitos adversos , Piperidinas/uso terapêutico , Masculino , Alopecia em Áreas/tratamento farmacológico , Alopecia em Áreas/diagnóstico , Método Duplo-Cego , Feminino , Azatioprina/administração & dosagem , Azatioprina/efeitos adversos , Azatioprina/uso terapêutico , Adolescente , Adulto , Adulto Jovem , Alopecia/tratamento farmacológico , Resultado do Tratamento , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Administração Oral , Criança , Pirróis/administração & dosagem , Pirróis/efeitos adversos , Índice de Gravidade de Doença , Imunossupressores/efeitos adversos , Imunossupressores/administração & dosagem
4.
J Hepatocell Carcinoma ; 11: 1171-1183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911292

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.

5.
Cancers (Basel) ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927907

RESUMO

The tumor immune microenvironment is pivotal in cancer initiation, advancement, and regulation. Its molecular and cellular composition is critical throughout the disease, as it can influence the balance between suppressive and cytotoxic immune responses within the tumor's vicinity. Studies on the tumor immune microenvironment have enriched our understanding of the intricate interplay between tumors and their immunological surroundings in various human cancers. These studies illuminate the role of significant components of the immune microenvironment, which have not been extensively explored in pediatric tumors before and may influence the responsiveness or resistance to therapeutic agents. Our deepening understanding of the pediatric tumor immune microenvironment is helping to overcome challenges related to the effectiveness of existing therapeutic strategies, including immunotherapies. Although in the early stages, targeted therapies that modulate the tumor immune microenvironment of pediatric solid tumors hold promise for improved outcomes. Focusing on various aspects of tumor immune biology in pediatric patients presents a therapeutic opportunity that could improve treatment outcomes. This review offers a comprehensive examination of recent literature concerning profiling the immune microenvironment in various pediatric tumors. It seeks to condense research findings on characterizing the immune microenvironment in pediatric tumors and its impact on tumor development, metastasis, and response to therapeutic modalities. It covers the immune microenvironment's role in tumor development, interactions with tumor cells, and its impact on the tumor's response to immunotherapy. The review also discusses challenges targeting the immune microenvironment for pediatric cancer therapies.

6.
Front Vet Sci ; 11: 1415716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863455

RESUMO

Introduction: The aim of this experiment was to investigate the modulation effect of Acanthopanax senticosus polysaccharide (ASPS-PD) extracted with deep eutectic solvent on cyclophosphamide-induced immunosuppression in broilers and its modulation of the gut microbiota of broilers. Methods: The 108 one-day-old broilers were divided into six groups, including the control group, the Cyclophosphamide (CY) model group, the ASPS-PD control group, the ASPA-PD high and low dose groups and the Astragalus polysaccharide group. Body weight, feed intake, feed conversion ratio, and immune organ index of broilers at 7, 14, and 21 days were determined; IL-2, IFN-γ, and lgG1 levels were determined by enzyme-linked immunosorbent assay (ELISA); Broiler caeca feces were analyzed by amplification and 16S rRNA sequencing. Results: The results showed that ASPS-PD can restore growth performance, increase immune organ index and improve serum cytokine levels of IL-2 and IFN-γ and immunoglobulin lgG1 levels in CY-treated broilers. The analysis of cecum flora showed that ASPS-PD can promote the proliferation of beneficial bacteria and reduce the number of harmful bacteria, regulating intestinal flora. Discussion: Therefore, ASPA-PD may be a potential novel immunomodulator to ameliorate CY-induced immunosuppression and intestinal flora dysregulation in broiler.

7.
Heliyon ; 10(9): e29795, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765174

RESUMO

This research investigated the impacts of lycium barbarum polysaccharide (LBP) on the digestive function, intestinal mucosal barrier function, inflammatory response, and myosin light chain kinase (MLCK) signaling pathway in immunosuppressed mice. 70 mg/kg cyclophosphamide was injected into abdomen for the preparation of immune suppression model. Healthy BALB/c mice served as control for the analysis of the differences in gastrointestinal motility and absorptive capacity, intestinal mucosal barrier function, the phagocytic ability of abdominal macrophages, serum immune factor and inflammatory factor levels, and the activation status of the MLCK signaling pathway after continuous gavage with 100 mg/kg LBP. Results revealed a decrease in d-xylose content, phagocytic rate, index of abdominal macrophages, and spleen index in the serum and urine of model mice compared to those of controls. In addition, levels of IgA, IgG, IgM, IL-6 (interleukin-6), IL-12, and interferon-γ (IFN-γ) decreased, while MLCK and myosin light chain (MLC) levels rose (P < 0.01). Versus those in Model group, urine d-xylose content, phagocytic rate, index of abdominal macrophages, spleen index, and the levels of IgA, IgG, IgM, IL-6, IL-12, and IFN-γ of mice undergoing the gavage with LBP increased, while MLCK and p-MLC levels declined (P < 0.05). In conclusion, LBP improved digestive absorption and immune function of immunosuppressed mice and regulated intestinal mucosal barrier immune system by inhibiting MLCK signaling pathway activation.

8.
Adv Healthc Mater ; : e2401270, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38801164

RESUMO

Current immune checkpoint blockade therapy (ICBT) predominantly targets T cells to harness the antitumor effects of adaptive immune system. However, the effectiveness of ICBT is reduced by immunosuppressive innate myeloid cells in tumor microenvironments (TMEs). Toll-like receptor 7/8 agonists (TLR7/8a) are often used to address this problem because they can reprogram myeloid-derived suppressor cells (MDSCs) and tumor-associated M2 macrophages, and boost dendritic cell (DC)-based T-cell generation; however, the systemic toxicity of TLR7/8a limits its clinical translation. Here, to address this limitation and utilize the effectiveness of TLR7/8a, this work suggests a programmed two-step activation strategy via Antibody-Trojan Immune Converter Conjugates (ATICC) that specifically targets myeloid cells by anti-SIRPα followed by reactivation of transiently inactivated Trojan TLR7/8a after antibody-mediated endocytosis. ATICC blocks the CD47-SIRPα ("don't eat me" signal), enhances phagocytosis, reprograms M2 macrophages and MDSCs, and increases cross-presentation by DCs, resulting in antigen-specific CD8+ T-cell generation in tumor-draining lymph nodes and TME while minimizing systemic toxicity. The local or systemic administration of ATICC improves ICBT responsiveness through reprogramming of the immunosuppressive TME, increased infiltration of antigen-specific CD8+ T cells, and antibody-dependent cellular phagocytosis. These results highlight the programmed and target immunomodulation via ATICC could enhance cancer immunotherapy with minimized systemic toxicities.

9.
J Transl Med ; 22(1): 452, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741166

RESUMO

Extracellular vesicles (EVs) are lipid bilayer structures released by all cells and widely distributed in all biological fluids. EVs are implicated in diverse physiopathological processes by orchestrating cell-cell communication. Colorectal cancer (CRC) is one of the most common cancers worldwide, with metastasis being the leading cause of mortality in CRC patients. EVs contribute significantly to the advancement and spread of CRC by transferring their cargo, which includes lipids, proteins, RNAs, and DNAs, to neighboring or distant cells. Besides, they can serve as non-invasive diagnostic and prognostic biomarkers for early detection of CRC or be harnessed as effective carriers for delivering therapeutic agents. Autophagy is an essential cellular process that serves to remove damaged proteins and organelles by lysosomal degradation to maintain cellular homeostasis. Autophagy and EV release are coordinately activated in tumor cells and share common factors and regulatory mechanisms. Although the significance of autophagy and EVs in cancer is well established, the exact mechanism of their interplay in tumor development is obscure. This review focuses on examining the specific functions of EVs in various aspects of CRC, including progression, metastasis, immune regulation, and therapy resistance. Further, we overview emerging discoveries relevant to autophagy and EVs crosstalk in CRC.


Assuntos
Autofagia , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares , Metástase Neoplásica , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/imunologia , Vesículas Extracelulares/metabolismo , Animais , Terapia de Imunossupressão
10.
Acta Pharm Sin B ; 14(5): 1951-1964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799637

RESUMO

Adenosine (Ado) is significantly elevated in the tumor microenvironment (TME) compared to normal tissues. It binds to adenosine receptors (AdoRs), suppressing tumor antigen presentation and immune cell activation, thereby inhibiting tumor adaptive immunity. Ado downregulates major histocompatibility complex II (MHC II) and co-stimulatory factors on dendritic cells (DCs) and macrophages, inhibiting antigen presentation. It suppresses anti-tumor cytokine secretion and T cell activation by disrupting T cell receptor (TCR) binding and signal transduction. Ado also inhibits chemokine secretion and KCa3.1 channel activity, impeding effector T cell trafficking and infiltration into the tumor site. Furthermore, Ado diminishes T cell cytotoxicity against tumor cells by promoting immune-suppressive cytokine secretion, upregulating immune checkpoint proteins, and enhancing immune-suppressive cell activity. Reducing Ado production in the TME can significantly enhance anti-tumor immune responses and improve the efficacy of other immunotherapies. Preclinical and clinical development of inhibitors targeting Ado generation or AdoRs is underway. Therefore, this article will summarize and analyze the inhibitory effects and molecular mechanisms of Ado on tumor adaptive immunity, as well as provide an overview of the latest advancements in targeting Ado pathways in anti-tumor immune responses.

11.
Transplant Cell Ther ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740138

RESUMO

Allogeneic stem cell transplantation (alloSCT) offers curative potential for older patients with myeloid malignancies. We evaluated the efficacy and safety of alloSCT using post-transplantation cyclophosphamide (PTCy) in combination with a very short duration of immune suppression (IS) in this population. We retrospectively analyzed 92 consecutive patients aged 65 years and older who underwent an alloSCT for myeloid malignancies between February 2018 and December 2022 at our institution. Data on patient characteristics, treatment modalities, and outcomes were collected. Ninety-two patients received an alloSCT with PTCy-based graft versus host disease (GVHD) prophylaxis. The majority had minimal comorbidities and were diagnosed with acute myeloid leukemia. Patients mostly received conditioning regimens with low to intermediate transplant conditioning intensity scores. In 43% of patients, IS could be permanently stopped at day +90, resulting in a median time of IS of 2.93 months in high-risk patients. At a median follow-up of 21.3 months, the 1- and 2-year overall survival rates were 89% and 87%, respectively. Relapse-free survival rates were 88% and 84% at 1 and 2 years, respectively. The 1- and 2-year cumulative incidences of relapse were 8% and 13%, while treatment-related mortality (TRM) estimates were 9% at both time points. Acute GVHD grade 3 to 4 occurred in 7% within the first 180 days and severe chronic GVHD in 6% of patients. This all resulted in a 1- and 2-year graft versus host and relapse-free survival of 74% and 70%, respectively. AlloSCT using PTCy in combination with a short duration of IS in older patients with myeloid malignancies demonstrates favorable survival outcomes due to low relapse rates and a low TRM. The low incidence of relapse and acceptable rates of graft-versus-host disease suggest the efficacy and safety of this approach. Further studies are warranted to validate these findings and optimize transplant strategies for older patients with myeloid malignancies.

12.
Indian J Hematol Blood Transfus ; 40(2): 335-339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38708152

RESUMO

To assess the incidence of anti-HLA donor-specific antibodies and the effectiveness of desensitization strategy in children who underwent haploidentical HSCT at our hospital. A retrospective review, management and outcomes of children with positive anti-HLA DSA who underwent haploidentical HSCT at our hospital from 2020 to 2022. Three patients with Thalassemia major were treated with 2 cycles of pretransplant immune suppression (PTIS) comprising Fludarabine and Dexamethasone in addition to desensitization. Five out of the 26 children who underwent haploidentical HSCT had positive anti-HLA DSA. Post desensitization, three out of the 5 children engrafted with sustained full donor chimerism, 1 patient developed primary graft rejection, while 1 patient died. It is feasible to desensitize children with high anti-HLA donor specific antibodies undergoing haploidentical HSCT to improve outcomes.

13.
Am J Cancer Res ; 14(4): 1850-1865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726266

RESUMO

Chronic inflammation associated with lung cancers contributes to immunosuppressive tumor microenvironments, reducing CD8+ T-cell function and leading to poor patient outcomes. A disintegrin and metalloprotease domain 9 (ADAM9) promotes cancer progression. Here, we aim to elucidate the role of ADAM9 in the immunosuppressive tumor microenvironment. A bioinformatic analysis of TIMER2.0 was used to investigate the correlation of ADAM9 and to infiltrate immune cells in the human lung cancer database and mouse lung tumor samples. Flow cytometry, immunohistochemistry, and RNA sequencing (RNA-seq) were performed to investigate the ADAM9-mediated immunosuppressive microenvironment. The coculture system of lung cancer cells with immune cells, cytokine array assays, and proteomic approach was used to investigate the mechanism. By analyzing the human LUAD database and the mouse lung cancer models, we showed that ADAM9 was associated with the immunosuppressive microenvironment. Additionally, ADAM9 released IL6 protein from cancer cells to inhibit IL12p40 secretion from dendritic cells, therefore leading to dendritic cell dysfunction and further affecting T-cell functions. Proteomic analysis indicated that ADAM9 promoted cholesterol biosynthesis and increased IL6-STAT3 signaling. Mechanistically, ADAM9 reduced the protein stability of LDLR, resulting in reduced cholesterol uptake and induced cholesterol biosynthesis. Moreover, LDLR reduction enhanced IL6-STAT3 activation. We reveal that ADAM9 has a novel biological function that drives the immunosuppressive tumor microenvironment by linking lung cancer's metabolic and signaling axes. Thus, by targeting ADAM9 an innovative and promising therapeutic opportunity was indicated for regulating the immunosuppression of lung cancer.

14.
Front Cell Dev Biol ; 12: 1387198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726320

RESUMO

Tumor-associated endothelial cells (TECs) are crucial mediators of immune surveillance and immune escape in the tumor microenvironment (TME). TECs driven by angiogenic growth factors form an abnormal vasculature which deploys molecular machinery to selectively promote the function and recruitment of immunosuppressive cells while simultaneously blocking the entry and function of anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to promote the metastasis of tumor cells. Meanwhile, the tumor-infiltrating immune cells further induce the TEC anergy by secreting pro-angiogenic factors and prevents further immune cell penetration into the TME. Understanding the complex interactions between TECs and immune cells will be needed to successfully treat cancer patients with combined therapy to achieve vasculature normalization while augmenting antitumor immunity. In this review, we will discuss what is known about the signaling crosstalk between TECs and tumor-infiltrating immune cells to reveal insights and strategies for therapeutic targeting.

15.
Cell Metab ; 36(5): 984-999.e8, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38642552

RESUMO

The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Humanos , Animais , Camundongos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos C57BL , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Feminino , Masculino , Espécies Reativas de Oxigênio/metabolismo
16.
Clin Ter ; 175(2): 95-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571465

RESUMO

Abstract: The Influenza A H1N1 subtype can present with a wide spectrum of severity, from mild symptoms of influenza to severe respiratory distress. The morbidity and mortality connected to influenza are mostly associated with secondary bacterial infections. The influenza syndrome alone can cause a massive release of cytokines with dysregulation of the immune system, and it can act in synergy with other bacteria which can enhance cytokines secretion. This article deals with a case of severe pneumonia of H1N1 in a 17-year-old woman with bacterial superinfection with Staphylococcus aureus characterized by a high level of interleukine-6 (105900 pg/mL) and the appearance of severe leukopenia with immuno-suppression, such that HIV infection and hematological diseases were included in the initial differential diagnosis. After death, the autopsy confirmed the presence of severe pneumonia, in addition to an hepatic steatosis in absence of other risk factors. This case reports the rapid and lethal course of influenza A /H1N1 in a young and healthy subject without comorbidities, in an age group in which mortality is about 0.3 deaths per 100,000. The case underlines the importance of quickly diagnosis of viral infections and the differential diagnoses with other immunosuppressive diseases, which can be fatal even in adolescent and healthy subjects.


Assuntos
Infecções por HIV , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia , Sepse , Feminino , Adolescente , Humanos , Influenza Humana/complicações , Influenza Humana/diagnóstico , Sepse/complicações , Autopsia , Pneumonia/complicações , Citocinas
17.
Artigo em Inglês | MEDLINE | ID: mdl-38589986

RESUMO

BACKGROUND: The tumor microenvironment (TME) includes diverse cellular components such as mesenchymal stem cells (MSC) and immune cells among others. MSC have been isolated from different tumors and they favor tumor cell growth, however, their role in pituitary tumors (PT) remains unknown. Herein we report the presence of MSCs in 2 ACTH-secreting PT causing Cushing disease (MCU), 2 nonfunctioning adenomas of gonadotrope differentiation (MNF) and 2 non tumoral pituitary glands (MS). METHODS: We have analyzed their transcriptomic profiles by RNAseq and compared MSC in terms of their immunosuppressive effects against lymphoid T cell and macrophage populations by means of co-cultures and flow cytometry. RESULTS: Our transcriptomic analysis revealed molecular differences between MSC derived from non-tumoral pituitaries and MSC derived from PT. Two distinct subpopulations of MSC, one displaying immunosuppressive properties and the other with increased pro-proliferative capabilities, regardless of their origin. MSC derived from ACTH- and nonfunctioning PT, but not those derived from non-tumoral glands significantly inhibited the proliferation of activated T cells, favored the generation of Tregs and promote M2 macrophage polarization. Such immunosuppressive effects were correlated with an upregulation of programmed death ligand 1 and intracellular expression of macrophage colony stimulating factor (M-CSF) and IL-10. Importantly, MSC derived from ACTH-PT showed a higher immunosuppressive potential than MSC isolated from nonfunctioning tumors. CONCLUSION: This study demonstrates the presence of at least two MSC subpopulations in the pituitary gland and suggests that immunosuppressive effects of MSC may have important implications in PT growth.

18.
Biomedicines ; 12(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38672174

RESUMO

The presence of an immunosuppressive tumour microenvironment in oesophageal adenocarcinoma (OAC) is a major contributor to poor responses. Novel treatment strategies are required to supplement current regimens and improve patient survival. This study examined the immunomodulatory effects that radiation therapy and chemokine receptor antagonism impose on T cell phenotypes in OAC with a primary goal of identifying potential therapeutic targets to combine with radiation to improve anti-tumour responses. Compared with healthy controls, anti-tumour T cell function was impaired in OAC patients, demonstrated by lower IFN-γ production by CD4+ T helper cells and lower CD8+ T cell cytotoxic potential. Such diminished T cell effector functions were enhanced following treatment with clinically relevant doses of irradiation. Interestingly, CCR5+ T cells were significantly more abundant in OAC patient blood compared with healthy controls, and CCR5 surface expression by T cells was further enhanced by clinically relevant doses of irradiation. Moreover, irradiation enhanced T cell migration towards OAC patient-derived tumour-conditioned media (TCM). In vitro treatment with the CCR5 antagonist Maraviroc enhanced IFN-γ production by CD4+ T cells and increased the migration of irradiated CD8+ T cells towards irradiated TCM, suggesting its synergistic therapeutic potential in combination with irradiation. Overall, this study highlights the immunostimulatory properties of radiation in promoting anti-tumour T cell responses in OAC and increasing T cell migration towards chemotactic cues in the tumour. Importantly, the CCR5 antagonist Maraviroc holds promise to be repurposed in combination with radiotherapy to promote anti-tumour T cell responses in OAC.

19.
J Dairy Sci ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428491

RESUMO

Cows in early lactation (EL) are purportedly immune suppressed, which renders them more susceptible to disease. Thus, the study objective was to compare key biomarkers of immune activation from i.v. lipopolysaccharide (LPS) between EL and mid-lactation (ML) cows. Multiparous EL (20 ± 2 DIM; n = 11) and ML (131 ± 31 DIM; n = 12) cows were enrolled in a 2 × 2 factorial design and assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered a single LPS bolus from Escherichia coli O55:B5 (0.09 µg/kg of body weight), or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. After LPS administration, cows were intensely evaluated for 3 d to analyze their response and recovery to LPS. Rectal temperature increased in LPS relative to PF cows (1.1°C in the first 9 h), and the response was more severe in EL-LPS relative to ML-LPS cows (2.3 vs. 1.3°C increase at 4 h post-LPS; respectively). Respiration rate increased only in EL-LPS cows (47% relative to ML-LPS in the first h post-LPS). Circulating tumor necrosis factor-α, IL-6, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1ß, and IFN-γ-inducible protein-10 increased within the first 6 h after LPS and these changes were exacerbated in EL-LPS relative to ML-LPS cows (6.3-, 4.8-fold, 57%, 93%, 10%, and 61% respectively). All cows administered LPS had decreased circulating iCa relative to PF cows (34% at the 6 h nadir), but the hypocalcemia was more severe in EL-LPS than ML-LPS cows (14% at 6 h nadir). In response to LPS, neutrophils decreased regardless of LS, then increased into neutrophilia by 24 h in all LPS relative to PF cows (2-fold); however, the neutrophilic phase was augmented in EL- compared with ML-LPS cows (63% from 24 to 72 h). Lymphocytes and monocytes rapidly decreased then gradually returned to baseline in LPS cows regardless of LS; however, monocytes were increased (57%) at 72 h in EL-LPS relative to ML-LPS cows. Platelets were reduced (46%) in LPS relative to PF cows throughout the 3-d following LPS, and from 24 to 48 h, platelets were further decreased (41%) in EL-LPS compared with ML-LPS. During the 3-d following LPS, serum amyloid A (SAA), LPS-binding protein (LBP), and haptoglobin (Hp) increased in LPS compared with PF groups (9-fold, 72%, and 153-fold, respectively), and the LBP and Hp responses were more exaggerated in EL-LPS than ML-LPS cows (85 and 79%, respectively) whereas the SAA response did not differ by LS. Thus, our data indicates that EL immune function does not appear "suppressed," and in fact many aspects of the immune response are seemingly functionally robust.

20.
Inflammation ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429403

RESUMO

Sepsis is a severe and life-threatening disease caused by infection, characterized by a dysregulated immune response. Unfortunately, effective treatment strategies for sepsis are still lacking. The intricate interplay between metabolism and the immune system limits the treatment options for sepsis. During sepsis, there is a profound shift in cellular energy metabolism, which triggers a metabolic reprogramming of immune cells. This metabolic alteration impairs immune responses, giving rise to excessive inflammation and immune suppression. Recent research has demonstrated that UCP2 not only serves as a critical target in sepsis but also functions as a key metabolic switch involved in immune cell-mediated inflammatory responses. However, the regulatory mechanisms underlying this modulation are complex. This article focuses on UCP2 as a target and discusses metabolic reprogramming during sepsis and the complex regulatory mechanisms between different stages of inflammation. Our research indicates that overexpression of UCP2 reduces the Warburg effect, restores mitochondrial function, and improves the prognosis of sepsis. This discovery aims to provide a promising approach to address the significant challenges associated with metabolic dysfunction and immune paralysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...