Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Andrology ; 7(3): 373-381, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30920782

RESUMO

BACKGROUND: Sperm DNA integrity is crucial for transmission of genetic information to future generations and DNA damage can occur during chromatin packaging. Chromatin packaging involves the replacement of somatic nucleosomal histones by nuclear proteins called protamines. Protamine 1 (PRM1) is transcribed and translated in spermatids of all mammals; however, protamine 2 (PRM2) is transcribed in low levels in spermatids and it is not yet described in bull mature spermatozoa. OBJECTIVES: The aim of this study was to assess gene and protein expression of PRM2 and corroborate gene and protein expression of PRM1 in bull spermatozoa and testis. MATERIALS AND METHODS: For this purpose, absolute q-RT-PCR was performed to calculate the number of copies of PRM1 and PRM2 mRNAs in bovine epididymal spermatozoa and testicular tissue. Western blot and mass spectrometry were performed to identify PRM1 and PRM2 in samples of bovine epididymal spermatozoa. Samples of bovine testicular tissue were collected to identify PRM1 and PRM2 by immunohistochemistry. RESULTS: We evaluated that the number of PRM1 mRNA copies was about hundred times higher than PRM2 mRNA copies in sperm and testicular samples (p < 0.0001). In addition, we estimated the PRM1: PRM2 ratio based on mRNA number of copies. In spermatozoa, the ratio was 1: 0.014, and in testicle, the ratio was 1: 0.009. We also evaluated the immunolocalization for PRM1 and PRM2 in bovine testis, and both proteins were detected in spermatids. Western blot and mass spectrometry in bovine epididymal spermatozoa confirmed these results. CONCLUSION: Our work identifies, for the first time, PRM2 in bovine epididymal spermatozoa and in testis. Further studies are still needed to understand the role of PRM2 on the chromatin of the spermatozoa and to verify how possible changes in PRM2 levels may influence the bull fertility.


Assuntos
Bovinos/metabolismo , Protaminas/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Núcleo Celular/metabolismo , Epididimo/citologia , Expressão Gênica , Masculino , Protaminas/genética , RNA Mensageiro/metabolismo
2.
Andrology, v. 7, n. 3, p. 373-381, mai. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2725

RESUMO

Background Sperm DNA integrity is crucial for transmission of genetic information to future generations and DNA damage can occur during chromatin packaging. Chromatin packaging involves the replacement of somatic nucleosomal histones by nuclear proteins called protamines. Protamine 1 (PRM1) is transcribed and translated in spermatids of all mammals; however, protamine 2 (PRM2) is transcribed in low levels in spermatids and it is not yet described in bull mature spermatozoa. Objectives The aim of this study was to assess gene and protein expression of PRM2 and corroborate gene and protein expression of PRM1 in bull spermatozoa and testis. Materials and methods For this purpose, absolute q-RT-PCR was performed to calculate the number of copies of PRM1 and PRM2 mRNAs in bovine epididymal spermatozoa and testicular tissue. Western blot and mass spectrometry were performed to identify PRM1 and PRM2 in samples of bovine epididymal spermatozoa. Samples of bovine testicular tissue were collected to identify PRM1 and PRM2 by immunohistochemistry. Results We evaluated that the number of PRM1 mRNA copies was about hundred times higher than PRM2 mRNA copies in sperm and testicular samples (p < 0.0001). In addition, we estimated the PRM1: PRM2 ratio based on mRNA number of copies. In spermatozoa, the ratio was 1: 0.014, and in testicle, the ratio was 1: 0.009. We also evaluated the immunolocalization for PRM1 and PRM2 in bovine testis, and both proteins were detected in spermatids. Western blot and mass spectrometry in bovine epididymal spermatozoa confirmed these results. Conclusion Our work identifies, for the first time, PRM2 in bovine epididymal spermatozoa and in testis. Further studies are still needed to understand the role of PRM2 on the chromatin of the spermatozoa and to verify how possible changes in PRM2 levels may influence the bull fertility.

3.
Astrobiology ; 18(12): 1497-1516, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30070898

RESUMO

High-energy ionizing radiation in the form of solar energetic particles and galactic cosmic rays is pervasive on the surface of planetary bodies with thin atmospheres or in space facilities for humans, and it may seriously affect the chemistry and the structure of organic and biological material. We used fluorescent microarray immunoassays to assess how different doses of electron and gamma radiations affect the stability of target compounds such as biological polymers and small molecules (haptens) conjugated to large proteins. The radiation effect was monitored by measuring the loss in the immunoidentification of the target due to an impaired ability of the antibodies for binding their corresponding irradiated and damaged epitopes (the part of the target molecule to which antibodies bind). Exposure to electron radiation alone was more damaging at low doses (1 kGy) than exposure to gamma radiation alone, but this effect was reversed at the highest radiation dose (500 kGy). Differences in the dose-effect immunoidentification patterns suggested that the amount (dose) and not the type of radiation was the main factor for the cumulative damage on the majority of the assayed molecules. Molecules irradiated with both types of radiation showed a response similar to that of the individual treatments at increasing radiation doses, although the pattern obtained with electrons only was the most similar. The calculated radiolysis constant did not show a unique pattern; it rather suggested a different behavior perhaps associated with the unique structure of each molecule. Although not strictly comparable with extraterrestrial conditions because the irradiations were performed under air and at room temperature, our results may contribute to understanding the effects of ionizing radiation on complex molecules and the search for biomarkers through bioaffinity-based systems in planetary exploration.


Assuntos
Radiação Cósmica/efeitos adversos , Elétrons/efeitos adversos , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Raios gama/efeitos adversos , Biomarcadores/análise , Biopolímeros/análise , Biopolímeros/química , Biopolímeros/efeitos da radiação , Relação Dose-Resposta à Radiação , Haptenos/análise , Haptenos/química , Haptenos/efeitos da radiação , Imunoensaio/métodos , Análise em Microsséries/métodos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...