Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.183
Filtrar
1.
J Hazard Mater ; 480: 136004, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39357358

RESUMO

In this study, we developed a method for the on-site selective detection and quantification of microplastics in various water matrices using fluorescence-tagged peptides combined with electrochemical impedance spectroscopy (EIS). Among the types of plastics found in seawater, polystyrene (PS) microplastics were selected. Fluorometry, scanning electron microscopy (SEM), and Raman spectroscopy were used to verify the specific interaction of these peptides with PS spherical particles of different sizes (ranging from 0.1 to 250 µm). Principal component analysis (PCA) was employed to determine the effects of temperature (25-65 °C), incubation time (5 and 10 min), and particle size on plastic-peptide bonding efficiency, based on fluorescence intensity. For each water type (pure, tap, NaCl (0.5 M), and seawater), EIS plots (Nyquist and Bode) were generated. Significant factors affecting the EIS response, including particle size, shape, and material, were analyzed by measuring electrical parameters for different microplastic concentrations (50 ppb to 20 ppm). The EIS parameters changed with increasing plastic concentration, determining a limit of detection (LOD) of 50 ppb (ng/mL) for pure and tap water and 400 ppb for saline water, as the lowest concentration producing a significant change in EIS parameters compared to the baseline. The sensor proved highly effective for detecting microplastics in low ionic strength environments such as pure and tap water. However, in high ionic strength environments like saline and seawater, the detection capability diminished, likely due to the masking effect of ions on the EIS response.

2.
Environ Sci Technol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360939

RESUMO

Water treatment membranes play crucial roles in applications such as desalination, wastewater treatment, and potable water reuse. In a prior study, we introduced a novel method, combining electrical impedance spectroscopy with dynamic mechanical analysis, to quantify single-layer homogeneous membrane compaction up to 12.5 psi. Now we extend the method's capabilities to quantify real-time compaction of multilayer heterogeneous nanofiltration and reverse osmosis (RO) membranes up to 330 psi. Our findings demonstrate that membrane compaction does not solely occur in the support/backing layer. The air pockets between the polysulfone support and the polyester backing layers, which were not discussed previously, account for up to 18% and 14% of total membrane compaction for the nanofiltration and RO membranes. For the nanofiltration membrane, the majority of compaction (up to 45%) occurs in the void spaces of the backing layer, while for the RO membrane, the majority of compaction (up to 40%) occurs in the solid material of the backing layer. We also confirm, with experimental results, the importance of using compressive testing instead of tensile testing to accurately characterize compaction. Membrane fatigue is characterized by experimental trends including: increasing irrevocable compaction, increasing creep/instantaneous compaction ratios, and increasing strains in hysteresis experiments.

3.
Int J Biol Macromol ; : 136233, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362419

RESUMO

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus, which rapidly spread worldwide and resulted in a pandemic. Efficient and sensitive detection techniques have been devised since the onset of the epidemic and continue to be improved at present. Due to the crucial role of the SARS-CoV-2 S1 protein in facilitating the virus's entry into cells, efforts in detection and treatment have primarily centered upon this protein. In this study, a rapid, ultrasensitive, disposable, easy-to-use, cost-effective next generation biosensor based on optimized aptamer (Optimer, OPT) was developed by using disposable pencil graphite electrode (PGE) and applied for the impedimetric determination of SARS-CoV-2 S1 protein. The S1 protein interacted with the OPT in the solution phase and then immobilized onto the PGE surface. Subsequently, measurements using electrochemical impedance spectroscopy (EIS) were conducted in a solution containing a redox probe of 1 mM [Fe(CN)6]3-/4-. Under optimum conditions, the limit of detection (LOD) for the S1 protein in buffer medium at concentrations ranging from 101 to 106 ag/mL was calculated as 8.80 ag/mL (0.11 aM). The selectivity of the developed biosensor was studied against MERS-CoV-S1 protein (MERS) and Influenza Hemagglutinin antigen (HA). Furthermore, the application of the biosensor in artificial saliva medium is demonstrated. The LOD was also calculated in artificial saliva medium in the concentration range of 101-105 ag/mL and calculated as 2.01 ag/mL (0.025 aM). This medium was also used to assess the selectivity of optimized-aptamer based biosensor.

4.
Heliyon ; 10(18): e38125, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39381213

RESUMO

This work aims to explore the efficiency of ZnO nanoparticles synthesized via the non-thermal gliding arc discharge-assisted plasma (NT-GAD) technique for inhibiting the corrosion of X60 API 5L steel in a 1M HCl environment. The XRD pattern revealed that the ZnO nanoparticles exhibit hexagonal wurtzite structure with average particle size of ∼24 nm. UV-visible spectroscopy analysis revealed an absorption peak centering at 365 nm, corresponding to an energy band gap of 3.29 eV. SEM and TEM analysis revealed that the nanoparticles exhibit an agglomerated and irregular morphology. The corrosion inhibition of ZnO NPs was investigated via the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests (PDP), while varying both concentration and temperature. The results revealed that the increase in inhibitor concentration resulted in a higher activity at ambient temperature, with an optimal efficiency of 93 % at a concentration of 100 mg/L. However, the increase in temperature remarkably reduced the inhibition efficiency, suggesting a physisorption behavior of ZnO NPs onto the steel surface. AFM and FE-SEM analysis confirmed the formation of a protective layer on the X60 API 5L steel surface. This study emphasizes the significant potential of ZnO NPs synthesized via the NT-GAD assisted plasma technique as corrosion inhibitor for X60 API 5L carbon steel in 1M HCl corrosive media.

5.
Mikrochim Acta ; 191(11): 663, 2024 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392501

RESUMO

This work comprehends the development and characterization of a carbon black-based electrode modified with Au microflowers to increase its effect as a capacitance biosensor for the determination of PARK7/DJ-1. Due to its high surface-to-volume ratio and biocompatibility, Au particles are suitable for antibody binding, and by monitoring surface capacitance, it is possible to identify the immune-pair interaction. Au microflowers allowed the adequate immobilization of Parkinsonian-related proteins: PARK7/DJ-1 and its antibody. The protein is associated with several antioxidant mechanisms, but its abnormal concentrations or mutations can be the cause of the loss of dopaminergic neurons, leading to Parkinson's disease. The device was characterized by scanning electron microscopy and cyclic voltammetry, revealing the flower-like structures and the electrochemically-interest enhancements they provide, such as increased heterogeneous electron transfer rate coefficient and electroactive area. The self-assembled monolayers of different molecules were optimized with the aid of 22 central composite experiments and a linear calibration curve was obtained between 0.700 and 120 ng mL-1 of PARK7/DJ-1, with a limit of detection of 0.207 ng mL-1. The data confirms that the addition of Au microflowers enhanced the electrochemical signal of the device, as well as allowed for the determination of an early stage Parkinson's disease biomarker with appreciable analytical performance.


Assuntos
Técnicas Biossensoriais , Capacitância Elétrica , Técnicas Eletroquímicas , Ouro , Doença de Parkinson , Proteína Desglicase DJ-1 , Ouro/química , Técnicas Biossensoriais/métodos , Doença de Parkinson/diagnóstico , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Imunoensaio/métodos , Biomarcadores/análise , Anticorpos Imobilizados/imunologia , Limite de Detecção , Eletrodos
6.
Toxicon ; : 108115, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368557

RESUMO

Zearalenone (ZEN) is a mycotoxin that poses significant risks to human and animal health due to its mutagenic, immunosuppressive, and carcinogenic properties. This study presents a novel analytical method for detecting ZEN using electrochemical impedance spectroscopy (EIS) combined with a molecularly imprinted polymer (MIP). ZEN, used as the template molecule, was incorporated into polypyrrole on screen-printed electrodes (SPE), and a ZEN-sensitive MIP sensor was created through template removal. The modified sensor surfaces were characterized by EIS and scanning electron microscopy (SEM). An impedimetric MIP sensor for ZEN was developed, offering a detection range from 1 pM to 500 pM. The method's limit of detection (LOD) was established at 1 pM (0.3 pg/mL) with a signal-to-noise ratio of 3 (S/N=3). The method demonstrated high precision and accuracy, with a maximum relative standard deviation (RSD) of less than 4.4% at a 95% confidence level, and relative error (RE) values ranging from -0.8% to -2.7%. The selectivity of the developed MIP sensor was evaluated using ochratoxin A, ochratoxin B, and aflatoxin B1, with no significant interference observed. ZEN recovery from spiked samples was between 95% and 105%, indicating that the method was successfully applied to grain samples, including corn, rice, and wheat.

7.
J Electr Bioimpedance ; 15(1): 145-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39371333

RESUMO

Bio-impedance Spectroscopy (BIS) is a technique that allows tissue analysis to diagnose a variety of diseases, such as medical imaging, cancer diagnosis, muscle fatigue detection, glucose measurement, and others under research. The development of CMOS integrated circuit front-ends for bioimpedance analysis is required by the increasing use of wearable devices in the healthcare field, as they offer key features for battery-powered wearable devices. These features include high miniaturization, low power consumption, and low voltage power supply. A key circuit in BIS systems is the current source, and one of the most common topology is the Enhanced Howland Current Source (EHCS). EHCS is also used when the current driver is driven by a pseudo-random signal like discrete interval binary sequences (DIBS), which, due to its broadband nature, requires high performance operational amplifiers. These facts lead to the need for a current source more compatible with DIBS signals, ultra-low power supply, standard CMOS integrated circuit, output current amplitude independent of input voltage amplitude, high output impedance, high load capability, high output voltage swing, and the possibility of tetra-polar BIS analysis, that is a pseudotetra-polar in the case of EHCS. The objective of this work is to evaluate the performance of the Switching CMOS Current Source (SCMOSCS) over EHCS using a Cole-skin model as a load using SPICE simulations (DC and AC sweeps and transient analysis). The SCMOSCS demonstrated an output impedance of more than 20 MΩ, a ± 2.5 V output voltage swing from a +3.3 V supply, a 275 µA current consumption, and a 10 kΩ load capacity. These results contrast with the + 1.5 V output voltage swing, the 3 kΩ load capacity, and the 4.9 mA current of the EHCS case.

8.
Talanta ; 281: 126903, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326119

RESUMO

Immunosensors based on electrical impedance spectroscopy allow for label-free, real-time detection of biologically relevant molecules and pathogens, without requiring electro-active materials. Here, we investigate the influence of bare gold nanoparticles (AuNPs), synthesized via laser ablation in solution, on the performance of an impedimetric immunosensor for detecting severe acute respiratory syndrome coronavirus (SARS-CoV-2). Graphene acetic acid (GAA) was used in the active layer for immobilizing anti-SARS-CoV-2 antibodies, owing to its high density of carboxylic groups. Immunosensors incorporating AuNPs exhibited superior performance compared to those relying solely on GAA, achieving a limit of detection (LoD) of 3 x 10-20 g/mL to detect the Spike Receptor Binding Domain (RBD) protein of SARS-CoV-2 and of 2 PFU/mL for inactivated virus. Moreover, these immunosensors presented high selectivity against the H1N1 influenza virus. We anticipate that this platform will be versatile and applicable in the early diagnosis of various diseases and viral infections, thereby facilitating Point-of-Care testing.

9.
Nanomaterials (Basel) ; 14(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39330665

RESUMO

Wide-bandgap tin oxide (SnO2) thin-films are frequently used as an electron-transporting layers in perovskite solar cells due to their superior thermal and environmental stabilities. However, its crystallization by conventional thermal methods typically requires high temperatures and long periods of time. These post-processing conditions severely limit the choice of substrates and reduce the large-scale manufacturing capabilities. This work describes the intense-pulsed-light-induced crystallization of SnO2 thin-films using only 500 µs of exposure time. The thin-films' properties are investigated using both impedance spectroscopy and photoconductivity characteristic measurements. A Nyquist plot analysis establishes that the process parameters have a significant impact on the electronic and ionic behaviors of the SnO2 films. Most importantly, we demonstrate that light-induced crystallization yields improved topography and excellent electrical properties through enhanced charge transfer, improved interfacial morphology, and better ohmic contact compared to thermally annealed (TA) SnO2 films.

10.
FASEB J ; 38(18): e70069, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315853

RESUMO

Coronary plaque rupture remains the prominent mechanism of myocardial infarction. Accurate identification of rupture-prone plaque may improve clinical management. This study assessed the discriminatory performance of electrochemical impedance spectroscopy (EIS) in human cardiac explants to detect high-risk atherosclerotic features that portend rupture risk. In this single-center, prospective study, n = 26 cardiac explants were collected for EIS interrogation of the three major coronary arteries. Vessels in which advancement of the EIS catheter without iatrogenic plaque disruption was rendered impossible were not assessed. N = 61 vessels underwent EIS measurement and histological analyses. Plaques were dichotomized according to previously established high rupture-risk parameter thresholds. Diagnostic performance was determined via receiver operating characteristic areas-under-the-curve (AUC). Necrotic cores were identified in n = 19 vessels (median area 1.53 mm2) with a median fibrous cap thickness of 62 µm. Impedance was significantly greater in plaques with necrotic core area ≥1.75 mm2 versus <1.75 mm2 (19.8 ± 4.4 kΩ vs. 7.2 ± 1.0 kΩ, p = .019), fibrous cap thickness ≤65 µm versus >65 µm (19.1 ± 3.5 kΩ vs. 6.5 ± 0.9 kΩ, p = .004), and ≥20 macrophages per 0.3 mm-diameter high-power field (HPF) versus <20 macrophages per HPF (19.8 ± 4.1 kΩ vs. 10.2 ± 0.9 kΩ, p = .002). Impedance identified necrotic core area ≥1.75 mm2, fibrous cap thickness ≤65 µm, and ≥20 macrophages per HPF with AUCs of 0.889 (95% CI: 0.716-1.000) (p = .013), 0.852 (0.646-1.000) (p = .025), and 0.835 (0.577-1.000) (p = .028), respectively. Further, phase delay discriminated severe stenosis (≥70%) with an AUC of 0.767 (0.573-0.962) (p = .035). EIS discriminates high-risk atherosclerotic features that portend plaque rupture in human coronary artery disease and may serve as a complementary modality for angiography-guided atherosclerosis evaluation.


Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Espectroscopia Dielétrica , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/patologia , Espectroscopia Dielétrica/métodos , Masculino , Feminino , Placa Aterosclerótica/patologia , Placa Aterosclerótica/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Vasos Coronários/patologia , Aterosclerose/patologia , Fatores de Risco
11.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337568

RESUMO

The time dynamics of charge accumulation at the electrochemical interface between graphene and water is important for supercapacitors, batteries, and chemical and biological sensors. By using impedance spectroscopy, we have found that measured capacitance (Cm) at this interface with the gate voltage Vgate ≈ 0.1 V follows approximate laws Cm~T1.2 and Cm~T0.11 (T is Vgate period) in frequency ranges (1000-50,000) Hz and (0.02-300) Hz, respectively. In the first range, this dependence demonstrates that the interfacial capacitance (Cint) is only partially charged during the charging period. The observed weaker frequency dependence of the measured capacitance (Cm) at frequencies below 300 Hz is primarily determined by the molecular relaxation of the double-layer capacitance (Cdl) and by the graphene quantum capacitance (Cq), and it also implies that Cint is mostly charged. We have also found a voltage dependence of Cm below 10 Hz, which is likely related to the voltage dependence of Cq. The observation of this effect only at low frequencies indicates that Cq relaxation time is much longer than is typical for electron processes, probably due to Dirac cone reconstruction from graphene electrons with increased effective mass as a result of their quasichemical bonding with interfacial molecular charges.


Assuntos
Capacitância Elétrica , Elétrons , Grafite , Água , Grafite/química , Água/química , Espectroscopia Dielétrica , Técnicas Eletroquímicas
12.
ChemSusChem ; : e202401488, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218801

RESUMO

The effect of NO2, an air pollutant, on the durability of polymer electrolyte membrane fuel cells (PEMFCs) and the affected electrochemical processes in the PEMFC following the contamination were investigated. In-situElectrochemical Impedance Spectroscopy (EIS) measurements were conducted on PEMFCs under different operating conditions of temperature and relative humidity (RH). NO2 was introduced to the cathode inlet flow. Analyses of the EIS measurements were performed using a genetic algorithm called ISGP (Impedance Spectroscopy by Genetic Programming) to obtain the distribution function of relaxation times (DFRT, a.k.a. DRT) models. Utilizing ISGP enabled us to differentiate the various phenomena in PEMFC and study how they are affected by NO2 contamination. Moreover, the experiments demonstrate the effectiveness of the mitigation method to flush the PEMFC and regenerate its performance after being contaminated, particularly at low operating temperatures. Energy-dispersive X-ray spectroscopy (EDS) technique is performed on the contaminated PEMFC to detect the presence of any nitrogen components in the FC's gas diffusion layer and the catalyst layer post the mitigation step. Cyclic Voltammetry is also performed on the contaminated cell to determine the effect of the contamination on the electrochemically active surface area of the cathode by evaluating the double-layer capacitance.

13.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275659

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, affecting younger women and women of minorities. The nomenclature "triple negative" is derived from the absence of the three most common breast cancer biomarkers: progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). It derives its name from testing negative for these three most common breast cancer biomarkers. Currently, TNBC is diagnosed at advanced stages, necessitating the need for a diagnostic tool or method to identify this malignancy at an early stage prior to metastasis. In this study, a novel electrochemical biosensor was developed, optimized, and evaluated for the detection of microRNA-10b (miRNA-10b), marking the first use of this biomarker for the early diagnosis of TNBC. The biosensor demonstrated the ability to detect concentrations as low as 10 pM. Furthermore, the biosensor was specific toward the target biomarker, distinguishing non-target miRNAs of similar size. The efficacy of the biosensor for TNBC early diagnosis was further validated using human serum samples.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Técnicas Biossensoriais/métodos , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores Tumorais/sangue , MicroRNAs/sangue , Feminino , Técnicas Eletroquímicas/métodos
14.
Talanta ; 281: 126878, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276570

RESUMO

This contribution describes the development of a simple, fast, cost-effective, and sensitive impedimetric immunosensor for quantifying bovine tuberculosis (TB) in bovine serum samples. The construction of the immunosensor involved immobilizing the purified protein derivative (PPD) of M. bovis onto a screen-printed electrode that was modified with gold nanoparticles (AuNPs) and a polypyrrole (pPy) film synthesized electrochemically. The immunosensor exhibited a linear range from 0.5 µg mL-1 to 100 µg mL-1 and achieved a limit of detection (LD) of 100 ng mL-1 for the detection of anti-M. bovis antibody. The recovery percentages obtained in bovine serum samples were excellent, ranging between 98 % and 103 %. This device presents several advantages over alternative methods for determining TB in bovine serum samples. These include direct, in situ measurement without the need for pre-treatment, utilization of small volumes, thus avoiding harmful solvents and expensive reagents, and portability. In addition, the immunosensor exhibits both physical and chemical stability, retaining effectiveness even after 30 days of modification. This allows simultaneous incubations and facilitates large-scale detection. Hence, this immunosensor presents itself as a promising diagnostic tool for detecting anti-M. bovis antibodies in bovine serum. It serves as a viable alternative to tuberculin and ELISA tests.

15.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275661

RESUMO

The accurate determination of the post-dilution concentration of biological buffers is essential for retaining the necessary properties and effectiveness of the buffer to maintain stable cellular environments and optimal conditions for biochemical reactions. In this work, we introduce a silicon-based impedance chip, which offers a rapid and reagent-free approach for monitoring the buffer concentrations after dilution with deionized (DI) water. The impedance of the impedance chip is measured, and the impedance data are modeled using a multiparameter equivalent circuit model. We investigated six aqueous biological buffers with pH values above and below the physiological pH for most tissues (pH ~ 7.2-7.4) following dilution with DI water by factors of 2.0, 10.0, 20.0, 100.0, and 200.0. The impedance measurement is then performed for the frequency spectrum of 40 Hz to 1 MHz. From the interpretation of the impedance measurement using the multiparameter equivalent circuit model, we report a buffer-sensitive equivalent circuit parameter RAu/Si of the silicon-based impedance chip showing a linear trend on a logarithmic scale with the buffer concentration change after dilution. The parameter RAu/Si is independent of the buffer pH and the added volume. The results demonstrate the efficacy of the silicon-based impedance chip as a versatile tool for precise post-dilution concentration determination of diverse biologically relevant buffers. The presented impedance chip offers rapid, accurate, and reliable monitoring, making it highly suitable for integration into automated liquid-handling systems to enhance the efficiency and precision of biological and chemical processes.


Assuntos
Impedância Elétrica , Concentração de Íons de Hidrogênio , Soluções Tampão , Silício/química , Soluções/química , Técnicas Biossensoriais/métodos , Água/química
16.
Polymers (Basel) ; 16(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274065

RESUMO

In this study, Zn-Al ferrite/polypyrrole (PPy) nanocomposites were synthesized and thoroughly characterized to explore their potential for microwave applications. X-ray diffraction analysis confirmed the presence of ZnO, AlFeO3, and Fe2O3 phases, with the crystal size decreasing from 31 nm to 19.6 nm as aluminum content increased. High-resolution transmission electron microscopy (HR-TEM) revealed a distinctive core-shell morphology, where the polypyrrole encapsulates the ZnAlxFe2-xO4 particles. Magnetic measurements showed that decreasing aluminum concentration led to a reduction in both saturation magnetization (Ms) from 75 emu/g to 36 emu/g and remanent magnetization (Mr) from 2.26 emu/g to 2.00 emu/g. Dielectric analysis indicated that both the real (ε') and imaginary (ε″) components of dielectric permittivity decreased with increasing frequency, particularly between 10 and 14 GHz. Furthermore, electrical modulus analysis highlighted the significant impact of aluminum doping on relaxation time (τIP), indicating the presence of interface polarization. Impedance spectroscopy results underscored the dominance of interface polarization at lower frequencies and the presence of strong conduction paths at higher frequencies. These combined magnetic and dielectric loss mechanisms suggest that the Zn-Al ferrite/polypyrrole nanocomposite is a promising candidate for advanced microwave absorption applications.

17.
Materials (Basel) ; 17(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39274579

RESUMO

The application possibilities of austenitic stainless steels in high friction, abrasion, and sliding wear conditions are limited by their inadequate hardness and tribological characteristics. In order to improve these properties, the thermochemical treatment of their surface by plasma nitriding is suitable. This article is focused on the corrosion resistance of conventionally plasma-nitrided AISI 304 stainless steel (530 °C, 24 h) in 0.05 M and 0.5 M sodium chloride solutions at room temperature (20 ± 3 °C), tested by potentiodynamic polarization and electrochemical impedance spectroscopy. Optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are used for nitrided layer characterization. The experiment results confirmed the plasma-nitrided layer formation of increased micro-hardness related to the presence of Cr2N chromium nitrides and higher surface roughness compared to the as-received state. Both of the performed independent electrochemical corrosion tests point to a significant reduction in corrosion resistance after the performed plasma nitriding, even in a solution with a very low chloride concentration (0.05 mol/L).

18.
Materials (Basel) ; 17(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39274588

RESUMO

In this study, single crystals of (K1-xNax)NbO3 are grown by the self-flux crystal growth method and their phase transitions are studied using a combination of Raman scattering and impedance spectroscopy. X-ray diffraction shows that single crystals have a perovskite structure with monoclinic symmetry. Single crystal X-ray diffraction shows that single crystals have monoclinic symmetry at room temperature with space group P1211. Electron probe microanalysis shows that single crystals are Na-rich and A-site deficient. Temperature-controlled Raman scattering shows that low temperature monoclinic-monoclinic, monoclinic-tetragonal and tetragonal-cubic phase transitions take place at -20 °C, 220 °C and 440 °C. Dielectric property measurements show that single crystals behave as a normal ferroelectric material. Relative or inverse relative permittivity peaks at ~-10 °C, ~230 °C and ~450 °C with hysteresis correspond to the low temperature monoclinic-monoclinic, monoclinic-tetragonal and tetragonal-cubic phase transitions, respectively, consistent with the Raman scattering results. A conduction mechanism with activation energies of about 0.5-0.7 eV was found in the paraelectric phase. Single crystals show polarization-electric field hysteresis loops of a lossy normal ferroelectric. The combination of Raman scattering and impedance spectroscopy is effective in determining the phase transition temperatures of (K1-xNax)NbO3.

19.
Materials (Basel) ; 17(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39274750

RESUMO

This investigation focuses on the impact of Sm3+ dopants on BaBi2Nb2O9 (BBN) ceramics. These ceramics were obtained using the traditional solid state reaction approach. Techniques like scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to explore the structure and morphology of the ceramics. The results showed that the chemical composition of the ceramic samples matched well with the initial ceramic powder stoichiometry. Increasing the amount of samarium resulted in a slight reduction in the average ceramic grain size. The ceramics exhibited a tetragonal structure categorized under the space group I4/mmm. The electrical properties were analyzed using complex impedance spectroscopy (SI) across various temperatures and frequencies, revealing that both grains and intergranular boundaries are significant in the material's conductivity.

20.
J Electr Bioimpedance ; 15(1): 116-124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39290908

RESUMO

Bioelectrical impedance techniques have been useful in various applications, including body composition analysis, impedance plethysmography, impedance cardiography, lung ventilation, perfusion, and tissue characterization. Electrical impedance methods have also been useful in characterizing different foods like meat, fruits, and beverages. However, the temperature of tissue samples can change their dielectric properties, affecting their impedance. This research investigated the effects of temperature on the impedance of various biological tissues over the frequency range of 10 Hz to 5 MHz. Freshly excised animal tissues (lamb, cow, chicken), fish, fruits, and plants were considered as biological samples. The samples were placed in a test cell and submerged in a water bath heated by a hot plate to vary the temperature. Impedance measurements were conducted using a bioimpedance spectrometer in 2 °C steps within the temperature range of 20 °C to 50 °C. Impedance values decreased with increased temperature across all measurement frequencies for all biological samples. Curve fitting indicated that impedance decreased linearly with temperature, with a mean correlation coefficient of 0.972 for all samples. For all biological samples under investigation, the relative impedance change ranged from -0.58% to -2.27% per °C, with a mean and standard deviation of (-1.42±0.34) %/°C. On average, animal samples exhibited a higher relative temperature coefficient of -1.56% per °C (±0.41) across the frequency range, compared to -1.31% per °C (±0.26) for fruit and vegetable samples. Additionally, the relative temperature coefficient values were generally higher at lower frequencies than at higher frequencies. The findings of this research can be valuable for studies or biomedical applications involving variable tissue temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA