RESUMO
Multi-ion-imprinted polymers (MIIPs) are materials with a wide range of applications mainly focused on environmental recovery, mining, technology, sensors, etc. MIIPs can incorporate ions such as heavy metals, transition metals, rare earth elements, radionuclides, and other types of ions. The chemical structures of MIIPs can be designed for different purposes and with certain morphologies, such as gels, crystals, or powders, and the surface area and porosity are also considered. All these properties provide the material with several desirable characteristics, like high selectivity, high specificity, adequate efficiency, good stability, the possibility of reusability, and strategy technology adaptation. In this review, we show the multitude of challenges of multi-ion imprinted polymer chemical synthesis based on the different and interesting methods reported previously.
RESUMO
Magnetic particle spray mass spectrometry (MPS-MS), an innovative ambient ionization technique proposed by our research group, was employed to determine beta-blockers in human plasma samples. A dispersive solid phase extraction of atenolol, metoprolol, labetalol, propranolol, nadolol, and pindolol was carried out using magnetic molecularly imprinted polymer (M-MIP) particles that were attached to the tip of a metal probe, which was placed in the mass spectrometer inlet. A solvent (1% formic acid in methanol) was dispensed on the particles, and the Taylor cone was formed around them (in high voltage). The analytes were desorbed/ionized and determined by a triple quadrupole mass spectrometer. M-MIP was synthesized with oxprenolol as a pseudo-template, demonstrating good selectivity to beta-blockers compared with no-analog molecules, with an adsorption process occurring in monolayers, according to isotherm studies. Kinetic experiments indicated chemisorption as the predominant M-MIP/analyte interaction. The analytical curves were linear (R2 > 0.98), and the limit of quantification was 3 µg L-1 for all the analytes. Limits of detection ranged from 0.64 to 2.41 µg L-1. Precisions (relative standard deviation) and accuracies (relative error) ranged from 3.95 to 21.20% and -17.05 to 18.93%, respectively. MPS-MS proved to be a simple, sensitive, and advantageous technique compared with conventional approaches. The analyses were fast, requiring no chromatographic separation and without ionic suppression. The method is aligned with green chemistry principles, requiring minimal sample, solvent, and sorbent amounts. MPS-MS successfully integrates sample preparation and ambient ionization mass spectrometry and holds great potential for application with other sorbents, samples, and analytes.
Assuntos
Antagonistas Adrenérgicos beta , Antagonistas Adrenérgicos beta/sangue , Antagonistas Adrenérgicos beta/química , Humanos , Limite de Detecção , Polímeros Molecularmente Impressos/química , Extração em Fase Sólida/métodos , Espectrometria de Massas/métodos , AdsorçãoRESUMO
Biomarkers play a pivotal role in the screening, diagnosis, prevention, and post-treatment follow-up of various malignant tumors. In certain instances, identifying these markers necessitates prior treatment due to the complex nature of the tumor microenvironment. Consequently, advancing techniques that exhibit selectivity, specificity, and enable streamlined analysis hold significant importance. Molecularly imprinted polymers (MIPs) are considered synthetic antibodies because they possess the property of molecular recognition with high selectivity and sensitivity. In recent years, there has been a notable surge in the investigation of these materials, primarily driven by their remarkable adaptability in terms of tailoring them for specific target molecules and integrating them into diverse analytical technologies. This review presents a comprehensive analysis of molecular imprinting techniques, highlighting their application in developing sensors and analytical methods for cancer detection, diagnosis, and monitoring. Therefore, MIPs offer great potential in oncology and show promise for improving the accuracy of cancer screening and diagnosis procedures.
RESUMO
CONTEXT: Molecularly imprinted polymers (MIPs) have promising applications as synthetic antibodies for protein and peptide recognition. A critical aspect of MIP design is the selection of functional monomers and their adequate proportions to achieve materials with high recognition capacity toward their targets. To contribute to this goal, we calibrated a molecular dynamics protocol to reproduce the experimental trends in peptide recognition of 13 pre-polymerization mixtures reported in the literature for the peptide toxin melittin. METHODS: Three simulation conditions were tested for each mixture by changing the box size and the number of monomers and cross-linkers surrounding the template in a solvent-explicit environment. Fully atomistic MD simulations of 350 ns were conducted with the AMBER20 software, with ff19SB parameters for the peptide, gaff2 parameters for the monomers and cross-linkers, and the OPC water model. Template-monomer interaction energies under the LIE approach showed significant differences between high-affinity and low-affinity mixtures. Simulation systems containing 100 monomers plus cross-linkers in a cubic box of 90 Å3 successfully ranked the mixtures according to their experimental performance. Systems with higher monomer densities resulted in non-specific intermolecular contacts that could not account for the experimental trends in melittin recognition. The mixture with the best recognition capacity showed preferential binding to the 13-26-α-helix, suggesting a relevant role for this segment in melittin imprinting and recognition. Our findings provide insightful information to assist the computational design of molecularly imprinted materials with a validated protocol that can be easily extended to other templates.
Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Peptídeos/química , Meliteno/química , Polimerização , Polímeros Molecularmente Impressos/química , Impressão Molecular/métodosRESUMO
The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.
Assuntos
Burkholderia , Técnicas Eletroquímicas , Eletrodos , Grafite , Hidroxibutiratos , Polímeros Molecularmente Impressos , Poliésteres , Grafite/química , Poliésteres/química , Hidroxibutiratos/química , Burkholderia/química , Burkholderia/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Polímeros Molecularmente Impressos/química , Limite de Detecção , Oxirredução , Poli-HidroxibutiratosRESUMO
The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization. The selectivity was evaluated against molecules belonging to other drug classes, such as fluoroquinolones, nonacid nonopioids, benzothiadiazine, alpha amino acids, and nitroimidazoles. Under optimized conditions, the Si-FMIP-based sensor exhibited a working range of 1-15 µM, with a limit of detection (LOD) of 0.7 µM, repeatability of 6.4% (n = 10), and suitable recovery values at three concentration levels (98.5% (1.5 µM), 99.9% (3.5 µM), and 99.2% (7.5 µM)) for wastewater samples. The sensor provided a working range of 0.5-15 µM for synthetic urine samples, with an LOD of 0.4 µM and a repeatability of 7.4% (n = 10) and recovery values of 93.7%, 92.9%, and 98.0% for 1.0 µM, 3.5 µM, and 10 µM, respectively. In conclusion, our single-vessel synthesis approach for Si-FMIPs proved to be highly effective for the selective determination of captopril in wastewater and synthetic urine samples.
Assuntos
Captopril , Limite de Detecção , Nanopartículas , Águas Residuárias , Captopril/urina , Captopril/análise , Captopril/química , Águas Residuárias/análise , Nanopartículas/química , Polímeros Molecularmente Impressos/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/urina , Dióxido de Silício/química , Impressão Molecular , HumanosRESUMO
This paper reports the successful development and application of an efficient method for quantifying Pb2+ in aqueous samples using a smartphone-based colorimetric device with an imprinted polymer (IIP). The IIP was synthesized by modifying the previous study; using rhodizonate, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N'-methylenebisacrylamide (MBA), and potassium persulfate (KPS). The polymers were then characterized. An absorption study was performed to determine the optimal conditions for the smartphone-based colorimetric device processing. The device consists of a black box (10 × 10 × 10 cm), which was designed to ensure repeatability of the image acquisition. The methodology involved the use of a smartphone camera to capture images of IIP previously exposed at Pb2+ solutions with various concentrations, and color channel values were calculated (RGB, YMK HSVI). PLS multivariate regression was performed, and the optimum working range (0-10 mg L-1) was determined using seven principal components with a detection limit (LOD) of 0.215 mg L-1 and R2 = 0.998. The applicability of a colorimetric sensor in real samples showed a coefficient of variation (% RSD) of less than 9%, and inductively coupled plasma mass spectrometry (ICP-MS) was applied as the reference method. These results confirmed that the quantitation smartphone-based colorimetric sensor is a suitable analytical tool for reliable on-site Pb2+ monitoring.
RESUMO
Agricultural products are vitally important for sustaining life on earth and their production has notably grown over the years worldwide in general and in Brazil particularly. Elevating agricultural practices consequently leads to a proportionate increase in the usage of pesticides that are crucially important for enhanced crop yield and protection. These compounds have been employed excessively in alarming concentrations, causing the contamination of soil, water, and air. Additionally, they pose serious threats to human health. The current study introduces an innovative tool for producing appropriate materials coupled with an electrochemical sensor designed to measure carbendazim levels. The sensor is developed using a molecularly imprinted polymer (MIP) mounted on a glassy carbon electrode. This electrode is equipped with multi-walled carbon nanotubes (MWCNTs) for improved performance. The combined system demonstrates promising potential for accurately quantifying carbendazim. The morphological characteristics of the synthesized materials were investigated using field emission scanning electron microscopy (FESEM) and the Fourier-transform infrared (FTIR) technique. The analytical curve was drawn using the electrochemical method in the range of 2 to 20 ppm while for HPLC 2-12 ppm; the results are presented as the maximum adsorption capacity of the MIP (82.4%) when compared with NIP (41%) using the HPLC method. The analysis conducted using differential pulse voltammetry (DPV) yielded a limit of detection (LOD) of 1.0 ppm and a repeatability of 5.08% (n = 10). The results obtained from the analysis of selectivity demonstrated that the proposed electrochemical sensor is remarkably efficient for the quantitative assessment of carbendazim, even in the presence of another interferent. The sensor was successfully tested for river water samples for carbendazim detection, and recovery rates ranging from 94 to 101% were obtained for HPLC and 94 to 104% for the electrochemical method. The results obtained show that the proposed electrochemical technique is viable for the application and quantitative determination of carbendazim in any medium.
Assuntos
Benzimidazóis , Carbamatos , Técnicas Eletroquímicas , Nanotubos de Carbono , Praguicidas , Carbamatos/análise , Benzimidazóis/análise , Praguicidas/análise , Nanotubos de Carbono/química , Técnicas Biossensoriais , Eletrodos , Materiais Biomiméticos/química , Limite de DetecçãoRESUMO
An ultrafast, efficient, and eco-friendly method combining magnetic solid phase extraction and capillary electrophoresis with diode array detection have been developed to determine ractopamine residues in food samples. A restricted access material based on magnetic and mesoporous molecularly imprinted polymer has been properly synthesized and characterized, demonstrating excellent selectivity and high adsorbent capacity. Short-end injection capillary electrophoresis method was optimized: 75 mM triethylamine pH 7 as BGE, -20 kV, 50 mbar by hydrodynamic injection during 8 s, and capillary temperature at 25 °C; reaching ultrafast ractopamine analysis (â¼0.6 min) with good peak asymmetry, and free from interfering and/or baseline noise. After sample preparation optimization, the conditions were: 1000 µL of sample at pH 6, 20 mg of adsorbent, stirring time of 120 s, 250 µL of ultrapure water as washing solvent, 1000 µL of methanol: acetic acid (7: 3, v/v) as eluent, and the adsorbent can be reused four times. In these conditions, the analytical method showed recoveries around to 100 %, linearity ranged from 9.74 to 974.0 µg kg-1, correlation coefficient (r) ≥ 0,99 in addition to adequate precision, accuracy, and robustness. After proper validation, the method was successfully applied in the analysis ractopamine residues in bovine milk and bovine and porcine muscle.
Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Fenetilaminas , Animais , Suínos , Extração em Fase Sólida/métodos , Eletroforese Capilar/métodos , Fenômenos Magnéticos , Impressão Molecular/métodos , Cromatografia Líquida de Alta Pressão/métodosRESUMO
This study proposes a new alternative for template removal from molecularly imprinted polymers by heat activated persulfate. It is known that trace amounts of template molecule remains in the polymer network after extraction by current methodologies leading to bleeding and incomplete removal of template which could compromise final determination of target analytes especially in trace analysis. A previously developed molecularly imprinted polymer specially designed for Coenzyme Q10 (CoQ10) extraction was employed as a model to test this template elimination approach. This polymer is based on methacrylic acid and ethylene glycol dimethylacrylate as monomers and Coenzyme Q0 as template. This coenzyme has the same quinone group as the CoQ10. Selectivity was analyzed comparing the recovery of CoQ10 and ubichromenol, a CoQ10 related substance. Chemical degradation using heat-activated persulfate allows the elimination of the template molecule with a high level of efficiency, being a simple and ecological methodology, yielding a polymer that exhibits comparable selectivity and imprinting effect with respect to traditional extraction methods.
Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Ubiquinona , Temperatura Alta , Polímeros/química , Impressão Molecular/métodosRESUMO
BACKGROUND: Determining metals in complex biological samples, such as milk, typically involves dry or wet decomposition. However, these techniques have limitations, including low selectivity, risk of contamination, and the use of large reagent volumes. To solve these problems, solid-phase extraction (SPE) using multifunctional sorbents has been extensively explored. In this context, this work proposed synthesizing a new restricted double access ionic imprinted polymer (RAIIP-BSA), for online SPE and determination of Cu2+ from untreated milk samples via flow injection analysis and flame atomic absorption spectrometry (FIA-FASS). RESULTS: Firstly, the polymer was obtained by bulk polymerization using Cu2+ as a template, 4-vinyl pyridine as a functional monomer, and glycidyl methacrylate as a hydrophilic comonomer. Subsequently, it was covered with bovine serum albumin, creating the restricted double access barrier. The obtained material could exclude 97 % of the proteins from milk samples. RAIIP-BSA was chemically and physically characterized. The main extraction variables were optimized via multivariate optimization. The method showed good figures of merit, such as linearity ranging from 0.05 to 1.0 mg L-1, LoD and LoQ of 0.03 and 0.05 mg L-1, intra- and interday precision ranging from 0.73 to 4.14 % and 0.16-3.68 %, and an intra- and interday accuracy ranging from 97.0 to 115.0 % and 103.0-119.0 %, respectively. SIGNIFICANCE: The developed method demonstrates the effective extraction of Cu2+ from untreated milk samples, exhibiting selectivity, high extraction capacity, prolonged sorbent (RAIIP-BSA) durability, simplicity, and swift operation. This method holds promise as an alternative to conventional metal analysis approaches in complex matrices.
Assuntos
Cobre , Impressão Molecular , Animais , Cobre/química , Leite/química , Impressão Molecular/métodos , Polímeros/química , Extração em Fase Sólida/métodosRESUMO
Rhamnolipids (RHLs) are promising biosurfactants with important applications in several industrial segments. These compounds are produced through biotechnological processes using the bacteria Pseudomonas Aeruginosa. The main methods of analyzing this compound are based on chromatographic techniques. In this study, an electrochemical sensor based on a platform modified with reduced graphene oxide, manganese nanoparticles covered with a molecularly imprinted poly (L-Ser) film was used as an alternative method to quantify RHL through its hydrolysis product, acid 3-hydroxydecanoic acid (3-HDA). The proposed sensor was characterized microscopically, spectroscopically and electrochemically. Under optimized experimental conditions, an analytical curve was obtained in the linear concentration range from 2.0 × 10-12 mol L-1 to 1.0 × 10-10 mol L-1. The values estimated of LOD, LOQ and AS were 8.3 × 10-13 mol L-1, 2.7 × 10-12 mol L-1and 1.3 × 107 A L mol-1, respectively. GCE/rGO/MnNPs/L-Ser@MIP exhibits excellent selectivity, repeatability, and high stability for the detection of 3-HDA. Furthermore, the developed method was successfully applied to the recognition of the hydrolysis product (3-HDA) of RHLs obtained from guava agro-waste. Statistical comparison between GCE/rGO/MnNPs/L-Ser@MIP and HPLC method confirms the accuracy of the electrochemical sensor within a 95% confidence interval.
Assuntos
Glicolipídeos , Grafite , Impressão Molecular , Nanopartículas , Manganês , Polímeros/química , Limite de Detecção , Grafite/química , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , EletrodosRESUMO
Curcumin is a compound of great importance in the food industry due to its biological and pharmacological properties, which include being an antioxidant, anti-inflammatory, antibacterial, antiviral, and anticarcinogenic. This paper proposes the synthesis of an electrochemical sensor based on molecularly imprinted polymers (MIPs) and MWCNT by drop casting deposited on a glassy carbon electrode (GCE) for the selective quantification of curcumin in food samples. The synthesized compounds are characterized by Fourier transform infrared (IR), Brunauer-Emmett-Teller (BET), and electrochemical techniques such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The optimal conditions for further experiments were determined by selecting these parameters. We examined three food products, commercial capsules, turmeric rhizomes, and commercial turmeric powder, employing both electrochemical and HPLC methods for the analysis. The electrochemical method revealed a limit of detection (LOD) value of 0.1365 µmol L-1, compared with the HPLC analysis, which gave a value of 3.55 µmol L-1. Furthermore, the MIP material demonstrated superior selectivity for the analyte compared to potential interferents. The recovery percentage, determined using the HPLC method, fell within the range of 87.5% to 102.6.
RESUMO
The aim of this study was the molecular imprinting polymers (MIPs) assessment as a controlled release system of ciprofloxacin. The MIPs synthesis was performed by three different methods: emulsion, bulk, and co-precipitation. Lactic acid (LA) and methacrylic acid (MA) were used as functional monomers and ethylene glycol dimethacrylate as crosslinker. Also, nonimprinted polymers (NIPs) were synthesized. MIPs and NIPs were characterized by scanning electron microscopy, Fourier Transform Infrared Reflection, specific surface area, pore size, and release kinetics. Their efficiency against Staphylococcus aureus and Escherichia coli, and their cytotoxicity in dermal fibroblast cells were proven. Results show that MIPs are mesoporous materials with a pore size between 10 and 20 nm. A higher adsorption with the co-precipitation MIP with MA as a monomer was found. The release kinetics proved that a non-Fickian process occurred and that the co-precipitation MIP with LA presented the highest release rate (90.51 mg/L) in 8 h. The minimum inhibitory concentration was found between 0.031 and 0.016 mg/L for Staphylococcus aureus and between 0.004 and 0.031 mg/L for the Escherichia coli. No cytotoxicity in cellular cultures was found; also, cellular growth was favored. This study demonstrated that MIPs present promising properties for drug administration and their application in clinical practice.
Assuntos
Metacrilatos , Impressão Molecular , Polímeros Molecularmente Impressos , Preparações de Ação Retardada , Ciprofloxacina/farmacologia , Polímeros , Impressão Molecular/métodos , Escherichia coli , AdsorçãoRESUMO
This study describes methodologies for extracting and isolating bergenin, a C-glucoside of 4-O-methylgallic acid found in some plants and it presents various in vitro and in vivo biological activities. Bergenin was previously obtained from the Pelthophorum dubim (Fabaceae) roots with a good yield. Conventional chromatographic procedures of the CHCl3 soluble fraction of the MeOH extract gave 3.62% of this glucoside. An HPLC/DAD method was also developed and validated for bergenin and its precursor, gallic acid quantifications. Microwave extractions with different solvents were tested to optimize the extraction of bergenin, varying the temperature and time. MAE (Microwave Assisted Extraction) was more efficient than conventional extraction procedures, giving a higher yield of bergenin per root mass (0.45% vs. 0.0839%). Molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) based on bergenin as the template molecule, methacrylic acid, and ethylene glycol dimethacrylate were synthesized and characterized by FTIR and SEM (Scanning Electron Microscopy). Bergenin adsorption experiments using MIP and NIP followed by molecular imprinted solid phase extraction (MISPE) showed that MIP had a higher selectivity for bergenin than NIP. A dendrochronological study using the proposed method for detection and quantification of gallic acid and bergenin in five P. dubium growth rings of a 31-year-old heartwood and in the phelloderm and barks indicated that bergenin was more abundant in the 11-14th growth rings of the heartwood and decreased from the heartwood to the barks.
RESUMO
In the present study, a magnetic ion-imprinted polymer based on n-allylthiourea in the presence of 1-(2-pyridylazo)-2-naphthol (MIIP-PAN) was synthesized, characterized, and applied in the preconcentration of nickel ions by dispersive magnetic solid phase extraction (DMSPE) with FAAS detection. For comparison, non-imprinted polymer (MNIP-PAN) and imprinted polymer without PAN were synthesized. The characterization of the polymers was performed by FT-IR, DRX, TEM, TGA, VSM, and BET. Selectivity studies were performed comparing the competitive adsorption of Ni2+ with other cations on MIIP-PAN and MNIP-PAN, achieving higher relative selectivity coefficients for MIIP-PAN than for MNIP-PAN and NIP. Under optimized conditions, the method provided a preconcentration factor of 76.70, detection limit of 0.25 µg/L and intra-day (2.06 - 2.33 %) and inter-day (1.82 - 4.90 %) precision. The developed method was applied to samples of water, teas, and chocolate powder, and its precision was evaluated through tests of recovery and analysis of certified materials.
Assuntos
Impressão Molecular , Níquel , Propanolaminas , Níquel/análise , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros , Adsorção , Fenômenos Magnéticos , Extração em Fase Sólida/métodosRESUMO
Small-molecule analyte detection is key for improving quality of life, particularly in health monitoring through the early detection of diseases. However, detecting specific markers in complex multicomponent media using devices compatible with point-of-care (PoC) technologies is still a major challenge. Here, we introduce a novel approach that combines molecularly imprinted polymers (MIPs), electrolyte-gated transistors (EGTs) based on 2D materials, and machine learning (ML) to detect hippuric acid (HA) in artificial urine, being a critical marker for toluene intoxication, parasitic infections, and kidney and bowel inflammation. Reduced graphene oxide (rGO) was used as the sensory material and molecularly imprinted polymer (MIP) as supramolecular receptors. Employing supervised ML techniques based on symbolic regression and compressive sensing enabled us to comprehensively analyze the EGT transfer curves, eliminating the need for arbitrary signal selection and allowing a multivariate analysis during HA detection. The resulting device displayed simultaneously low operating voltages (<0.5 V), rapid response times (≤10 s), operation across a wide range of HA concentrations (from 0.05 to 200 nmol L-1), and a low limit of detection (LoD) of 39 pmol L-1. Thanks to the ML multivariate analysis, we achieved a 2.5-fold increase in the device sensitivity (1.007 µA/nmol L-1) with respect to the human data analysis (0.388 µA/nmol L-1). Our method represents a major advance in PoC technologies, by enabling the accurate determination of small-molecule markers in complex media via the combination of ML analysis, supramolecular analyte recognition, and electrolytic transistors.
RESUMO
BACKGROUND: One of the primary objectives in green analytical practices is the seamless integration of extraction and separation steps, resulting in the augmentation of both analytical throughput and method performance. Consequently, the exploration of prospective sorbent materials has drawn significant attention in the scientific community, particularly concerning the potential for online procedures. Employing the optimal sorbent material within an automated analytical approach holds the promise of elevating the precision of the analytical evaluation. Molecularly imprinted polymers (MIPs) excel in specific analyte interaction within complex matrices. However, MIPs' full potential was not widely exploring especially for online analytical methodologies. RESULTS: Here is presented a comprehensive overview of the current applications of MIPs as sorbent materials within integrated and automated separation methodologies applied to diverse matrices including biological, food, and environmental samples. Notably, their primary advantage, as evidenced in the literature, lies in their exceptional selectivity for the target analyte discussed according to the adopted synthesis protocol. Furthermore, the literature discussed here illustrates the versatility of MIPs in terms of modification with one or more phases which are so-called hybrid materials, such as molecularly imprinted monoliths (MIM), the molecularly imprinted ionic liquid polymer (IL-MIP), and restricted access to molecularly imprinted polymer (RAMIP). The reported advantages enhance their applicability in integrated and automated separation procedures, especially to the column switching methods, across a broader spectrum of applications. SIGNIFICANCE: This revision aims to demonstrate the MIP's potential as a sorbent phase in integrated and automated methods, this comprehensive overview of MIP polymers in integrated and automated separation methodologies can be used as a valuable guide, inspiring new research on developing novel horizons for MIP applications to have their potential emphasized in analytical science and enhanced to the great analytical methods achievement.
RESUMO
CONTEXT: Levobunolol is a ß-blocker drug prescribed for the control and prevention of cardiovascular events, such as individuals with cardiac arrhythmia or a history of myocardial infarction. Creating a levobunolol-specific molecularly imprinted polymer (MIP) allows for enhanced selectivity, efficient sample preparation, controlled drug delivery, and improved sensing and detection capabilities. In this sense, the aim of this study was to obtain through DFT calculations the synthesis protocol of a MIP for levobunolol testing different functional monomers (FMs), solvents, and cross-linker agents (CLAs). The analysis of structural and energetic data led to the identification of the optimal MIP synthesis parameters, which involves the use of (trifluoromethyl)-arylic acid (TFMAA) as the functional monomer, toluene and chloroform as the solvents, and pentaerythritol triacrylate (PETRA) as the cross-linking agent. This rational design offers valuable insights for experimentalists seeking to efficiently synthesize a MIP for this important ß-blocker drug. METHODS: DFT calculations were conducted using the B97D functional along with the Pople's split valence 6-31G(d,p) basis set, which includes polarization functions on all atoms (B97D/6-31G(d,p)).
Assuntos
Levobunolol , Impressão Molecular , Humanos , Polímeros/química , Solventes/química , Sistemas de Liberação de Medicamentos , Polímeros Molecularmente Impressos , Modelos Teóricos , Impressão Molecular/métodosRESUMO
Background and objective: Imprinted genes are important for the offspring development. To assess the relationship between obesity-related H19DMR methylation and H19 and IGF2 gene expression and offspring growth and body composition. Methods: Thirty-nine overweight/obese and 25 normal weight pregnant women were selected from the "Araraquara Cohort Study" according to their pre-pregnancy BMI. Fetal growth and body composition and newborn growth were assessed, respectively, by ultrasound and anthropometry. The methylation of H19DMR in maternal blood, cord blood, maternal decidua and placental villi tissues was evaluated by methylation-sensitive restriction endonuclease qPCR, and H19 and IGF2 expression by relative real-time PCR quantification. Multiple linear regression models explored the associations of DNA methylation and gene expression with maternal, fetal, and newborn parameters. Results: H19DMR was less methylated in maternal blood of the overweight/obese group. There were associations of H19DMR methylation in cord blood with centiles of fetal biparietal diameter (BPD) and abdominal subcutaneous fat thickness and newborn head circumference (HC); H19DMR methylation in maternal decidua with fetal occipitofrontal diameter (OFD), HC, and length; H19DMR methylation in placental villi with fetal OFD, HC and abdominal subcutaneous fat thickness and with newborn HC. H19 expression in maternal decidua was associated with fetal BPD and femur length centiles and in placental villi with fetal OFD and subcutaneous arm fat. IGF2 expression in maternal decidua was associated with fetal BPD and in placental villi with fetal OFD. Conclusion: To our knowledge, this is the first study to demonstrate associations of imprinted genes variations at the maternal-fetal interface of the placenta and in cord blood with fetal body composition, supporting the involvement of epigenetic mechanisms in offspring growth and body composition.