Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(8): e202316733, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38170453

RESUMO

Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.

2.
Adv Mater ; 35(46): e2306147, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734861

RESUMO

In the III-V family of colloidal quantum dot (CQD) semiconductors, InSb promises access to a wider range of infrared wavelengths compared to many light-sensing material candidates. However, achieving the necessary size, size-dispersity, and optical properties has been challenging. Here the synthetic challenges associated with InSb CQDs are investigated and it is found that uncontrolled reduction of the antimony precursor hampers the controlled growth of CQDs. To overcome this, a synthetic strategy that combines nonpyrophoric precursors with zinc halide additives is developed. The experimental and computational studies show that zinc halide additives decelerate the reduction of the antimony precursor, facilitating the growth of more uniformly sized CQDs. It is also found that the halide choice provides additional control over the strength of this effect. The resultant CQDs exhibit well-defined excitonic transitions in spectral range of 1.26-0.98 eV, along with strong photoluminescence. By implementing a postsynthesis ligand exchange, colloidally stable inks enabling the fabrication of high-quality CQD films are achieved. The first demonstration of InSb CQD photodetectors is presented reaching 75% external quantum efficiency (QE) at 1200 nm, to the knowledge the highest short-wave infrared (SWIR) QE reported among heavy-metal-free infrared CQD-based devices.

3.
Nanotechnology ; 32(27)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33626514

RESUMO

Narrow bandgap semiconductors like indium antimonide (InSb) are very suitable for high-performance room temperature infrared photodetectors, but the fragile nature of the wafer materials hinders their application as flexible/wearable devices. Here, we present a method to fabricate a photodetector device of assembled crystalline InSb nanowire (NW) arrays on a flexible substrate that balances high performance and flexibility, facilitating its application in wearable devices. The InSb NWs were synthesized by means of a vapor-liquid-solid technique, with gold nanoclusters as seeding particles. The morphological and crystal properties were investigated using scanning electron microscopy, x-ray diffraction and high-resolution transmission electron microscopy, which revealed the unique spike shape and high crystallinity with (111) and (220) planes of InSb NWs. The flexible infrared photodetector devices were fabricated by transferring the NWs onto transparent and stretchable polydimethylsiloxane substrate with pre-deposited gold electrodes. Current versus time measurement of the photodetector devices under light showed photoresponsivity and sensitivity to mid-infrared at bias as low as 0.1 V while attached to curved surfaces (suitable for skin implants). A high-performance NW device yielded efficient rise and decay times down to 1 s and short time lag for infrared detection. Based on dark current, calculated specific detectivity of the flexible photodetector was 1.4 × 1012Jones. The performance and durability render such devices promising for use as wearable infrared photodetectors.

4.
ACS Nano ; 14(10): 13146-13160, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32915541

RESUMO

Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid-base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence.

5.
Nano Lett ; 17(12): 7183-7190, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29115841

RESUMO

Indium antimonide (InSb) enables diverse applications in electronics and optoelectronics. However, to date, there has not been a report on the synthesis of InSb nanowires (NWs) via a solution-phase strategy. Here, we demonstrate for the first time the preparation of high-quality InSb NWs with twinning superlattices from a mild solution-phase synthetic environment from the reaction of commercial triphenylantimony with tris(2,4-pentanedionato)-indium(III). This reaction occurs at low temperatures from 165 to 195 °C (optimized at ∼180 °C), which is the lowest temperature reported for the growth of InSb NWs to date. Investigations reveal that the InSb NWs are grown via a solution-liquid-solid (SLS) mechanism due to the catalysis of the initially formed indium droplets in the mild solution-phase reaction system. The twinning superlattices in the InSb NWs are determined with a pseudoperiodic length of ∼42 monolayers, which result from an oscillating self-catalytic growth related to the periodical fluctuation between reduction rate of In and Sb sources in the route. The optical pump-terahertz probe spectroscopic measurement suggests that the InSb NWs have potential for applications in high-speed optoelectronic nanodevices.

6.
Nanomaterials (Basel) ; 7(8)2017 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-28758955

RESUMO

Nanoporous structures have a great potential for application in electronic and photonic materials, including field effect transistors, photonic crystals, and quantum dots. The control of size and shape is important for such applications. In this study, nanoporous structure formation on the indium antimonide (InSb) surface was investigated using controlled focused ion beam irradiation. Upon increasing the ion dose, the structures grew larger, and the shapes changed from voids to pillars. The structures also became larger when the ion flux (high-dose) and accelerating voltage were increased. The structure grew obliquely on the substrate by following the ion beam irradiation of 45°. The shapes of the structures formed by superimposed ion beam irradiation were affected by primary irradiation conditions. The nanostructural features on the InSb surface were easy to control by changing the ion beam conditions.

7.
Nano Lett ; 17(11): 6511-6515, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28665621

RESUMO

Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in most of the contact pairs of the epitaxial InSb nanowire networks: the hallmark of ballistic transport behavior.

8.
Nano Lett ; 17(2): 721-727, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28173706

RESUMO

Majorana zero modes (MZMs), prime candidates for topological quantum bits, are detected as zero bias conductance peaks (ZBPs) in tunneling spectroscopy measurements. Implementation of a narrow and high tunnel barrier in the next generation of Majorana devices can help to achieve the theoretically predicted quantized height of the ZBP. We propose a material-oriented approach to engineer a sharp and narrow tunnel barrier by synthesizing a thin axial segment of GaxIn1-xSb within an InSb nanowire. By varying the precursor molar fraction and the growth time, we accurately control the composition and the length of the barriers. The height and the width of the GaxIn1-xSb tunnel barrier are extracted from the Wentzel-Kramers-Brillouin (WKB) fits to the experimental I-V traces.

9.
Nanoscale Res Lett ; 11(1): 164, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27009531

RESUMO

This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA