Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.694
Filtrar
1.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969433

RESUMO

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Assuntos
Técnicas Eletroquímicas , Ácidos Indolacéticos , Folhas de Planta , Ácido Salicílico , Solanum lycopersicum , Aço Inoxidável , Solanum lycopersicum/química , Ácidos Indolacéticos/análise , Ácido Salicílico/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Aço Inoxidável/química , Técnicas Eletroquímicas/instrumentação , Agulhas , Doenças das Plantas/microbiologia
2.
Arch Pharm (Weinheim) ; : e2400282, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969965

RESUMO

A series of new indole-pyrazole hybrids 8a-m were synthesized through the palladium-catalyzed ligandless Heck coupling reaction from easily accessible unsubstituted, methoxy- or fluoro-substituted 4-ethenyl-1H-pyrazoles and 5-bromo-3H-indoles. These compounds exerted cytotoxicity to melanoma G361 cells when irradiated with blue light (414 nm) and no cytotoxicity in the dark at concentrations up to 10 µM, prompting us to explore their photodynamic effects. The photodynamic properties of the example compound 8d were further investigated in breast cancer MCF-7 cells. Evaluation revealed comparable anticancer activities of 8d in both breast and melanoma cancer cell lines within the submicromolar range. The treatment induced a massive generation of reactive oxygen species, leading to different types of cell death depending on the compound concentration and the irradiation intensity.

3.
Parasit Vectors ; 17(1): 284, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956725

RESUMO

BACKGROUND: Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS: Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS: Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION: Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos Knockout , Toxoplasma , Animais , Camundongos , Toxoplasma/imunologia , Lesões Encefálicas/imunologia , Probióticos/administração & dosagem , Encéfalo/imunologia , Lactobacillus , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Toxoplasmose/imunologia , RNA Ribossômico 16S/genética , Masculino , Intestinos/imunologia
4.
Int J Biol Macromol ; : 133489, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964679

RESUMO

Indole-based bis-acylhydrazone compounds can inhibit the activity of α-glucosidase and control the concentration of blood glucose. In this paper, the characteristics of three indole-based bis-acylhydrazone compounds with different inhibitory activities of α-glucosidase as well as the interaction with α-glucosidase were studied by experiments and computational simulation techniques. Enzyme kinetic and spectral experiments showed that the indole-based bis-acylhydrazone compounds were able to inhibit enzyme activity through mixed inhibition dominated by competitive inhibition, and during the binding reaction, indole-based bis-acylhydrazone compounds can quench the intrinsic fluorescence of α-glucosidase through static quenching and an aggregation of the indole-based bis-acylhydrazone with α-glucosidase produces a stable complex with a molar ratio of 1:1, and the combination of indole-based bis-acylhydrazone compounds could lead to slight change in the conformation of α-glucosidase. The theoretical simulation demonstrated that the stability of the complex systems was positively correlated with the inhibitory activity of indole-based bis-acylhydrazone compounds, and the indole-based bis-acylhydrazone compounds occupied the active site in the multi-ligand system, resulting in a significant decrease in the binding ability of starch to active amino acids. These results suggested that indole-based bis-acylhydrazone compound was expected to be a new type of α-glucosidase inhibitor.

5.
Arch Microbiol ; 206(8): 340, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960981

RESUMO

Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.


Assuntos
Endófitos , Fungos , Alcaloides de Triptamina e Secologanina , Endófitos/metabolismo , Endófitos/genética , Fungos/metabolismo , Fungos/genética , Alcaloides de Triptamina e Secologanina/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Vias Biossintéticas , Plantas Medicinais/microbiologia , Plantas Medicinais/metabolismo , Produtos Biológicos/metabolismo
6.
Free Radic Res ; : 1-13, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962912

RESUMO

This study evaluated the effects of topically applied hydrogels (HG) containing nanoencapsulated indol-3-carbinol (I3C) and its free form in a rat model of skin wounds. Formulations were topically applied twice a day for five days to the wounds. On days 1, 3, and 6, the wound area was measured to verify the % of regression. On the sixth day, the animals were euthanized for the analysis of the inflammatory and oxidative profile in wounds. The nanocapsules (NC) exhibited physicochemical characteristics compatible with this kind of suspension. After five hours of exposure to ultraviolet C, more than 78% of I3C content in the suspensions was still observed. The NC-I3C did not modify the physicochemical characteristics of HG when compared to the HG base. In the in vivo study, an increase in the size of the wound was observed on the 3rd experimental day, which was lower in the treated groups (mainly in HG-NC-I3C) compared to the control. On the 6th day, HG-I3C, HG-NC-B, and HG-NC-I3C showed lower regression of the wound compared to the control. Additionally, HG-NC-I3C exhibited an anti-inflammatory effect (as observed by decreased levels of interleukin-1B and myeloperoxidase), reduced oxidative damage (by decreased reactive species, lipid peroxidation, and protein carbonylation levels), and increased antioxidant defense (by improved catalase activity and vitamin C levels) compared to the control. The current study showed more satisfactory results in the HG-NC-I3C group than in the free form of I3C in decreasing acute inflammation and oxidative damage in wounds.


I3C nanocapsules exhibited characteristics compatible with this kind of suspension;On 3rd day, I3C nanocapsules prevented the increase of wound area;I3C nanocapsules decreased oxidative damage in wound tissue;Inflammatory proteins were decreased in I3C nanocapsules treated group.

7.
New Phytol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962989

RESUMO

Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.

8.
Metab Eng ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971492

RESUMO

Indigo is widely used in textile industries for denim garments dyeing and is mainly produced by chemical synthesis which, however, raises environmental sustainability issues. Bio-indigo may be produced by fermentation of metabolically engineering bacteria, but current methods are economically incompetent due to low titer and the need for an inducer. To address these problems, we first characterized several synthetic promoters in E. coli and demonstrated the feasibility of inducer-free indigo production from tryptophan using the inducer-free promoter. We next coupled the tryptophan-to-indigo and glucose-to-tryptophan pathways to generate a de novo glucose-to-indigo pathway. By rational design and combinatorial screening, we identified the optimal promoter-gene combinations, which underscored the importance of promoter choice and expression levels of pathway genes. We thus created a new E. coli strain that exploited an indole pathway to enhance the indigo titer to 123 mg/L. We further assessed a panel of heterologous tryptophan synthase homologs and identified a plant indole lyase (TaIGL), which along with modified pathway design, improved the indigo titer to 235 mg/L while reducing the tryptophan byproduct accumulation. The optimal E. coli strain expressed 8 genes essential for rewiring carbon flux from glucose to indole and then to indigo: mFMO, ppsA, tktA, trpD, trpC, TaIGL and feedback-resistant aroG and trpE. Fed-batch fermentation in a 3-L bioreactor with glucose feeding further increased the indigo titer (≈965 mg/L) and total quantity (≈2183 mg) at 72 h. This new synthetic glucose-to-indigo pathway enables high-titer indigo production without the need of inducer and holds promise for bio-indigo production.

9.
BMC Biotechnol ; 24(1): 46, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971771

RESUMO

BACKGROUND: Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS: The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 µg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS: The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.


Assuntos
Endófitos , Germinação , Ácidos Indolacéticos , Ocimum basilicum , Sementes , Thymus (Planta) , Ocimum basilicum/microbiologia , Thymus (Planta)/química , Ácidos Indolacéticos/metabolismo , Endófitos/fisiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/genética , Germinação/efeitos dos fármacos , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos
10.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 699-703, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38974155

RESUMO

3-Phenyl-2-(thio-phen-3-yl)-2,3-di-hydro-4H-pyrido[3,2-e][1,3]thia-zin-4-one (C17H12N2OS2, 1) and 2-(1H-indol-3-yl)-3-phenyl-2,3-di-hydro-4H-pyrido[3,2-e][1,3]thia-zin-4-one 0.438-hydrate (C21H15N3OS·0.438H2O, 2) crystallize in space groups P21/n and C2/c, respectively. The asymmetric unit in each case is comprised of two parent mol-ecules, albeit of mixed chirality in the case of 1 and of similar chirality in 2 with the enanti-omers occupying the neighboring asymmetric units. Structure 2 also has water mol-ecules (partial occupancies) that form continuous channels along the b -axis direction. The thia-zine rings in both structures exhibit an envelope conformation. Inter-molecular inter-actions in 1 are defined only by C-H⋯O and C-H⋯N hydrogen bonds between crystallographically independent mol-ecules. In 2, hydrogen bonds of the type N-H⋯O between independent mol-ecules and C-H⋯N(π) type, and π-π stacking inter-actions between the pyridine rings of symmetry-related mol-ecules are observed.

11.
Angew Chem Int Ed Engl ; : e202412103, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979667

RESUMO

7-Aminoindoles are important synthetic intermediates to a broad range of bioactive molecules. Transition metal-catalyzed directed C-H amination is among the most straightforward route for their synthesis, whereas methods that could directly incorporate an NH2 group in a highly selective manner remains elusive. Moreover, there is still high demand for the development of earth-abundant metal catalysis for such attractive reactivity. We present here the first C-7 selective NH2 amination of indoles through a directed homolytic aromatic substitution (HAS) with iron-aminyl radical. The reaction exhibits broad substrate scope, tolerates variety of functional groups, and is readily scalable with catalyst loading down to 0.1 mol% and turnover number (TON) up to 4500.

12.
Eur J Med Chem ; 275: 116617, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959729

RESUMO

Agents that cause apoptotic cell death by interfering with tubulin dynamics, such as vinblastine and paclitaxel, are an important class of chemotherapeutics. Unfortunately, these compounds are substrates for multidrug resistance (MDR) pumps, allowing cancer cells to gain resistance to these chemotherapeutics. The indolesulfonamide family of tubulin inhibitors are not excluded by MDR pumps and have a promising activity profile, although their high lipophilicity is a pharmacokinetic limitation for their clinical use. Here we present a new family of N-indolyl-3,4,5-trimethoxybenzenesulfonamide derivatives with modifications on the indole system at positions 1 and 3 and on the sulfonamide nitrogen. We synthesized and screened against HeLa cells 34 novel indolic benzenesulfonamides. The most potent derivatives (1.7-109 nM) were tested against a broad panel of cancer cell lines, which revealed that substituted benzenesulfonamides analogs had highest potency. Importantly, these compounds were only moderately toxic to non-tumorigenic cells, suggesting the presence of a therapeutic index. Consistent with known clinical anti-tubulin agents, these compounds arrested the cell cycle at G2/M phase. Mechanistically, they induced apoptosis via caspase 3/7 activation, which occurred during M arrest. The substituents on the sulfonamide nitrogen appeared to determine different mechanistic results and cell fates. These results suggest that the compounds act differently depending on the bridge substituents, thus making them very interesting as mechanistic probes as well as potential drugs for further development.


Assuntos
Antineoplásicos , Apoptose , Benzenossulfonamidas , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Relação Dose-Resposta a Droga , Nitrogênio/química , Linhagem Celular Tumoral , Células HeLa , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química
13.
J Agric Food Chem ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973111

RESUMO

Indole-3-lactic acid (ILA) has exhibited antimicrobial properties. However, its role in inhibiting Helicobacter pylori infection remains elusive. This study investigated the inhibitory effect of ILA produced by Lacticaseibacillus paracasei on H. pylori, which was further confirmed by cell and animal experiments. 5 mg/mL ILA was sufficient to directly inhibit the growth of H. pylori in vitro, with a urease inhibitory activity reaching 60.94 ± 1.03%, and the cell morphology and structure were destroyed. ILA inhibited 56.5% adhesion of H. pylori to GES-1 and significantly reduced the number of apoptotic cells. Furthermore, ILA suppresses H. pylori colonization by approximately 38% to 63%, reduced inflammation and oxidative stress in H. pylori-infected mice, and enhanced the enrichment and variety of gut microbiota, notably fostering the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium strains. The results support that ILA derived from Lactobacillus can be applicated as a novel prebiotic in anti-H. pylori functional foods.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38980942

RESUMO

Intelligent colorimetric freshness indicator is a low-cost way to intuitively monitor the freshness of fresh food. A colorimetric strip sensor array was prepared by p-dimethylaminocinnamaldehyde (PDL)-doped poly(vinyl alcohol) (PVA) and chitosan (Chit) for the quantitative analysis of indole, which is an indicator of shrimp freshness. As a result of indole simulation, the array strip turned from faint yellow to pink or mulberry color with the increasing indole concentration, like a progress bar. The indicator film exhibited excellent permeability, mechanical and thermal stability, and color responsiveness to indole, which was attributed to the interactions between PDL and Chit/PVA. Furthermore, the colorimetric strip sensor array provided a good relationship between the indole concentration and the color intensity within a range of 50-350 ppb. The pathogens and spoilage bacteria of shrimp possessed the ability to produce indole, which caused the color changes of the strip sensor array. In the shrimp freshness monitoring experiment, the color-changing progress of the strip sensor array was in agreement with the simulation and could distinguish the shrimp freshness levels. The image classification system based on deep learning were developed, the accuracies of four DCNN algorithms are above 90%, with VGG16 achieving the highest accuracy at 97.89%. Consequently, a "progress bar" strip sensor array has the potential to realize nondestructive, more precise, and commercially available food freshness monitoring using simple visual inspection and intelligent equipment identification.

15.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950607

RESUMO

In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.

16.
J Pharm Biomed Anal ; 249: 116345, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986348

RESUMO

Ophiocordyceps xuefengensis (O. xuefengensis), the sister taxon of Ophiocordyceps sinensis (O. sinensis), is consumed as a "tonic food" due to its health benefits. However, little is known regarding the chemistry and bioactivity of O. xuefengensis. In this study, we characterized 80 indole-based alkaloids in the ethyl acetate fraction of O. xuefengensis by high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS), of which 54 indole-based alkaloids were identified as possibly new compounds. Furthermore, 29 of these compounds were established as potential anti-cancer compounds by ligand fishing combined with HPLC-Q-TOF-MS/MS. Moreover, molecular docking identified the NH- and OH- groups of these compounds as the key active groups. The present study has expanded the knowledge on the characteristic indole-based alkaloids and anti-cancer activity of O. xuefengensis.

17.
Arch Pharm (Weinheim) ; : e2400440, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986447

RESUMO

Acinetobacter baumannii with the capability to "escape" almost all currently available antibacterials is eroding the safety of basic medical interventions and is an increasing cause of mortality globally, prompting a substantial requirement for new classes of antibacterial agents. Indoles participate in the regulation of persistent bacterial formation, biofilm formation, plasmid stability, and drug resistance. In particular, indole hybrids demonstrated promising antibacterial activity against both drug-sensitive and drug-resistant A. baumannii pathogens, representing a fertile source for the discovery of novel therapeutic agents for clinical deployment in controlling A. baumannii infections. This mini-review outlines the current innovations of indole hybrids with antibacterial activity against A. baumannii pathogens, covering articles published from 2020 to the present, to open new avenues for exploring novel anti-A. baumannii candidates.

18.
Environ Pollut ; : 124522, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986759

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollutions that can accumulate in crops and hazard human health. This study used phenanthrene (PHE) as a model PAH and employed hydroponic experiments to illustrate the role of indole-3-acetic acid (IAA) in the regulation of PHE accumulation in wheat roots. At optimal concentrations, wheat roots treated with PHE+IAA showed a 46.9% increase in PHE concentration, whereas treatment with PHE+P-chlorophenoxyisobutyric acid resulted in a 38.77% reduction. Transcriptome analysis identified TaSAUR80-5A as the crucial gene for IAA-enhancing PHE uptake. IAA increases plasma membrane H+-ATPase activity, promoting active transport of PHE via the PHE/H+ cotransport mechanism. These results provide not only the theoretical basis necessary to better understand the function of IAA in PAHs uptake and transport by staple crops, but also a strategy for controlling PAHs accumulation in staple crops and enhancing phytoremediation of PAH-contaminated environments.

19.
Sci Rep ; 14(1): 15791, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982268

RESUMO

In this work, a novel series of N-phenylacetamide-1,2,3-triazole-indole-2-carboxamide derivatives 5a-n were designed by consideration of the potent α-glucosidase inhibitors containing indole and carboxamide-1,2,3-triazole-N-phenylacetamide moieties. These compounds were synthesized by click reaction and evaluated against yeast α-glucosidase. All the newly title compounds demonstrated superior potency when compared with acarbose as a standard inhibitor. Particularly, compound 5k possessed the best inhibitory activity against α-glucosidase with around a 28-fold improvement in the inhibition effect in comparison standard inhibitor. This compound showed a competitive type of inhibition in the kinetics. The molecular docking and dynamics demonstrated that compound 5k with a favorable binding energy well occupied the active site of α-glucosidase.


Assuntos
Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Simulação de Acoplamento Molecular , Triazóis , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Desenho de Fármacos , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Relação Estrutura-Atividade , Saccharomyces cerevisiae/enzimologia , Cinética
20.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930505

RESUMO

Considering current global climate change, drought stress is regarded as a major problem negatively impacting the growth of soybeans, particularly at the critical stages R3 (early pod) and R5 (seed development). Microbial inoculation is regarded as an ecologically friendly and low-cost-effective strategy for helping soybean plants withstand drought stress. The present study aimed to isolate newly drought-tolerant bacteria from native soil and evaluated their potential for producing growth-promoting substances as well as understanding how these isolated bacteria along with arbuscular mycorrhizal fungi (AMF) could mitigate drought stress in soybean plants at critical growth stages in a field experiment. In this study, 30 Bradyrhizobium isolates and 30 rhizobacterial isolates were isolated from the soybean nodules and rhizosphere, respectively. Polyethylene glycol (PEG) 6000 was used for evaluating their tolerance to drought, and then the production of growth promotion substances was evaluated under both without/with PEG. The most effective isolates (DTB4 and DTR30) were identified genetically using 16S rRNA gene. A field experiment was conducted to study the impact of inoculation with DTB4 and DTR30 along with AMF (Glomus clarum, Funneliformis mosseae, and Gigaspora margarita) on the growth and yield of drought-stressed soybeans. Our results showed that the bioinoculant applications improved the growth traits (shoot length, root length, leaf area, and dry weight), chlorophyll content, nutrient content (N, P, and K), nodulation, and yield components (pods number, seeds weight, and grain yield) of soybean plants under drought stress (p ≤ 0.05). Moreover, proline contents were decreased due to the bioinoculant applications under drought when compared to uninoculated treatments. As well as the count of bacteria, mycorrhizal colonization indices, and the activity of soil enzymes (dehydrogenase and phosphatase) were enhanced in the soybean rhizosphere under drought stress. This study's findings imply that using a mixture of bioinoculants may help soybean plants withstand drought stress, particularly during critical growth stages, and that soybean growth, productivity, and soil microbial activity were improved under drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...