RESUMO
Plant growth-promoting bacteria (PGPB) are a source of nutrient supply, stimulate plant growth, and even act in the biocontrol of phytopathogens. However, these phenotypic traits have rarely been explored in culturable bacteria from native maize landraces. In this study, synthetic microbial communities (SynCom) were assembled with a set of PGPB isolated from the Jala maize landrace, some of them with additional abilities for the biocontrol of phytopathogenic fungi and the stimulation of plant-induced systemic resistance (ISR). Three SynCom were designed considering the phenotypic traits of bacterial strains, including Achromobacter xylosoxidans Z2K8, Burkholderia sp. Z1AL11, Klebsiella variicola R3J3HD7, Kosakonia pseudosacchari Z2WD1, Pantoea ananatis E2HD8, Pantoea sp. E2AD2, Phytobacter diazotrophicus Z2WL1, Pseudomonas protegens E1BL2, and P. protegens E2HL9. Plant growth promotion in gnotobiotic and greenhouse seedlings assays was performed with Conejo landrace; meanwhile, open field tests were carried out on hybrid CPL9105W maize. In all experimental models, a significant promotion of plant growth was observed. In gnotobiotic assays, the roots and shoot length of the maize seedlings increased 4.2 and 3.0 times, respectively, compared to the untreated control. Similarly, the sizes and weights of the roots and shoots of the plants increased significantly in the greenhouse assays. In the open field assay performed with hybrid CPL9105W maize, the yield increased from 11 tons/ha for the control to 16 tons/ha inoculated with SynCom 3. In addition, the incidence of rust fungal infections decreased significantly from 12.5% in the control to 8% in the treatment with SynCom 3. All SynCom designs promoted the growth of maize in all assays. However, SynCom 3 formulated with A. xylosoxidans Z2K8, Burkholderia sp. Z1AL11, K. variicola R3J3HD7, P. ananatis E2HD8, P. diazotrophicus Z2WL1, and P. protegens E1BL2 displayed the best results for promoting plant growth, their yield, and the inhibition of fungal rust. This study demonstrated the biotechnological eco-friendly plant growth-promoting potential of SynCom assemblies with culturable bacteria from native maize landraces for more sustainable and economic agriculture.
RESUMO
Maize is one of the most cultivated species and requires agrochOPemicals for nutrition and pathogen control. Fusarium verticillioides is responsible for damaging plants and stored grains. Plants naturally exposed to stresses have defense mechanisms that are triggered by chemical or biological agents, known as induced systemic resistance. In this study, the yeast Torulaspora globosa (strain CCA6S01) was evaluated as an immune response promoter in maize against F. verticillioides. The treatments started 4 days after maize emergence and consisted of control (saline solution), acetylsalicylic acid (ASA, 100 mg/L), yeast cells (1 × 105 cells/mL), or yeast metabolites (cell-free filtrates). After running the treatments, the plants were inoculated with 1 mL of a F. verticillioides suspension at a concentration of 1 × 106 spores/mL. The application of yeast cells provided similar results to ASA treatment, a known inducer of plant resistance. Yeast cells provided maize plants with fewer rot symptoms and higher activities of enzymes related to plant resistance. Thus, we concluded that T. globosa (strain CCA6S01) might be used in agriculture practice as a plant protection agent. It can help to decrease the application of fungicides in the field and maintain plant productivity under stress.
Assuntos
Fusarium , Zea mays , Regiões Promotoras Genéticas , Doenças das Plantas/prevenção & controleRESUMO
Beneficial interactions between plant roots and Trichoderma species lead to both local and systemic enhancements of the plant immune system through a mechanism known as priming of defenses. Previously, we have reported a number of genes and proteins that are differentially regulated in distant tissues of maize plants following inoculation with Trichoderma atroviride. To further investigate the mechanisms involved in the systemic activation of plant responses, here we have further evaluated the regulatory aspects of a selected group of genes when priming is triggered in maize plants. Time-course experiments from the beginning of the interaction between T. atroviride and maize roots followed by leaf infection with Colletotrichum graminicola allowed us to identify a gene set regulated by priming in the leaf tissue. In the same experiment, phytohormone measurements revealed a decrease in jasmonic acid concentration while salicylic acid increased at 2 d and 6 d post-inoculation. In addition, chromatin structure and modification assays showed that chromatin was more open in the primed state compared with unprimed control conditions, and this allowed for quicker gene activation in response to pathogen attack. Overall, the results allowed us to gain insights on the interplay between the phytohormones and epigenetic regulatory events in the systemic and long-lasting regulation of maize plant defenses following Trichoderma inoculation.
Assuntos
Trichoderma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismoRESUMO
The establishment of plant-fungus mutualistic interaction requires bidirectional molecular crosstalk. Therefore, the analysis of the interacting organisms secretomes would help to understand how such relationships are established. Here, a gel-free shotgun proteomics approach was used to identify the secreted proteins of the plant Arabidopsis thaliana and the mutualistic fungus Trichoderma atroviride during their interaction. A total of 126 proteins of Arabidopsis and 1027 of T. atroviride were identified. Among them, 118 and 780 were differentially modulated, respectively. Bioinformatic analysis unveiled that both organisms' secretomes were enriched with enzymes. In T. atroviride, glycosidases, aspartic endopeptidases, and dehydrogenases increased in response to Arabidopsis. Additionally, amidases, protein-serine/threonine kinases, and hydro-lyases showed decreased levels. Furthermore, peroxidases, cysteine endopeptidases, and enzymes related to the catabolism of secondary metabolites increased in the plant secretome. In contrast, pathogenesis-related proteins and protease inhibitors decreased in response to the fungus. Notably, the glutamate:glyoxylate aminotransferase GGAT1 was secreted by Arabidopsis during its interaction with T. atroviride. Our study showed that GGAT1 is partially required for plant growth stimulation and on the induction of the plant systemic resistance by T. atroviride. Additionally, GGAT1 seems to participate in the negative regulation of the plant systemic resistance against B. cinerea through a mechanism involving H2O2 production.
Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Botrytis , Resistência à Doença , Interações Hospedeiro-Patógeno , Metabolômica , Doenças das Plantas/microbiologia , Trichoderma , Biologia Computacional/métodos , Ácido Glutâmico/metabolismo , Metabolômica/métodos , Fenótipo , Desenvolvimento Vegetal , Simbiose , Transaminases/genética , Transaminases/metabolismoRESUMO
Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.
RESUMO
OBJECTIVE: To evaluate the role of the biocontrol agent Bacillus subtilis CtpxS2-1 in inducing lupin systemic resistance against anthracnose caused by Colletotrichum acutatum by lipopeptide production. RESULTS: First, growth inhibition and thin layer chromatography-bioautography analysis confirmed that CtpxS2-1 cultures and their lipopeptide extracts, specifically fengycin, have strong antifungal activity against C. acutatum. Subsequent microscopic examination of these fungal inhibition zones showed mycelial pathogen deformations. PCR amplification of CtpxS2-1 confirmed the presence of genes encoding fengycins E and C, bacillomycin C, iturin A, and surfactins B and C. Based on this evidence, the effect of CtpxS2-1 and its lipopeptides on the induction of the lupin defence- and growth-related genes PR-1, PR-4, SOD-2, PIN-1 and PIN-3 was evaluated by RT-qPCR. In seedlings from roots treated with CtxpS2-1, a significant increase in the expression of these genes was induced. Efficacy assays showed that CtpxS2-1 treatment completely controlled anthracnose incidence (0.0%) compared with the untreated control. Furthermore, root and shoot growth in treated seedlings with CtpxS2-1 significantly increased due to disease control, as did the synthesis of the defence enzymes catalase, peroxidase and superoxide dismutase. CONCLUSION: B. subtilis CtpxS2-1 is a key factor enhancing Andean lupin health by producing lipopeptides that damage C. acutatum cellular structures and inhibit their growth, as well as by inducing the expression of defence-related genes of lupin plants involved in systemic acquired resistance (SAR) against anthracnose.
Assuntos
Bacillus subtilis , Resistência à Doença/fisiologia , Lipopeptídeos , Lupinus , Doenças das Plantas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Lupinus/microbiologia , Lupinus/fisiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controleRESUMO
Certain soil bacteria produce beneficial effects on the growth and health of plants; hence, their use is steadily increasing. Five strains of Bacillus with plant growth-promoting potential were selected in this study, which produced indole-3-acetic acid levels below 50 µg.mL-1. On the other hand, while only strains M8 and M15 dissolved phosphorus, the latter was the only strain that did not produce siderophores. Only strains M8 and M16 significantly inhibited the in vitro growth of Botrytis cinerea and Fusarium solani phytopathogens, whose inhibition ranges fluctuated between 60% and 63% for strains M8 and M16 against B. cinerea and between 40% and 53% for strains M8 and M16 against F. solani. Based on these results, the need to implement resistance induction against gray mold on pepper plants was determined using strains M8 and M16. In this case, strain M16 inhibited the propagation of the necrotic spot by approximately 70%, whereas strain M8 significantly reduced the superoxide dismutase activity in systemic leaves, which substantially increased in plants inoculated with strain M8 and infected with the pathogen. Accordingly, the use of native rhizobacteria may entail biotechnological progress for the integrated management of crops in agriculture industry.
RESUMO
BACKGROUND: An important process for plant survival is the immune system. The induced systemic resistance (ISR) triggered by beneficial microbes is an important cost-effective defense mechanism by which plants are primed to an eventual pathogen attack. Defense mechanisms such as ISR depend on an accurate and context-specific regulation of gene expression. Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRNs). Here, we explore the regulatory mechanism of the ISR defense response triggered by the beneficial bacterium Paraburkholderia phytofirmans PsJN in Arabidopsis thaliana plants infected with Pseudomonas syringae DC3000. To achieve this, a GRN underlying the ISR response was inferred using gene expression time-series data of certain defense-related genes, differential evolution, and threshold Boolean networks. RESULTS: One thousand threshold Boolean networks were inferred that met the restriction of the desired dynamics. From these networks, a consensus network was obtained that helped to find plausible interactions between the genes. A representative network was selected from the consensus network and biological restrictions were applied to it. The dynamics of the selected network showed that the largest attractor, a limit cycle of length 3, represents the final stage of the defense response (12, 18, and 24 h). Also, the structural robustness of the GRN was studied through the networks' attractors. CONCLUSIONS: A computational intelligence approach was designed to reconstruct a GRN underlying the ISR defense response in plants using gene expression time-series data of A. thaliana colonized by P. phytofirmans PsJN and subsequently infected with P. syringae DC3000. Using differential evolution, 1000 GRNs from time-series data were successfully inferred. Through the study of the network dynamics of the selected GRN, it can be concluded that it is structurally robust since three mutations were necessary to completely disarm the Boolean trajectory that represents the biological data. The proposed method to reconstruct GRNs is general and can be used to infer other biologically relevant networks to formulate new biological hypotheses.
Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Resistência à Doença/genética , Redes Reguladoras de Genes , Burkholderiaceae/fisiologia , Pseudomonas syringaeRESUMO
Trichoderma spp. are filamentous fungi that colonize plant roots conferring beneficial effects to plants, either indirectly through the induction of their defense systems or directly through the suppression of phytopathogens in the rhizosphere. Transcriptomic analyses of Trichoderma spp. emerged as a powerful method for identifying the molecular events underlying the establishment of this beneficial relationship. Here, we focus on the transcriptomic response of Trichoderma virens during its interaction with Arabidopsis seedlings. The main response of T. virens to cocultivation with Arabidopsis was the repression of gene expression. The biological processes of transport and metabolism of carbohydrates were downregulated, including a set of cell wall-degrading enzymes putatively relevant for root colonization. Repression of such genes reached their basal levels at later times in the interaction, when genes belonging to the biological process of copper ion transport were induced, a necessary process providing copper as a cofactor for cell wall-degrading enzymes with the auxiliary activities class. RNA-Seq analyses showed the induction of a member of the SNF2 family of chromatin remodelers/helicase-related proteins, which was named IPA-1 (increased protection of Arabidopsis-1). Sequence analyses of IPA-1 showed its closest relatives to be members of the Rad5/Rad16 and SNF2 subfamilies; however, it grouped into a different clade. Although deletion of IPA-1 in T. virens did not affect its growth, the antibiotic activity of Δipa-1 culture filtrates against Rhizoctonia solani diminished but it remained unaltered against Botrytis cinerea. Triggering of the plant defense genes in plants treated with Δipa-1 was higher, showing enhanced resistance against Pseudomonas syringae but not against B. cinerea as compared with the wild type.
Assuntos
Antibiose , Arabidopsis/microbiologia , Montagem e Desmontagem da Cromatina , Resistência à Doença , Rhizoctonia/patogenicidade , Trichoderma/fisiologia , Humanos , Doenças das Plantas/microbiologia , Raízes de Plantas , TranscriptomaRESUMO
Symbiotic Rhizobium-legume associations are mediated by exchange of chemical signals that eventually result in the development of a nitrogen-fixing nodule. Such signal interactions are thought to be at the center of the plants' capacity either to activate a defense response or to suppress the defense response to allow colonization by symbiotic bacteria. In addition, the colonization of plant roots by rhizobacteria activates an induced condition of improved defensive capacity in plants known as induced systemic resistance, based on "defense priming," which protects unexposed plant tissues from biotic stress.Here, we demonstrate that inoculation of common bean plants with Rhizobium etli resulted in a robust resistance against Pseudomonas syringae pv. phaseolicola. Indeed, inoculation with R. etli was associated with a reduction in the lesion size caused by the pathogen and lower colony forming units compared to mock-inoculated plants. Activation of the induced resistance was associated with an accumulation of the reactive oxygen species superoxide anion (O2 -) and a faster and stronger callose deposition. Transcription of defense related genes in plants treated with R. etli exhibit a pattern that is typical of the priming response. In addition, R. etli-primed plants developed a transgenerational defense memory and could produce offspring that were more resistant to halo blight disease. R. etli is a rhizobacteria that could reduce the proliferation of the virulent strain P. syringae pv. phaseolicola in common bean plants and should be considered as a potentially beneficial and eco-friendly tool in plant disease management.
RESUMO
Nowadays, fertilization and pest control are carried out using chemical compounds that contaminate soil and deteriorate human health. Plant growth promoting bacteria endophytes (PGPBEs), are a well-studied group of bacteria that offers benefits to the host plant, such as phytostimulation, biofertilization, and protection against other microorganisms. The study of Gluconacetobacter diazotrophicus-which belongs to PGPBEs-aids the development of alternative strategies of an integrated approach for crop management practices. Ralstonia solanacearum is responsible for bacterial wilt disease. This phytopathogen is of great interest worldwide due to the enormous economic losses it causes. In this study the action of G. diazotrophicus as a growth promoting bacterium in Arabidopsis thaliana seedlings is analyzed, evaluating the antagonistic mechanisms of this beneficial endophytic bacterium during biotic stress produced by R. solanacearum. Effective colonization of G. diazotrophicus was determined through bacterial counting assays, evaluation of anatomical and growth parameters, and pigments quantification. Biocontrol assays were carried out with Ralstonia pseudosolanacearum GMI1000 model strain and R. solanacearum A21 a recently isolated strain. Inoculation of A. thaliana (Col 0) with G. diazotrophicus Pal 5 triggers a set of biochemical and structural changes in roots, stems, and leaves of seedlings. Discrete callose deposits as papillae were observed at specific sites of root hairs, trichomes, and leaf tissue. Upon R. pseudosolanacearum GMI1000 infection, endophyte-treated plants demonstrated being induced for defense through an augmented callose deposition at root hairs and leaves compared with the non-endophyte-treated controls. The endophytic bacterium appears to be able to prime callose response. Roots and stems cross sections showed that integrity of all tissues was preserved in endophyte-treated plants infected with R. solanacearum A21. The mechanisms of resistance elicited by the plant after inoculation with the endophyte would be greater lignification and sclerosis in tissues and reinforcement of the cell wall through the deposition of callose. As a consequence of this priming in plant defense response, viable phytopathogenic bacteria counting were considerably fewer in endophyte-inoculated plants than in not-inoculated controls. Our results indicate that G. diazotrophicus colonizes A. thaliana plants performing a protective role against the phytopathogenic bacterium R. solanacearum promoting the activation of plant defense system.
RESUMO
The plant immune system is essential for plants to perceive and defend against bacterial, fungal and insect pests and pathogens. Induced systemic resistance (ISR) is a systemic immune response that occurs upon root colonization by beneficial microbes. A well-studied model for ISR is the association of specific beneficial strains of Pseudomonas spp. with the reference plant Arabidopsis thaliana. Here, we describe a robust, increased throughput, bioassay to study ISR against the bacterial pathogen Pseudomonas cannabina pv. alisalensis (formerly called Pseudomonas syringae pv. maculicola) strain ES4326 and the herbivore Trichoplusia ni by inoculating Pseudomonas simiae strain WCS417 (formerly called Pseudomonas fluorescens WCS417) on Arabidopsis plants grown in Jiffy-7® peat pellets. While most commonly used for Pseudomonas-triggered ISR on Arabidopsis, this assay is effective for diverse rhizosphere bacterial strains, plant species, pathogens and herbivores.
RESUMO
We investigated the effects of Azospirillum brasilense strains Ab-V5 and Ab-V6 in the induction of mechanisms of systemic acquired resistance (SAR) and induced system resistance (ISR) on maize (Zea mays L.) plants. Under normal growth conditions, the treatments consisted of the standard inoculation of cells at sowing, and leaf spray of cells or their metabolites at the V2.5 growth stage; under saline stress (170 mM NaCl), the treatment consisted of standard single and co-inoculation of A. brasilense and Rhizobium tropici. The main compounds in the Azospirillum metabolites were identified as indole-3-acetic acid (IAA) and salicylic acid (SA). Under normal conditions, A. brasilense cells applied at sowing or by leaf spray increased the activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) in leaves, and of ascorbate peroxidase (APX) in roots; however, interestingly, in general the highest activities were observed by leaf spray of metabolites. Under normal conditions, the highest levels of salicylic acid (SA) and jasmonic acid (JA) were achieved in leaves by leaf spray of metabolites, of SA in roots by leaf spray of cells, and of JA in roots by standard inoculation and leaf spray of metabolites. Under saline stress, plant protection occurred via SA and abscisic acid (ABA), but not JA. In general, inoculation resulted in further increases in SA in leaves and roots, and ABA in leaves. We hypothesize that A. brasilense confers protection to maize plants by simultaneous induction of JA and SA pathways, and, under saline stressing conditions, by SA and ABA pathways.
Assuntos
Antioxidantes/metabolismo , Azospirillum brasilense/metabolismo , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Catalase/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Malondialdeído/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Ácido Salicílico/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Zea mays/enzimologia , Zea mays/microbiologiaRESUMO
The genus Azospirillum comprises plant-growth-promoting bacteria (PGPB), which have been broadly studied. The benefits to plants by inoculation with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen, but also to its capacity to synthesize phytohormones, in particular indole-3-acetic acid. Recently, an increasing number of studies has attributed an important role of Azospirillum in conferring to plants tolerance of abiotic and biotic stresses, which may be mediated by phytohormones acting as signaling molecules. Tolerance of biotic stresses is controlled by mechanisms of induced systemic resistance, mediated by increased levels of phytohormones in the jasmonic acid/ethylene pathway, independent of salicylic acid (SA), whereas in the systemic acquired resistance-a mechanism previously studied with phytopathogens-it is controlled by intermediate levels of SA. Both mechanisms are related to the NPR1 protein, acting as a co-activator in the induction of defense genes. Azospirillum can also promote plant growth by mechanisms of tolerance of abiotic stresses, named as induced systemic tolerance, mediated by antioxidants, osmotic adjustment, production of phytohormones, and defense strategies such as the expression of pathogenesis-related genes. The study of the mechanisms triggered by Azospirillum in plants can help in the search for more-sustainable agricultural practices and possibly reveal the use of PGPB as a major strategy to mitigate the effects of biotic and abiotic stresses on agricultural productivity.
RESUMO
Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth-a strategy to relieve incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differences were observed according to the gene, plant tissue, strain and method of application, but, in general, inoculation with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospirillum on seeds or by leaf spray, as well as of leaf spraying of Azospirillum metabolites, are strongly correlated with the synthesis of phytohormones and by eliciting genes related to plant-stress tolerance and defense against pathogens.
RESUMO
Soybean is an economically very important crop throughout the word and particularly in Argentina. Soybean yield may be affected by many factors such as the lack of some essential nutrients or pathogens attack. In this work we demonstrated that the co-inoculation of the native biocontrol bacterium Bacillus sp. CHEP5 which induces resistance against Cercospora sojina in soybean and the nitrogen fixing strain Bradyrhizobium japonicum E109, was more effective in reducing frog leaf spot severity than the inoculation of the biocontrol agent alone. Probably, this is related with the increase in the ability to form biofilm when both bacteria are growing together. Furthermore, Bacillus sp. CHEP5 inoculation did not affect Bradyrhizobium japonicum E109 symbiotic behavior and flavonoids composition of root exudates in pathogen challenged plants. These results suggest that co-inoculation of plants with rhizobia and biocontrol agents could be a strategy to improve soybean production in a sustainable system.
Assuntos
Ascomicetos/patogenicidade , Bacillus/crescimento & desenvolvimento , Agentes de Controle Biológico , Bradyrhizobium/crescimento & desenvolvimento , Glycine max/microbiologia , Fungos Mitospóricos/metabolismo , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Bacillus/classificação , Doenças das Plantas/microbiologia , SimbioseRESUMO
Synergism between beneficial rhizobacteria and fungal pathogens is poorly understood. Therefore, evaluation of co-inoculation of bacteria that promote plant growth by different mechanisms in pathogen challenged plants would contribute to increase the knowledge about how plants manage interactions with different microorganisms. The goals of this work were a) to elucidate, in greenhouse experiments, the effect of co-inoculation of peanut with Bradyrhizobium sp. SEMIA6144 and the biocontrol agent Bacillus sp. CHEP5 on growth and symbiotic performance of Sclerotium rolfsii challenged plants, and b) to evaluate field performance of these bacteria in co-inoculated peanut plants. The capacity of Bacillus sp. CHEP5 to induce systemic resistance against S. rolfsii was not affected by the inoculation of Bradyrhizobium sp. SEMIA6144. This microsymbiont, protected peanut plants from the S. rolfsii detrimental effect, reducing the stem wilt incidence. However, disease incidence in plants inoculated with the isogenic mutant Bradyrhizobium sp. SEMIA6144 V2 (unable to produce Nod factors) was as high as in pathogen challenged plants. Therefore, Bradyrhizobium sp. SEMIA6144 Nod factors play a role in the systemic resistance against S. rolfsii. Bacillus sp. CHEP5 enhanced Bradyrhizobium sp. SEMIA6144 root surface colonization and improved its symbiotic behavior, even in S. rolfsii challenged plants. Results of field trials confirmed the Bacillus sp. CHEP5 ability to protect against fungal pathogens and to improve the yield of extra-large peanut seeds from 2.15% (in Río Cuarto) to 16.69% (in Las Vertientes), indicating that co-inoculation of beneficial rhizobacteria could be a useful strategy for the peanut production under sustainable agriculture system.
Assuntos
Arachis/microbiologia , Bacillus/fisiologia , Bradyrhizobium/fisiologia , Fungos/patogenicidade , Doenças das Plantas/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/imunologia , Arachis/metabolismo , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Agentes de Controle Biológico , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , Resistência à Doença , Fungos/fisiologia , Interações Hospedeiro-Parasita , Imunidade Inata , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , SimbioseRESUMO
The activation of defensive responses of plants is a promising tool for controlling pests in conventional agriculture. Over the last few years, several compounds have been studied to protect crops from pests, without displaying direct toxicity for pathogenic organisms. These compounds have the ability to induce a priming state on the plants that results in resistance (or tolerance) against subsequent infection by a pathogen. In terms of molecular response, induced plant defense involves a broad number of physical and biochemical changes such as callose deposition or phenolic compounds, activation of salicylic and/or jasmonic acid pathways or synthesis of defense-related enzymes. Despite the large number of studies performed to ascertain the physiological and biochemical basis of induced resistance, only a few resistance-activating compounds have been studied as a real alternative to classic means of control and the studies geared towards incorporating induced resistance into disease management programs are relatively rare. The incorporation of natural resistance inducer in pest management programs of woody crops, alone or in combination with classical methods, could be a reliable method for reducing the amount of chemical residues in the environment. In this review, we discuss the current knowledge of induced resistance in woody crops, focusing on the mode of action of compounds authorized for conventional agriculture. We conclude by discussing the environmental and economic advantages of applying resistance inducers to conventional agriculture with special emphasis on natural compounds.(AU)
Assuntos
Noxas , Resistência à Doença , Controle de Pragas , Compostos Fenólicos , Ácido Salicílico , Fenômenos Fisiológicos Vegetais , Pragas da AgriculturaRESUMO
The activation of defensive responses of plants is a promising tool for controlling pests in conventional agriculture. Over the last few years, several compounds have been studied to protect crops from pests, without displaying direct toxicity for pathogenic organisms. These compounds have the ability to induce a priming state on the plants that results in resistance (or tolerance) against subsequent infection by a pathogen. In terms of molecular response, induced plant defense involves a broad number of physical and biochemical changes such as callose deposition or phenolic compounds, activation of salicylic and/or jasmonic acid pathways or synthesis of defense-related enzymes. Despite the large number of studies performed to ascertain the physiological and biochemical basis of induced resistance, only a few resistance-activating compounds have been studied as a real alternative to classic means of control and the studies geared towards incorporating induced resistance into disease management programs are relatively rare. The incorporation of natural resistance inducer in pest management programs of woody crops, alone or in combination with classical methods, could be a reliable method for reducing the amount of chemical residues in the environment. In this review, we discuss the current knowledge of induced resistance in woody crops, focusing on the mode of action of compounds authorized for conventional agriculture. We conclude by discussing the environmental and economic advantages of applying resistance inducers to conventional agriculture with special emphasis on natural compounds.
Assuntos
Controle de Pragas , Noxas , Resistência à Doença , Compostos Fenólicos , Fenômenos Fisiológicos Vegetais , Pragas da Agricultura , Ácido SalicílicoRESUMO
Root hairs are important for nutrient and water uptake and are also critically involved the interaction with soil inhabiting microbiota. Root hairs are tubular-shaped outgrowths that emerge from trichoblasts. This polarized elongation is maintained and regulated by a robust mechanism involving the endomembrane secretory and endocytic system. Members of the syntaxin family of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) in plants (SYP), have been implicated in regulation of the fusion of vesicles with the target membranes in both exocytic and endocytic pathways. One member of this family, SYP123, is expressed specifically in the root hairs and accumulated in the growing tip region. This study shows evidence of the SYP123 role in polarized trafficking using knockout insertional mutant plants. We were able to observe defects in the deposition of cell wall proline rich protein PRP3 and cell wall polysaccharides. In a complementary strategy, similar results were obtained using a plant expressing a dominant negative soluble version of SYP123 (SP2 fragment) lacking the transmembrane domain. The evidence presented indicates that SYP123 is also regulating PRP3 protein distribution by recycling by endocytosis. We also present evidence that indicates that SYP123 is necessary for the response of roots to plant growth promoting rhizobacterium (PGPR) in order to trigger trigger induced systemic response (ISR). Plants with a defective SYP123 function were unable to mount a systemic acquired resistance in response to bacterial pathogen infection and ISR upon interaction with rhizobacteria. These results indicated that SYP123 was involved in the polarized localization of protein and polysaccharides in growing root hairs and that this activity also contributed to the establishment of effective plant defense responses. Root hairs represent very plastic structures were many biotic and abiotic factors can affect the number, anatomy and physiology of root hairs. Here, we presented evidence that indicates that interactions with soil PGPR could be closely regulated by signaling involving secretory and/or endocytic trafficking at the root hair tip as a quick way to response to changing environmental conditions.