Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Int Immunopharmacol ; 138: 112595, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38950455

RESUMO

Periodontitis is a chronic inflammatory disease and is the primary contributor to adult tooth loss. Diabetes exacerbates periodontitis, accelerates periodontal bone resorption. Thus, effectively managing periodontitis in individuals with diabetes is a long-standing challenge. This review introduces the etiology and pathogenesis of periodontitis, and analyzes the bidirectional relationship between diabetes and periodontitis. In this review, we comprehensively summarize the four pathological microenvironments influenced by diabetic periodontitis: high glucose microenvironment, bacterial infection microenvironment, inflammatory microenvironment, and bone loss microenvironment. The hydrogel design strategies and latest research development tailored to the four microenvironments of diabetic periodontitis are mainly focused on. Finally, the challenges and potential solutions in the treatment of diabetic periodontitis are discussed. We believe this review will be helpful for researchers seeking novel avenues in the treatment of diabetic periodontitis.

2.
Front Immunol ; 15: 1360618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827737

RESUMO

Psoriasis is a chronic inflammatory disease affecting skin and joints characterized by a chronically altered immune and inflammatory response. Several factors occur from the onset to the development of this disease due to different types of cells spatially and temporally localized in the affected area, such as, keratinocytes, macrophages, neutrophils and T helper lymphocytes. This scenario leads to the chronic release of high levels of inflammatory mediators (i.e., IL-17, IL-23, IL-22, TNF-α, S100 proteins, Defensins) and lastly parakeratosis and thickening of the stratum spinosum. Extracellular vesicles (EVs) are small double membraned biological nanoparticles that are secreted by all cell types and classified, based on dimension and biogenesis, into exosomes, microvesicles and apoptotic bodies. Their role as vessels for long range molecular signals renders them key elements in the pathogenesis of psoriasis, as well as innovative platforms for potential biomarker discovery and delivery of fine-tuned anti-inflammatory therapies. In this review, the role of EVs in the pathogenesis of psoriasis and the modulation of cellular microenvironment has been summarized. The biotechnological implementation of EVs for therapy and research for new biomarkers has been also discussed.


Assuntos
Biomarcadores , Vesículas Extracelulares , Psoríase , Humanos , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/etiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Animais , Pele/patologia , Pele/imunologia , Pele/metabolismo , Microambiente Celular/imunologia
3.
J Nanobiotechnology ; 22(1): 314, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840113

RESUMO

Osteoporosis is the most common bone metabolic disease that affects the health of middle-aged and elderly people, which is hallmarked by imbalanced bone remodeling and a deteriorating immune microenvironment. Magnesium and calcium are pivotal matrix components that participate in the bone formation process, especially in the immune microenvironment regulation and bone remodeling stages. Nevertheless, how to potently deliver magnesium and calcium to bone tissue remains a challenge. Here, we have constructed a multifunctional nanoplatform composed of calcium-based upconversion nanoparticles and magnesium organic frameworks (CM-NH2-PAA-Ald, denoted as CMPA), which features bone-targeting and pH-responsive properties, effectively regulating the inflammatory microenvironment and promoting the coordination of osteogenic functions for treating osteoporosis. The nanoplatform can efficaciously target bone tissue and gradually degrade in response to the acidic microenvironment of osteoporosis to release magnesium and calcium ions. This study validates that CMPA possessing favorable biocompatibility can suppress inflammation and facilitate osteogenesis to treat osteoporosis. Importantly, high-throughput sequencing results demonstrate that the nanoplatform exerts a good inflammatory regulation effect through inhibition of the nuclear factor kappa-B signaling pathway, thereby normalizing the osteoporotic microenvironment. This collaborative therapeutic strategy that focuses on improving bone microenvironment and promoting osteogenesis provides new insight for the treatment of metabolic diseases such as osteoporosis.


Assuntos
Cálcio , Magnésio , Nanopartículas , Osteogênese , Osteoporose , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Magnésio/farmacologia , Magnésio/química , Cálcio/metabolismo , Animais , Nanopartículas/química , Camundongos , Inflamação/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Humanos , Microambiente Celular/efeitos dos fármacos , Feminino , NF-kappa B/metabolismo
4.
J Nat Med ; 78(3): 633-643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704807

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.


Assuntos
Ácidos e Sais Biliares , Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Microambiente Tumoral , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Camundongos , Ácidos e Sais Biliares/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo
5.
J Nanobiotechnology ; 22(1): 291, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802919

RESUMO

BACKGROUND: Stroke is a devastating disease affecting populations worldwide and is the primary cause of long-term disability. The inflammatory storm plays a crucial role in the progression of stroke. In the acute phase of ischemic stroke, there is a transient increase in anti-inflammatory M2 microglia followed by a rapid decline. Due to the abundant phospholipid in brain tissue, lipid peroxidation is a notable characteristic of ischemia/reperfusion (I/R), constituting a structural foundation for ferroptosis in M2 microglia. Slowing down the decrease in M2 microglia numbers and controlling the inflammatory microenvironment holds significant potential for enhancing stroke recovery. RESULTS: We found that the ferroptosis inhibitor can modulate inflammatory response in MCAO mice, characterizing that the level of M2 microglia-related cytokines was increased. We then confirmed that different subtypes of microglia exhibit distinct sensitivities to I/R-induced ferroptosis. Adipose-derived stem cells derived exosome (ADSC-Exo) effectively decreased the susceptibility of M2 microglia to ferroptosis via Fxr2/Atf3/Slc7a11, suppressing the inflammatory microenvironment and promoting neuronal survival. Furthermore, through plasmid engineering, a more efficient M2 microglia-targeted exosome, termed M2pep-ADSC-Exo, was developed. In vivo and in vitro experiments demonstrated that M2pep-ADSC-Exo exhibits significant targeting specificity for M2 microglia, further inhibiting M2 microglia ferroptosis and improving neurological function in ischemic stroke mice. CONCLUSION: Collectively, we illustrated a novel potential therapeutic mechanism that Fxr2 in ADSC-Exo could alleviate the M2 microglia ferroptosis via regulating Atf3/Slc7all expression, hence inhibiting the inflammatory microenvironment, improving neurofunction recovery in cerebral I/R injury. We obtained a novel exosome, M2pep-ADSC-Exo, through engineered modification, which exhibits improved targeting capabilities toward M2 microglia. This provides a new avenue for the treatment of stroke.


Assuntos
Exossomos , Ferroptose , AVC Isquêmico , Camundongos Endogâmicos C57BL , Microglia , Animais , Exossomos/metabolismo , Microglia/metabolismo , Camundongos , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Ferroptose/efeitos dos fármacos , Masculino , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Modelos Animais de Doenças , Citocinas/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia
6.
FASEB J ; 38(8): e23613, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661048

RESUMO

The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.


Assuntos
Tecido Adiposo , Macrófagos , PPAR gama , Rosiglitazona , Transplante Autólogo , Animais , PPAR gama/metabolismo , PPAR gama/genética , Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Rosiglitazona/farmacologia , Masculino , Diferenciação Celular , Adipogenia , Adipócitos/metabolismo , Camundongos , Ratos
7.
ACS Nano ; 18(11): 8125-8142, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451090

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of the articular cartilage and inflammation. Mesenchymal stem cells' (MSCs) transplantation in OA treatment is emerging, but its clinical application is still limited by the low efficiency in oriented differentiation. In our study, to improve the therapeutic efficiencies of MSCs in OA treatment by carbonic anhydrase IX (CA9) siRNA (siCA9)-based inflammation regulation and Kartogenin (KGN)-based chondrogenic differentiation, the combination strategy of MSCs and the nanomedicine codelivering KGN and siCA9 (AHK-CaP/siCA9 NPs) was used. In vitro results demonstrated that these NPs could improve the inflammatory microenvironment through repolarization of M1 macrophages to the M2 phenotype by downregulating the expression levels of CA9 mRNA. Meanwhile, these NPs could also enhance the chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) by upregulating the pro-chondrogenic TGF-ß1, ACAN, and Col2α1 mRNA levels. Moreover, in an advanced OA mouse model, compared with BMSCs alone group, the lower synovitis score and OARSI score were found in the group of BMSCs plus AHK-CaP/siCA9 NPs, suggesting that this combination approach could effectively inhibit synovitis and promote cartilage regeneration in OA progression. Therefore, the synchronization of regulating the inflammatory microenvironment through macrophage reprogramming (CA9 gene silencing) and promoting MSCs oriented differentiation through a chondrogenic agent (KGN) may be a potential strategy to maximize the therapeutic efficiency of MSCs for OA treatment.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Sinovite , Camundongos , Animais , Condrogênese , Nanomedicina , Osteoartrite/tratamento farmacológico , Diferenciação Celular , Inflamação/metabolismo , Sinovite/metabolismo , RNA Mensageiro/metabolismo
8.
Adv Sci (Weinh) ; 11(17): e2302988, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430538

RESUMO

Peripheral nerve injury (PNI) remains a challenging area in regenerative medicine. Nerve guide conduit (NGC) transplantation is a common treatment for PNI, but the prognosis of NGC treatment is unsatisfactory due to 1) neuromechanical unmatching and 2) the intra-conduit inflammatory microenvironment (IME) resulting from Schwann cell pyroptosis and inflammatory-polarized macrophages. A neuromechanically matched NGC composed of regenerated silk fibroin (RSF) loaded with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (P:P) and dimethyl fumarate (DMF) are designed, which exhibits a matched elastic modulus (25.1 ± 3.5 MPa) for the peripheral nerve and the highest 80% elongation at break, better than most protein-based conduits. Moreover, the NGC can gradually regulate the intra-conduit IME by releasing DMF and monitoring sciatic nerve movements via piezoresistive sensing. The combination of NGC and electrical stimulation modulates the IME to support PNI regeneration by synergistically inhibiting Schwann cell pyroptosis and reducing inflammatory factor release, shifting macrophage polarization from the inflammatory M1 phenotype to the tissue regenerative M2 phenotype and resulting in functional recovery of neurons. In a rat sciatic nerve crush model, NGC promoted remyelination and functional and structural regeneration. Generally, the DMF/RSF/P:P conduit provides a new potential therapeutic approach to promote nerve repair in future clinical treatments.


Assuntos
Fibroínas , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Animais , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Ratos , Traumatismos dos Nervos Periféricos/terapia , Fibroínas/química , Fibroínas/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Regeneração Tecidual Guiada/métodos , Inflamação , Alicerces Teciduais/química , Nervo Isquiático/lesões
9.
J Biomater Sci Polym Ed ; 35(9): 1379-1399, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38529842

RESUMO

Periodontitis is a chronic inflammatory disease raising the risks of tooth-supporting structures destruction and even tooth loss. The way to reconstruct periodontal bone tissues in inflammatory microenvironment has been long in demand for periodontitis treatment. In this study, the lycium barbarum glycopeptide (LbGP) loaded gelatin-based scaffolds were fabricated for periodontitis treatment. Gelatin microspheres with suitable size were prepared by emulsification and gathered by oxidized sodium alginate to prepare heterogeneous bilayer gelatin-based scaffolds, and then they were loaded with LbGP. The prepared scaffolds possessed interconnected porous microstructures, good degradation properties, sufficient mechanical properties, sustained release behavior and well biocompatibility. In vitro experiments suggested that the LbGP loaded gelatin-based scaffolds could inhibit the expression of inflammatory factors (IL-1ß, IL-6, and TNF-α), promote the expression of anti-inflammatory factor (IL-10), and the expression of osteogenic markers (BMP2, Runx2, ALP, and OCN) in PDLSCs under the LPS-stimulated inflammatory microenvironment. Moreover, in rat periodontitis models, the LbGP gelatin-based scaffolds would reduce the alveolar bone resorption of rats, increase the collagen fiber content of periodontal membrane, alleviate local inflammation and improve the expression of osteogenesis-related factors. Therefore, the LbGP loaded gelatin-based scaffolds in this study will provide a potential therapeutic strategy for periodontitis treatment.


Assuntos
Gelatina , Periodontite , Alicerces Teciduais , Gelatina/química , Periodontite/tratamento farmacológico , Periodontite/terapia , Animais , Alicerces Teciduais/química , Emulsões/química , Ratos , Osteogênese/efeitos dos fármacos , Preparações de Ação Retardada/química , Humanos , Masculino , Ratos Sprague-Dawley , Porosidade , Lycium/química , Liberação Controlada de Fármacos , Microesferas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem
10.
Bioeng Transl Med ; 9(2): e10619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435813

RESUMO

Refractory diabetic wounds are associated with high incidence, mortality, and recurrence rates and are a devastating and rapidly growing clinical problem. However, treating these wounds is difficult owing to uncontrolled inflammatory microenvironments and defective angiogenesis in the affected areas, with no established effective treatment to the best of our knowledge. Herein, we optimized a dual functional therapeutic agent based on the assembly of LL-37 peptides and diblock copolymer poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS). The incorporation of PEG-PPS enabled responsive or controlled LL-37 peptide release in the presence of reactive oxygen species (ROS). LL-37@PEG-PPS nanomicelles not only scavenged excessive ROS to improve the microenvironment for angiogenesis but also released LL-37 peptides and protected them from degradation, thereby robustly increasing angiogenesis. Diabetic wounds treated with LL-37@PEG-PPS exhibited accelerated and high-quality wound healing in vivo. This study shows that LL-37@PEG-PPS can restore beneficial angiogenesis in the wound microenvironment by continuously providing angiogenesis-promoting signals. Thus, it may be a promising drug for improving chronic refractory wound healing.

11.
Front Oncol ; 14: 1283008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357203

RESUMO

Lung cancer treatment has transitioned fully into the era of immunotherapy, yielding substantial improvements in survival rate for patients with advanced non-small cell lung cancer (NSCLC). In this report, we present a case featuring a rare epidermal growth factor receptor (EGFR) mutation accompanied by high programmed death-ligand 1 (PD-L1) expression, demonstrating remarkable therapeutic efficacy through a combination of immunotherapy and chemotherapy. A 77-year-old male with no family history of cancer suffered from upper abdominal pain for more than half months in August 2020 and was diagnosed with stage IV (cT3N3M1c) lung squamous cell carcinoma (LUSC) harboring both a rare EGFR p.G719C mutation and high expression of PD-L1 (tumor proportion score [TPS] = 90%). Treatment with the second-generation targeted therapy drug Afatinib was initiated on September 25, 2020. However, resistance ensued after 1.5 months of treatment. On November 17, 2020, immunotherapy was combined with chemotherapy (Sintilimab + Albumin-bound paclitaxel + Cisplatin), and a CT scan conducted three months later revealed significant tumor regression with a favorable therapeutic effect. Subsequently, the patient received one year of maintenance therapy with Sintilimab, with follow-up CT scans demonstrating subtle tumor shrinkage (stable disease). This case provides evidence for the feasibility and efficacy of immunotherapy combined with chemotherapy in the treatment of EGFR-mutated and PD-L1 highly expressed LUSC.

12.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396677

RESUMO

Urokinase plasminogen activator receptor (uPAR) encoded by the PLAUR gene is known as a clinical marker for cell invasiveness in glioblastoma multiforme (GBM). It is additionally implicated in various processes, including angiogenesis and inflammation within the tumor microenvironment. However, there has not been a comprehensive study that depicts the overall functions and molecular cooperators of PLAUR with respect to intra-tumoral subtypes of GBM. Using single-cell RNA sequencing data from 37 GBM patients, we identified PLAUR as a marker gene for two distinct subtypes in GBM. One subtype is featured by inflammatory activities and the other subtype is marked by ECM remodeling processes. Using the whole-transcriptome data from single cells, we are able to uncover the molecular cooperators of PLAUR for both subtypes without presuming biological pathways. Two protein networks comprise the molecular context of PLAUR, with each of the two subtypes characterized by a different dominant network. We concluded that targeting PLAUR directly influences the mechanisms represented by these two protein networks, regardless of the subtype of the targeted cell.


Assuntos
Glioblastoma , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Humanos , Glioblastoma/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Microambiente Tumoral/genética , Análise da Expressão Gênica de Célula Única , Biomarcadores Tumorais
13.
J Drug Target ; 32(4): 381-392, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38321981

RESUMO

Rheumatoid arthritis is a chronic and complex autoimmune disease that is marked by an inflammatory response, synovial hyperplasia, vascularisation, fascial formation, cartilage and bone destruction, which can lead to joint deformity and even loss of function, ultimately affecting a person's health and quality of life. Although the pathogenesis of RA is unclear, growing evidence suggests that inflammation-associated cells infiltrate joints, causing tissue damage, inflammation and pain. This disruption in the balance between host tolerance and immune homeostasis the progression of RA. Existing drug therapy and surgical treatments for RA are unable to completely cure the disease or reverse its accelerated progression. Therefore, the design and development of an appropriate and effective drug delivery system will substantially improve the therapeutic effect. In this review, by describing the inflammatory microenvironment of rheumatoid arthritis and the associated inflammatory cells, the progress of targeting strategies and applications of nanotechnology in the disease is summarised, which will be helpful in providing new ideas for the subsequent treatment of rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Nanomedicina , Humanos , Qualidade de Vida , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
14.
Exp Neurol ; 373: 114682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199509

RESUMO

Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Neurônios , Quimiocinas , Medula Espinal
15.
Bioact Mater ; 33: 545-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38162513

RESUMO

Osteoarthritis (OA) is a common chronic inflammatory disorder. Effective remodeling of inflammatory microenvironment in the joint is a promising strategy to prevent OA. However, current drugs remain unsatisfactory due to a lack of targeted and effective ways for relieving inflammatory conditions in OA joints. Bortezomib (BTZ), a proteasome inhibitor, could effectively inhibit proinflammatory cytokines but with poor accumulation in the inflammatory tissues. To overcome the shortcomings of BTZ delivery and to improve the efficacy of OA therapy, herein, we designed a novel nanomedicine (denoted as BTZ@PTK) by the co-assembly of BTZ and an amphiphilic copolymer (denoted as PTK) with ROS-cleaved thioketal (TK) linkages. The TK units in BTZ@PTK are first cleaved by the excessive ROS at OA sites, and then triggered the controlled release of BTZ, resulting in the accurate delivery and the inflammatory microenvironment remodeling. Accordingly, BTZ@PTK suppressed ROS generation and proinflammatory cytokines while promoting M1 macrophage apoptosis in lipopolysaccharide (LPS)-activated RAW264.7 macrophages or LPS/IFN-γ-treated primary macrophages, which leads to a better effect than BTZ. In OA mice, BTZ@PTK passively accumulates into inflamed joints to attenuate pain sensitivity and gait abnormality. Importantly, BTZ@PTK treatment successfully ameliorates synovitis with the reduction of synovial hyperplasia and synovitis scores by suppressing M1 macrophage polarization and promoting M1 macrophage apoptosis in the synovium, thereby delaying cartilage damage. Collectively, BTZ@PTK can effectively modulate inflammatory microenvironment for OA recession by activating M1 macrophage apoptosis and inhibiting M1macrophage-mediated inflammatory response.

16.
J Clin Periodontol ; 51(2): 196-208, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38088448

RESUMO

AIM: To reveal the cellular composition and molecular environment of the periodontal and peri-implant inflammatory infiltrates through a single-cell sequencing technique, which may explain the pathological difference between these two diseases. A special focus was placed on the phenotypes and potential roles of neutrophils and fibroblasts in peri-implant/periodontal tissue immunity. MATERIALS AND METHODS: High-throughput single-cell transcriptomic profiling of peri-implant tissues from patients with peri-implantitis as well as periodontal tissues from patients with periodontitis and healthy donors was performed. Immunofluorescence analysis was carried out to further validate the identified cell subtypes and their involvement in peri-implantitis and periodontitis. RESULTS: Based on our single-cell resolution analysis, a quantified proportional increase of neutrophil (Neu) subtypes was shown in peri-implantitis. Among these, a predominance of Neutro_CXCR2 was revealed. We also found the involvement of inflammation-promoting fibroblasts as well as a predominance of CXCL8+ fibroblast-CXCR2+ neutrophil interaction in peri-implantitis. CONCLUSIONS: Our study indicated that the predominance of CXCL8+ fibroblast-CXCR2+ neutrophil interaction might underline the enhanced host response in peri-implantitis compared with periodontitis. This information offers a molecular basis by which fibroblast and neutrophil subtypes might be diagnostically and therapeutically targeted in peri-implantitis.


Assuntos
Implantes Dentários , Peri-Implantite , Periodontite , Humanos , Neutrófilos , Inflamação , Periodontite/patologia , Fibroblastos
17.
Small ; 20(10): e2305659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37884477

RESUMO

Spinal cord injury (SCI) is a severe neurological disorder characterized by significant disability and limited treatment options. Mitigating the secondary inflammatory response following the initial injury is the primary focus of current research in the treatment of SCI. CCL2 (C─C motif chemokine ligand 2) serves as the primary regulator responsible for inflammatory chemotaxis of the majority of peripheral immune cells, blocking the CCL2-CCR2 (C─C chemokine receptor type 2) axis has shown considerable therapeutic potential for inflammatory diseases, including SCI. In this study, it presents a multifunctional biomimetic nanoplatform (CCR2-MM@PLGA/Cur) specifically designed to target the CCL2-CCR2 axis, which consisted of an engineered macrophage membrane (MM) coating with enhanced CCR2 expression and a PLGA (poly (lactic-co-glycolic acid)) nanoparticle that encapsulated therapeutic drugs. CCR2 overexpression on MM not only enhanced drug-targeted delivery to the injury site, but also attenuated macrophage infiltration, microglia pro-inflammatory polarization, and neuronal apoptosis by trapping CCL2. Consequently, it facilitated neural regeneration and motor function recovery in SCI mice, enabling a comprehensive treatment approach for SCI. The feasibility and efficacy of this platform are confirmed through a series of in vitro and in vivo assays, offering new insights and potential avenues for further exploration in the treatment of SCI.


Assuntos
Nanopartículas , Traumatismos da Medula Espinal , Camundongos , Animais , Quimiocina CCL2/metabolismo , Doenças Neuroinflamatórias , Macrófagos/metabolismo , Traumatismos da Medula Espinal/terapia
18.
Environ Pollut ; 342: 123048, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036089

RESUMO

Biomass exposure is a significant environmental risk factor for COPD, but the underlying mechanisms have not yet been fully elucidated. Inflammatory microenvironment has been shown to drive the development of many chronic diseases. Pollution exposure can cause increased levels of inflammatory factors in the lungs, leading to an inflammatory microenvironment which is prevalent in COPD. Our findings revealed that IL-17F was elevated in COPD, while exposure to biomass led to increased expression of IL-17F in both alveolar epithelial and macrophage cells in mice. Blocking IL-17F could alleviate the lung inflammation induced by seven days of biomass exposure in mice. We employed a transwell co-culture system to simulate the microenvironment and investigate the interactions between MLE-12 and MH-S cells. We demonstrated that anti-IL-17F antibody attenuated the inflammatory responses induced by BRPM2.5 in MLE-12 and MH-S co-cultured with BRPM2.5-MLE-12, which reduced inflammatory changes in microenvironment. We found that IL-17RC, an important receptor for IL-17F, played a key role in the interactions. Knockout of IL-17RC in MH-S resulted in inhibited IL-17F signaling and attenuated inflammatory response after MH-S co-culture with BRPM2.5-MLE-12. Our investigation suggests that BRPM2.5 induces lung epithelial-macrophage interactions via IL-17F/IL-17RC axis regulating the inflammatory response. These results may provide a novel strategy for effective prevention and treatment of biomass-related COPD.


Assuntos
Interleucina-17 , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Receptores de Interleucina-17/metabolismo , Biomassa , Camundongos Knockout , Material Particulado/toxicidade
19.
Phytomedicine ; 123: 155212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029626

RESUMO

BACKGROUND: Traditional Chinese medicine prescription sini decoction (SND) can alleviate inflammation, improve microcirculation, and modulate immune status in sepsis patients. However, its underlying mechanisms remain unclear, and therapeutic effects may vary among individuals. PURPOSE: Through a comprehensive and systematic network pharmacology analysis, the purpose of this study is to investigate the therapeutic mechanisms of SND in treating sepsis. METHODS: An analysis of WGCNA identified CX3CR1 as a key gene influencing sepsis prognosis. A drug-active component-target network for SND was created using the traditional Chinese medicine systems pharmacology (TCMSP) database and Cytoscape software. Shared targets between SND and CX3CR1 high-expression gene modules were found through the GEO database. Gene module functionality was analyzed using GO, KEGG, GSEA, and GSVA. Unsupervised clustering of sepsis patients was performed based on the ferroptosis gene set, and immune cell interactions and mechanisms were explored using CIBERSORT, single-cell sequencing, and intercellular communication analysis. RESULTS: This study demonstrates that high expression of CX3CR1 improves survival rates in sepsis patients and is associated with immune cell signaling pathways. SND contains 116 active components involved in oxidative stress and lipid metabolism pathways. HMOX1, a co-expressed gene in SND and CX3CR1 high-expression gene module, plays a crucial role in sepsis survival. Unsupervised clustering analysis classified sepsis patients into three clusters based on the ferroptosis gene set, revealing differences in immune cell expression and involvement in heme metabolism pathways. Notably, intercellular interactions among immune cells primarily occur through paracrine and autocrine mechanisms in MIF, GALECTIN, and IL16 signaling pathways, modulating the immune-inflammatory microenvironment in sepsis. CONCLUSIONS: This study identifies CX3CR1 as a crucial molecule impacting sepsis prognosis through WGCNA analysis. It reveals that SND's active component, quercetin and kaempferol, target HMOX1 via related pathways to regulate heme metabolism, reduce inflammation, inhibit ferroptosis, and improve immune function, ultimately improving sepsis prognosis. These findings offer a solid pharmacological foundation and potential therapeutic targets for SND in treating sepsis.


Assuntos
Medicamentos de Ervas Chinesas , Sepse , Humanos , Farmacologia em Rede , Multiômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Sepse/tratamento farmacológico , Inflamação/tratamento farmacológico , Heme , Simulação de Acoplamento Molecular
20.
Adv Sci (Weinh) ; 11(10): e2303341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145352

RESUMO

High-fat diet (HFD)-induced obesity is a crucial risk factor for metabolic syndrome, mainly due to adipose tissue dysfunctions associated with it. However, the underlying mechanism remains unclear. This study has used genetic screening to identify an obesity-associated human lncRNA LINK-A as a critical molecule bridging the metabolic microenvironment and energy expenditure in vivo by establishing the HFD-induced obesity knock-in (KI) mouse model. Mechanistically, HFD LINK-A KI mice induce the infiltration of inflammatory factors, including IL-1ß and CXCL16, through the LINK-A/HB-EGF/HIF1α feedback loop axis in a self-amplified manner, thereby promoting the adipose tissue microenvironment remodeling and adaptive thermogenesis disorder, ultimately leading to obesity and insulin resistance. Notably, LINK-A expression is positively correlated with inflammatory factor expression in individuals who are overweight. Of note, targeting LINK-A via nucleic acid drug antisense oligonucleotides (ASO) attenuate HFD-induced obesity and metabolic syndrome, pointing out LINK-A as a valuable and effective therapeutic target for treating HFD-induced obesity. Briefly, the results reveale the roles of lncRNAs (such as LINK-A) in remodeling tissue inflammatory microenvironments to promote HFD-induced obesity.


Assuntos
Resistência à Insulina , Síndrome Metabólica , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...