Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.790
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; : 167441, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069011

RESUMO

As we previously revealed, major vault protein (MVP) is a virus-induced host factor, and its expression is crucial for innate immune responses. Nevertheless, the function of MVP in adaptive immunity is poorly known. Here, we demonstrate that Mvp knockout mice had attenuated antibody responses and reduced survival after rechallenge with homologous influenza A virus (IAV) relative to wild-type mice. Analysis of B cell populations showed that MVP promoted germinal center (GC) responses to develop optimal antiviral humoral immunity. Although Mvp-deficient T cells and dendritic cells (DCs) were not intrinsically damaged, MVP promoted activating effector T cells and T follicular helper responses and regulated specific DC subsets. These findings suggest that MVP directs an effective adaptive immune response against IAV by directly engaging in GC reactions or indirectly augmenting cellular immunity via innate immune pathways.

2.
Front Cell Infect Microbiol ; 14: 1431979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071166

RESUMO

Introduction: Screening for effective antiviral compounds from traditional Mongolian medicine not only aids in the research of antiviral mechanisms of traditional medicines, but is also of significant importance for the development of new antiviral drugs targeting influenza A virus. Our study aimed to establish high-throughput, rapid screening methods for antiviral compounds against influenza A virus from abundant resources of Mongolian medicine. Methods: The use of GFP-based reporter viruses plays a pivotal role in antiviral drugs screening by enabling rapid and precise identification of compounds that inhibit viral replication. Herein, a GFP-based reporter influenza A virus was used to identify potent anti-influenza compounds within traditional Mongolian medicine. Results: Our study led to the discovery of three active compounds: Cardamonin, Curcumin, and Kaempferide, all of which exhibited significant antiviral properties in vitro. Subsequent analysis confirmed that their effectiveness was largely due to the stimulation of the antiviral signaling pathways of host cells, rather than direct interference with the viral components, such as the viral polymerase. Discussion: This study showcased the use of GFP-based reporter viruses in high-throughput screening to unearth antiviral agents from traditional Mongolian medicine, which contains rich antiviral compounds and deserves further exploration. Despite certain limitations, fluorescent reporter viruses present substantial potential for antiviral drug screening research due to their high throughput and efficiency.


Assuntos
Antivirais , Avaliação Pré-Clínica de Medicamentos , Genes Reporter , Proteínas de Fluorescência Verde , Ensaios de Triagem em Larga Escala , Vírus da Influenza A , Medicina Tradicional da Mongólia , Replicação Viral , Antivirais/farmacologia , Antivirais/isolamento & purificação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Vírus da Influenza A/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Cães , Células Madin Darby de Rim Canino , Linhagem Celular
3.
Antibiotics (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061288

RESUMO

Influenza viruses are the leading cause of upper respiratory tract infections, leading to several global pandemics and threats to public health. Due to the continuous mutation of influenza A viruses, there is a constant need for the development of novel antiviral therapeutics. Recently, natural antimicrobial peptides have provided an opportunity for the discovery of anti-influenza molecules. Here, we designed several peptides based on pheasant cathelicidin and tested their antiviral activities and mechanisms against the H1N1 virus. Of note, the designed peptides Pc-4 and Pc-5 were found to inhibit replication of the H1N1 virus with an IC50 = 8.14 ± 3.94 µM and 2.47 ± 1.95 µM, respectively. In addition, the cyclic peptide Pc-5 was found to induce type I interferons and the expression of interferon-induced genes. An animal study showed that the cyclic peptide Pc-5 effectively inhibited H1N1 virus infection in a mouse model. Taken together, our work reveals a strategy for designing cyclic peptides and provides novel molecules with therapeutic potential against influenza A virus infection.

4.
Viruses ; 16(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39066291

RESUMO

The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Influenza Humana/transmissão , Influenza Humana/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Zoonoses/transmissão , Zoonoses/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Suínos
5.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066299

RESUMO

Influenza A viruses (IAV) utilize host proteins throughout their life cycle to infect and replicate in their hosts. We previously showed that host adaptive mutations in avian IAV PA help recruit host protein G-Rich RNA Sequence Binding Factor 1 (GRSF1) to the nucleoprotein (NP) 5' untranslated region (UTR), leading to the enhanced nuclear export and translation of NP mRNA. In this study, we evaluated the impact of GRSF1 in the viral life cycle. We rescued and characterized a 2009 pH1N1 virus with a mutated GRSF1 binding site in the 5' UTR of NP mRNA. Mutant viral growth was attenuated relative to pH1N1 wild-type (WT) in mammalian cells. We observed a specific reduction in the NP protein production and cytosolic accumulation of NP mRNAs, indicating a critical role of GRSF1 in the nuclear export of IAV NP mRNAs. Further, in vitro-transcribed mutated NP mRNA was translated less efficiently than WT NP mRNA in transfected cells. Together, these findings show that GRSF1 binding is important for both mRNA nuclear export and translation and affects overall IAV growth. Enhanced association of GRSF1 to NP mRNA by PA mutations leads to rapid virus growth, which could be a key process of mammalian host adaptation of IAV.


Assuntos
Transporte Ativo do Núcleo Celular , Biossíntese de Proteínas , RNA Mensageiro , RNA Viral , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Animais , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Vírus da Influenza A/metabolismo , Replicação Viral , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Regiões 5' não Traduzidas/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Células Madin Darby de Rim Canino , Células HEK293 , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Cães , Influenza Humana/virologia , Influenza Humana/metabolismo , Influenza Humana/genética , Mutação , Interações Hospedeiro-Patógeno/genética , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética
6.
Nutrients ; 16(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39064820

RESUMO

Selaginella tamariscina is a perennial plant that is used for diverse diseases. This study investigated whether Selaginella tamariscina has an antiviral effect against influenza A virus (IAV) infection. We used green fluorescent protein (GFP)-tagged influenza A virus (IAV) to examine the effect of Selaginella tamariscina ethanol extract (STE) on influenza viral infection. Fluorescence microscopy and flow cytometry showed that STE potently represses GFP expression by the virus, dose-dependently. STE significantly inhibited the expression of the IAV M2, NP, HA, NA, NS1, and PB2 proteins. Time-of-addition and hemagglutination inhibition assays showed that STE has an inhibitory effect on hemagglutinin and viral binding on the cells at an early infection time. In addition, STE exerted a suppressive effect on the neuraminidase activity of the H1N1 and H3N2 IAVs. Furthermore, dose-dependently, STE inhibited the cytopathic effect induced by H3N2, as well as by H1N1 IAV. Especially in the presence of 200 µg/mL STE, the cytopathic effect was completely blocked. Our findings suggest that STE has antiviral efficacy against IAV infection; thus, it could be developed as a natural IAV inhibitor.


Assuntos
Antivirais , Etanol , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Neuraminidase , Extratos Vegetais , Selaginellaceae , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Animais , Células Madin Darby de Rim Canino , Selaginellaceae/química , Cães , Vírus da Influenza A/efeitos dos fármacos , Hemaglutininas/metabolismo , Influenza Humana/tratamento farmacológico
7.
Microorganisms ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065060

RESUMO

Influenza A virus (IAV) infection often leads to influenza-associated fatalities, frequently compounded by subsequent bacterial infections, particularly Gram-negative bacterial co-infections. Lipopolysaccharide (LPS), a primary virulence factor in Gram-negative bacteria, plays a crucial role in influenza-bacterial co-infections. However, the precise pathogenic mechanisms underlying the synergistic effects of viral-bacterial co-infections remain elusive, posing significant challenges for disease management. In our study, we administered a combination of IAV and LPS to mice and examined associated parameters, including the lung function, lung index, wet/dry ratio, serum inflammatory cytokines, Nedd4L expression in lung tissue, and mRNA levels of inflammatory cytokines. Co-infection with IAV and LPS exacerbated lung tissue inflammation and amplified M1 macrophage expression in lung tissue. Additionally, we stimulated macrophages with IAV and LPS in vitro, assessing the inflammatory cytokine content in the cell supernatant and cytokine mRNA expression within the cells. This combined stimulation intensified the inflammatory response in macrophages and upregulated Nedd4L protein and mRNA expression. Subsequently, we used siRNA to knockdown Nedd4L in macrophages, revealing that suppression of Nedd4L expression alleviated the inflammatory response triggered by concurrent IAV and LPS stimulation. Collectively, these results highlight the pivotal role of Nedd4L in mediating the exacerbated inflammatory responses observed in IAV and LPS co-infections.

8.
Front Microbiol ; 15: 1401997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957616

RESUMO

Influenza A virus (IAV) is a negative-sense single-stranded RNA virus that causes acute lung injury and acute respiratory distress syndrome, posing a serious threat to both animal and human health. N6-methyladenosine (m6A), a prevalent and abundant post-transcriptional methylation of RNA in eukaryotes, plays a crucial regulatory role in IAV infection by altering viral RNA and cellular transcripts to affect viral infection and the host immune response. This review focuses on the molecular mechanisms underlying m6A modification and its regulatory function in the context of IAV infection and the host immune response. This will provide a better understanding of virus-host interactions and offer insights into potential anti-IAV strategies.

9.
mBio ; : e0180424, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037231

RESUMO

Influenza A virus (IAV) is well known for its pandemic potential. While current surveillance and vaccination strategies are highly effective, therapeutic approaches are often short-lived due to the high mutation rates of IAV. Recently, monoclonal antibodies (mAbs) have emerged as a promising therapeutic approach, both against current strains and future IAV pandemics. In addition to mAbs, several antibody-like alternatives exist, which aim to improve upon mAbs. Among these, Affimers stand out for their short development time, high expression levels in Escherichia coli, and animal-free production. In this study, we utilized the Affimer platform to isolate and produce specific and potent inhibitors of IAV. Using a monomeric version of the IAV trimeric hemagglutinin (HA) fusion protein, we isolated 12 Affimers that inhibit IAV infection in vitro. Two of these Affimers were characterized in detail and exhibited nanomolar-binding affinities to the target H3 HA protein, specifically binding to the HA1 head domain. Cryo-electron microscopy (cryo-EM), employing a novel spray approach to prepare cryo-grids, allowed us to image HA-Affimer complexes. Combined with functional assays, we determined that these Affimers inhibit IAV by blocking the interaction of HA with the host-cell receptor, sialic acid. Furthermore, these Affimers inhibited IAV strains closely related to the one used for their isolation. Overall, our results support the use of Affimers as a viable alternative to existing targeted therapies for IAV and highlight their potential as diagnostic reagents. IMPORTANCE: Influenza A virus is one of the few viruses that can cause devastating pandemics. Due to the high mutation rates of this virus, annual vaccination is required, and antivirals are short-lived. Monoclonal antibodies present a promising approach to tackle influenza virus infections but are associated with some limitations. To improve on this strategy, we explored the Affimer platform, which are antibody-like proteins made in bacteria. By performing phage-display against a monomeric version of influenza virus fusion protein, an established viral target, we were able to isolate Affimers that inhibit influenza virus infection in vitro. We characterized the mechanism of inhibition of the Affimers by using assays targeting different stages of the viral replication cycle. We additionally characterized HA-Affimer complex structure, using a novel approach to prepare samples for cryo-electron microscopy. Overall, these results show that Affimers are a promising tool against influenza virus infection.

10.
Heliyon ; 10(12): e32645, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988579

RESUMO

In the present study, we investigated whether baicalin could reduce the damage caused to RAW264.7 cells following infection with H6N6 avian influenza virus. In addition, we studied the expression of autophagy-related genes. The morphological changes in cells were observed by hematoxylin and eosin (H&E) staining, and the inflammatory factors in the cell supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to detect the levels of RAW264.7 autophagosomes, and western blotting and immunofluorescence were used to detect the protein expression of autophagy marker LC3. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the mRNA transcription levels of autophagy key factors. The results showed that different doses of baicalin significantly reduced the H6N6 virus-induced damage of RAW264.7 cells. The contents of interleukin (IL)-1ß, IL-2, IL-6, and tumor necrosis factor (TNF)-α in the cell supernatant significantly decreased. In addition, the protein expression of LC3 and Beclin-1, ATG12, ATG5 the mRNA levels were significantly decreased. This study showed that baicalin can reduce cell damage and affect the H6N6-induced autophagy level of RAW264.7 cells.

11.
Acta Pharmacol Sin ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987389

RESUMO

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

12.
Front Immunol ; 15: 1376395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975350

RESUMO

Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFß or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses.


Assuntos
Anticorpos Antivirais , Imunidade nas Mucosas , Vírus da Influenza A , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Animais , Camundongos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Feminino , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vírus Sinciciais Respiratórios/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas Combinadas/imunologia , Vacinas Combinadas/administração & dosagem , Humanos , Adenoviridae/imunologia , Adenoviridae/genética , Vetores Genéticos
13.
Talanta ; 278: 126568, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018763

RESUMO

Although molecular imprinting technology has been widely used in the construction of virus sensors, it is still a great challenge to identify subtypes viruses specifically because of their high similarity in morphology, size and structure. Here, a monoclonal molecular imprinted polymers (MIPs) sensor for recognition of H5N1 is constructed to permit the accurate distinguishing of H5N1 from other influenza A virus (IAV) subtypes. Firstly, H5N1 are immobilized on magnetic microspheres to produce H5N1-MagNPs, then the high affinity nanogel H5N1-MIPs is prepared by solid phase imprinting technique. When H5N1-MIPs is combined with MagNP-H5N1, different concentrations of H5N1 are added for competitive substitution. The quantitative detection of H5N1 is realized by the change of fluorescence intensity of supernatant. As expected, the constructed sensor shows satisfactory selectivity, and can identify the target virus from highly similar IAV subtypes, such as H1N1, H7N9 and H9N2. The sensor was highly sensitive, with a detection limit of 0.58 fM, and a selectivity factor that is comparable to that of other small MIPs sensors is achieved. In addition, the proposed sensor is cheap, with a cost of only RMB 0.08 yuan. The proposed monoclonal sensor provides a new method for the specific recognition of designated virus subtype, which is expected to be used for large-scale screening and accurate treatment of infected people.

14.
J Pineal Res ; 76(5): e12991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039850

RESUMO

Although rapid progression and a poor prognosis in influenza A virus (IAV) infection-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are frequently associated with metabolic energy disorders, the underlying mechanisms and rescue strategies remain unknown. We herein demonstrated that the level of resting energy expenditure increased significantly in IAV-induced AECOPD patients and that cellular energy exhaustion emerged earlier and more significantly in IAV-infected primary COPD bronchial epithelial (pDHBE) cells. The differentially expressed genes were enriched in the oxidative phosphorylation (OXPHOS) pathway; additionally, we consistently uncovered much earlier ATP exhaustion, more severe mitochondrial structural destruction and dysfunction, and OXPHOS impairment in IAV-inoculated pDHBE cells, and these changes were rescued by melatonin. The level of OMA1-dependent cleavage of OPA1 in the mitochondrial inner membrane and the shift in energy metabolism from OXPHOS to glycolysis were significantly increased in IAV-infected pDHBE cells; however, these changes were rescued by OMA1-siRNA or melatonin further treatment. Collectively, our data revealed that melatonin rescued IAV-induced cellular energy exhaustion via OMA1-OPA1-S to improve the clinical prognosis in COPD. This treatment may serve as a potential therapeutic agent for patients in which AECOPD is induced by IAV.


Assuntos
Metabolismo Energético , GTP Fosfo-Hidrolases , Vírus da Influenza A , Melatonina , Doença Pulmonar Obstrutiva Crônica , Humanos , Metabolismo Energético/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/metabolismo , Influenza Humana/tratamento farmacológico , Melatonina/farmacologia , Metaloendopeptidases , Fosforilação Oxidativa/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
15.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000138

RESUMO

The ongoing battle against viral pandemics continues, with the possibility of future outbreaks. The search for effective antiviral compounds that can combat a diverse range of viruses continues to be a focal point of research. This study investigated the efficacy of two natural antimicrobial peptides (AMPs) (lactoferricin and LL-37), two synthetic AMPs (melimine and Mel4), and nine AMP mimics (758, 1091, 1096, 1083, 610, NAPL, 3-BIPL, 4-BIPL, and Sau-22) against influenza A virus strains H1N1 and H3N2, human adenovirus 5 (HAdV-5), and murine norovirus 1 (MNV-1). These compounds were tested using virus pre-treatment, cell pre-treatment, or post-cell entry treatment assays, electron microscopy, and circular dichroism (CD), alongside evaluations of cytotoxicity against the host cells. After virus pre-treatment, the AMP mimics 610 and Sau-22 had relatively low IC50 values for influenza strains H1N1 (2.35 and 6.93 µM, respectively) and H3N2 (3.7 and 5.34 µM, respectively). Conversely, natural and synthetic AMPs were not active against these strains. For the non-enveloped viruses, the AMP Mel4 and mimic 1083 had moderate activity against HAdV-5 (Mel4 IC50 = 47.4 µM; 1083 IC50 = 47.2 µM), whereas all AMPs, but none of the mimics, were active against norovirus (LL-37 IC50 = 4.2 µM; lactoferricin IC50 = 23.18 µM; melimine IC50 = 4.8 µM; Mel4 IC50 = 8.6 µM). Transmission electron microscopy demonstrated that the mimics targeted the outer envelope of influenza viruses, while the AMPs targeted the capsid of non-enveloped viruses. CD showed that Mel4 adopted an α-helical structure in a membrane mimetic environment, but mimic 758 remained unstructured. The diverse activity against different virus groups is probably influenced by charge, hydrophobicity, size, and, in the case of natural and synthetic AMPs, their secondary structure. These findings underscore the potential of peptides and mimics as promising candidates for antiviral therapeutics against both enveloped and non-enveloped viruses.


Assuntos
Antivirais , Norovirus , Norovirus/efeitos dos fármacos , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/química , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Cães , Adenoviridae/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química
16.
ACS Nano ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013014

RESUMO

Viral ribonucleoproteins (vRNPs) are the cornerstones of viral proliferation, as they form the macromolecular complexes that are responsible for the transcription and replication of most single-stranded RNA viruses. The influenza A virus (IAV) polymerase catalyzes RNA synthesis within the context of vRNPs where genomic viral RNA (vRNA) is packaged by the viral nucleoprotein (NP). We used high-speed atomic force microscopy and electron microscopy to study the conformational dynamics of individual IAV recombinant RNPs (rRNPs) during RNA synthesis. The rRNPs present an annular organization that allows for the real-time tracking of conformational changes in the NP-vRNA template caused by the advancing polymerase. We demonstrate that the rRNPs undergo a well-defined conformational cycle during RNA synthesis, which can be interpreted in light of previous transcription models. We also present initial estimations of the average RNA synthesis rate in the rRNP and its dependence on the nucleotide concentration and stability of the nascent RNA secondary structures. Furthermore, we provide evidence that rRNPs can perform consecutive cycles of RNA synthesis, accounting for their ability to recycle and generate multiple copies of RNA.

17.
J Med Virol ; 96(7): e29768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978388

RESUMO

The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.


Assuntos
Pulmão , Infecções por Orthomyxoviridae , Transdução de Sinais , Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Nervo Vago/metabolismo , Camundongos , Infecções por Orthomyxoviridae/virologia , Pulmão/virologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Humanos , Camundongos Knockout
18.
Cell Commun Signal ; 22(1): 372, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044278

RESUMO

Many DNA viruses develop various strategies to inhibit cell death to facilitate their replication. However, whether influenza A virus (IAV), a fast-replicating RNA virus, attenuates cell death remains unknown. Here, we report that IAV infection induces TAK1 phosphorylation in a murine alveolar epithelial cell line (LET1) and a murine fibroblastoma cell line (L929). The TAK1-specific inhibitor 5Z-7-Oxzeneonal (5Z) and TAK1 knockout significantly enhance IAV-induced apoptosis, as evidenced by increased PARP, caspase-8, and caspase-3 cleavage. TAK1 inhibition also increases necroptosis as evidenced by increased RIPK1S166, RIPK3T231/S232, and MLKLS345 phosphorylation. Mechanistically, TAK1 activates IKK, which phosphorylates RIPK1S25 and inhibits its activation. TAK1 also activates p38 and its downstream kinase MK2, which phosphorylates RIPK1S321 but does not affect RIPK1 activation. Further investigation revealed that the RIPK1 inhibitor Nec-1 and RIPK1 knockout abrogate IAV-induced apoptosis and necroptosis; re-expression of wild-type but not kinase-dead (KD)-RIPK1 restores IAV-induced cell death. ZBP1 knockout abrogates IAV-induced cell death, whereas RIPK3 knockout inhibits IAV-induced necroptosis but not apoptosis. 5Z treatment enhances IAV-induced cell death and slightly reduces the inflammatory response in the lungs of H1N1 virus-infected mice and prolongs the survival of IAV-infected mice. Our study provides evidence that IAV activates TAK1 to suppress RIPK1-dependent apoptosis and necroptosis, and that RIPK3 is required for IAV-induced necroptosis but not apoptosis in epithelial cells.


Assuntos
Apoptose , MAP Quinase Quinase Quinases , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Camundongos , Fosforilação , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/patologia , Linhagem Celular , Vírus da Influenza A/fisiologia , Camundongos Endogâmicos C57BL , Humanos
19.
Euro Surveill ; 29(30)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39056199

RESUMO

We investigated the thermostability of four European avian influenza A(H5N1) viruses in whole and semi-skimmed milk and their replication in bovine kidney and lung cells amid the current influenza A(H5N1) dairy cattle outbreak in the United States. Results showed strain-dependent differences in thermal inactivation, particularly in whole milk, and variable replication efficacy in lung cells. These findings support assessing the inactivation of European H5N1 viruses in milk and their replication in bovine cells, aiding biosafety protocols and public health measures.


Assuntos
Virus da Influenza A Subtipo H5N1 , Leite , Replicação Viral , Animais , Bovinos , Leite/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Inativação de Vírus , Temperatura Alta , Europa (Continente)/epidemiologia , Infecções por Orthomyxoviridae/virologia , Surtos de Doenças/prevenção & controle , Pulmão/virologia
20.
Microbiol Spectr ; : e0115324, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990032

RESUMO

Seasonal increase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus A/B (Flu A/B), and respiratory syncytial virus (RSV) require rapid diagnostic test methods for the management of respiratory tract infections. In this study, we compared the diagnostic accuracy of Savanna RVP4 (RVP4, QuidelOrtho) with Xpert Xpress Plus SARS-CoV-2/Flu/RSV (Xpert, Cepheid). Nasopharyngeal swabs from patients treated at a tertiary care hospital (Germany) were tested for SARS-CoV-2, Flu A/B, and RSV by RVP4 to assess diagnostic accuracy (reference standard: Xpert). The intra and inter assay precision of Ct-values was assessed by repeated test in triplicates (on day 1) and duplicates (days 2-3). All patients with a physician's order for a multiplex test for SARS-CoV-2, Flu, and RSV test were included. Duplicate swabs from the same patient, samples with a total volume ≤1 mL, or inappropriate shipment/storage were excluded. In total, 229 swabs were included between September 2023 and February 2024. The concordance between both tests was 96.5% (SARS-CoV-2), 98.7% (Flu A), and 99.6% (RSV). Flu B was not detected by both tests. The RVP4 test had a sensitivity of 85%-95% and a specificity of 100% for the detection of SARS-CoV-2, Flu A, and RSV. The intra and inter assay precision of Ct-values from RVP4 was 3% and 2% (SARS-CoV-2), 5% and 4% (Flu A), and 0% and 3% (RSV), respectively. The Savanna RVP4 has a favorable diagnostic accuracy for the detection of SARS-CoV-2, Flu A, and RSV. IMPORTANCE: We assessed the diagnostic accuracy of a new point-of-care test for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus A/B (Flu A/B), and respiratory syncytial virus (RSV). The new test has a concordance with the reference standard of 96.5% (SARS-CoV-2), 98.7% (Flu A), and 99.1% (RSV). The sensitivity of 85%-95% and specificity of 100% for the detection of SARS-CoV-2, Flu A, and RSV is comparable with similar nucleic acid amplification-based point of care tests but at lower costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...