Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Asian Nat Prod Res ; : 1-13, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885306

RESUMO

Three new prenylated C6-C3 compounds (1-3), together with two known prenylated C6-C3 compounds (4-5) and one known C6-C3 derivative (6), were isolated from the roots of Illicium brevistylum A. C. Smith. The structures of 1-3 were elucidated by spectroscopic methods including 1D and 2D NMR, HRESIMS, CD experiments and ECD calculations. The structure of illibrefunone A (1) was confirmed by single-crystal X-ray diffraction analysis. All compounds were evaluated in terms of their anti-inflammatory potential on nitric oxide (NO) generation in lipopolysaccharide-stimulated murine RAW264.7 macrophages and murine BV2 microglial cells, antiviral activity against Coxsackievirus B3 (CVB3) and influenza virus A/Hanfang/359/95 (H3N2). Compounds 3 and 4 exhibited potent inhibitory effects on the production of NO in RAW 264.7 cells with IC50 values of 20.57 and 12.87 µM respectively, which were greater than those of dexamethasone (positive control). Compounds 1 and 4-6 exhibited weak activity against Coxsackievirus B3, with IC50 values ranging from 25.87 to 33.33 µM.

2.
Biochem Biophys Res Commun ; 706: 149728, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479246

RESUMO

Influenza A virus is the cause of a widespread human disease with high morbidity and mortality rates. The influenza virus encodes non-structural protein 1 (NS1), an exceedingly multifunctional virulence component. NS1 plays essential roles in viral replication and evasion of the cellular innate immune system. Protein kinase RNA-activated also known as protein kinase R (PKR) phosphorylates translation initiation factor eIF-2α on serine 51 to inhibit protein synthesis in virus-infected mammalian cells. Consequently, PKR activation inhibits mRNA translation, which results in the assert of both viral protein synthesis and cellular and possibly apoptosis in response to virus infection. Host signaling pathways are important in the replication of influenza virus, but the mechanisms involved remain to be characterized. Herein, the structure of NS1 and PKR complex was determined using Cryo-EM. We found the N91, E94, and G95 residues of PKR bind directly with N188, D125, and K126, respectively, of NS1. Furthermore, the study shows that PKR peptide offers a potential treatment for Influenza A virus infections.


Assuntos
Vírus da Influenza A , eIF-2 Quinase , Animais , Humanos , eIF-2 Quinase/metabolismo , Proteínas não Estruturais Virais/química , Vírus da Influenza A/genética , Microscopia Crioeletrônica , Linhagem Celular , Antivirais/metabolismo , Replicação Viral , Mamíferos/metabolismo
3.
Molecules ; 28(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37959845

RESUMO

A novel method for synthesizing 1,2,4-triazole- and tetrazole-containing 4H-thiopyrano[2,3-b]quinolines using a new combination of the thio-Michael and aza-Morita-Baylis-Hillman reactions was developed. Target compounds were evaluated for their cytotoxicities and antiviral activities against influenza A/Puerto Rico/8/34 virus in MDCK cells. The compounds showed low toxicity and some exhibited moderate antiviral activity. Molecular docking identified the M2 channel and polymerase basic protein 2 as potential targets. We observed that the antiviral activity of thiopyrano[2,3-b]quinolines is notably affected by both the nature and position of the substituent within the tetrazole ring, as well as the substituent within the benzene moiety of quinoline. These findings contribute to the further search for new antiviral agents against influenza A viruses among derivatives of thiopyrano[2,3-b]quinoline.


Assuntos
Quinolinas , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Antivirais/farmacologia
4.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951290

RESUMO

AIMS: Swine respiratory disease (SRD) is a major disease complex in pigs that causes severe economic losses. SRD is associated with several intrinsic and extrinsic factors such as host health status, viruses, bacteria, and environmental factors. Particularly, it is known that many pathogens are associated with SRD to date, but most of the test to detect those pathogens can be normally investigated only one pathogen while taking time and labor. Therefore, it is desirable to develop rapidly and efficiently detectable methods those pathogens to minimize the damage caused by SRD. METHODS AND RESULTS: We designed a multiplex real-time RT-PCR (RT-qPCR) system to diagnose simultaneously 16 pathogens, including nine viruses and seven bacteria associated with SRD, on the basis of single qPCR and RT-qPCR assays reported in previous studies. Multiplex RT-qPCR system we designed had the same ability to single RT-qPCR without significant differences in detection sensitivity for all target pathogens at minimum to maximum genomic levels. Moreover, the primers and probes used in this system had highly specificity because the sets had not been detected pathogens other than the target and its taxonomically related pathogens. Furthermore, our data demonstrated that this system would be useful to detect a causative pathogen in the diagnosis using oral fluid from healthy pigs and lung tissue from pigs with respiratory disorders collected in the field. CONCLUSIONS: The rapid detection of infected animals from the herd using our system will contribute to infection control and prompt treatment in the field.


Assuntos
Doenças dos Suínos , Vírus , Animais , Suínos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças dos Suínos/microbiologia , Pulmão , Reação em Cadeia da Polimerase Multiplex/métodos , Bactérias
5.
Microbiol Resour Announc ; 12(11): e0043323, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37823648

RESUMO

An influenza virus strain, A/equine/Almaty/268/2020, was isolated from horses in southeast Kazakhstan in 2020. Here, we present the nearly complete genome sequence of this epidemic strain. This study was aimed at obtaining the complete genome sequence of the isolate.

6.
Viruses ; 15(9)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37766287

RESUMO

Canine infectious respiratory disease complex (CIRDC) is the primary cause of respiratory disease in the canine population and is caused by a wide array of viruses and bacterial pathogens with coinfections being common. Since its recognition in late 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been reported to cause respiratory disease in dogs. Therefore, the rapid detection and differentiation of SARS-CoV-2 from other common viral and bacterial agents is critical from a public health standpoint. Here, we developed and validated a panel of four one-step multiplex qPCR/RT-qPCR assays for the detection and identification of twelve pathogens associated with CIRDC (canine adenovirus-2, canine distemper virus, canine herpesvirus-1, canine influenza A virus, canine parainfluenza virus, canine pneumovirus, canine respiratory coronavirus, SARS-CoV-2, Bordetella bronchiseptica, Streptococcus equi subsp. zooepidemicus, Mycoplasma cynos, and M. canis), as well as the identification of three main CIV subtypes (i.e., H3N2, H3N8, and H1N1). All developed assays demonstrated high specificity and analytical sensitivity. This panel was used to test clinical specimens (n = 76) from CIRDC-suspected dogs. M. canis, M. cynos, and CRCoV were the most frequently identified pathogens (30.3%, 25.0%, and 19.7% of samples, respectively). The newly emerging pathogens CPnV and SARS-CoV-2 were detected in 5.3% of samples and coinfections were identified in 30.3%. This new multiplex qPCR/RT-qPCR panel is the most comprehensive panel developed thus far for identifying CIRDC pathogens, along with SARS-CoV-2.


Assuntos
COVID-19 , Canidae , Coinfecção , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Infecções Respiratórias , Cães , Animais , SARS-CoV-2/genética , Coinfecção/diagnóstico , Coinfecção/veterinária , Vírus da Influenza A Subtipo H3N2 , COVID-19/diagnóstico , COVID-19/veterinária , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/veterinária
7.
Math Biosci Eng ; 20(4): 6327-6333, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37161109

RESUMO

Various nonpharmaceutical interventions (NPIs) were implemented to alleviate the COVID-19 pandemic since its outbreak. The transmission dynamics of other respiratory infectious diseases, such as seasonal influenza, were also affected by these interventions. The drastic decline of seasonal influenza caused by such interventions would result in waning of population immunity and may trigger the seasonal influenza epidemic with the lift of restrictions during the post-pandemic era. We obtained weekly influenza laboratory confirmations from FluNet to analyse the resurgence patterns of seasonal influenza in China and the US. Our analysis showed that due to the impact of NPIs including travel restrictions between countries, the influenza resurgence was caused by influenza virus A in the US while by influenza virus B in China.


Assuntos
COVID-19 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , COVID-19/epidemiologia , China/epidemiologia , Surtos de Doenças
8.
Viruses ; 14(11)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36423127

RESUMO

Influenza virus infection may cause endothelial activation and dysfunction. However, it is still not known to what extent the influenza virus can dysregulate the expression of various endothelial proteins. The aim of the study is to identify the level of expression of endothelial nitric oxide synthase (eNOS), plasminogen activator inhibitor-1 (PAI-1), and tissue plasminogen activator (tPA) in the pulmonary vascular endothelium, as well as the concentration of PAI-1 and tPA in the blood plasma in Wistar rats. Animals were intranasally infected with rat-adapted influenza A(H1N1)pdm09 virus. The expression of eNOS, PAI-1 and tPA in the pulmonary vascular endothelium was determined by immunohistochemistry; the concentration of PAI-1 and tPA was analyzed by ELISA at 24 and 96 h post infection (hpi). Thus, the expression of eNOS in the pulmonary vascular endothelium decreased by 1.9-fold at 24 hpi and increased by 2-fold at 96 hpi. The expression of PAI-1 in the pulmonary vascular endothelium increased by 5.23-fold and 6.54-fold at 24 and 96 hpi, respectively. The concentration of PAI-1 in the blood plasma of the rats decreased by 3.84-fold at 96 hpi, but not at 24 hpi. The expression of tPA in the pulmonary vascular endothelium was increased 2.2-fold at 96 hpi. The obtained data indicate the development of endothelial dysfunction that is characterized by the dysregulation of endothelial protein expression in non-lethal and clinically non-severe experimental influenza virus infection.


Assuntos
Endotélio Vascular , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Animais , Ratos , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos Wistar , Ativador de Plasminogênio Tecidual/análise , Ativador de Plasminogênio Tecidual/metabolismo , Infecções por Orthomyxoviridae/metabolismo
9.
J Microbiol Immunol Infect ; 55(4): 598-610, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35650006

RESUMO

BACKGROUND: The purpose of this study was to examine the in vivo activity of rosmarinic acid (RA) - a phytochemical with antioxidant, anti-inflammatory, and antiviral properties - against influenza virus (IAV). An antibody-based kinase array and different in vitro functional assays were also applied to identify the mechanistic underpinnings by which RA may exert its anti-IAV activity. METHODS: We initially examined the potential efficacy of RA using an in vivo mouse model. A time-of-addition assay and an antibody-based kinase array were subsequently applied to investigate mechanism-of-action targets for RA. The hemagglutination inhibition assay, neuraminidase inhibition assay, and cellular entry assay were also performed. RESULTS: RA increased survival and prevented body weight loss in IAV-infected mice. In vitro experiments revealed that RA inhibited different IAV viruses - including oseltamivir-resistant strains. From a mechanistic point of view, RA downregulated the GSK3ß and Akt signaling pathways - which are known to facilitate IAV entry and replication into host cells. CONCLUSIONS: RA has promising preclinical efficacy against IAV, primarily by interfering with the GSK3ß and Akt signaling pathways.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Antivirais , Cinamatos , Depsídeos , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Oseltamivir , Proteínas Proto-Oncogênicas c-akt , Replicação Viral , Ácido Rosmarínico
10.
Probiotics Antimicrob Proteins ; 14(4): 760-766, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35536505

RESUMO

Weissella cibaria CMS1 (oraCMS1) has been commercially used in Korea as an oral care probiotic for several years. Human respiratory syncytial virus (RSV) and the influenza A virus (H1N1) are representative viruses that cause infantile lower respiratory tract infections. Rotavirus A (RVA) is the most common cause of diarrhea in infants and young children. Here, we aimed to evaluate the efficacy of the cell-free supernatant (CFS) of oraCMS1 in inactivating RSV, H1N1, and RVA in suspension as per ASTM (American Society for Testing and Materials) E1052-20. The mixture of oraCMS1 and these viruses was evaluated at contact times of 1, 2, and 4 h. Virucidal activity was measured using a 50% tissue culture infective dose assay (log10TCID50) after infecting the host cells with the viruses. The CFS of oraCMS1 inactivated RSV by up to 99.0% after 1 h and 99.9% after 2 and 4 h, and H1N1 and RVA were inactivated by up to 99.9% and 99.0% at 2 h, respectively. Although these in vitro results cannot be directly interpreted as implying clinical efficacy, our findings suggest that oraCMS1 provides a protective barrier against RSV, H1N1, and RVA, and therefore, it can help decrease the risk of respiratory tract and intestinal infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Probióticos , Rotavirus , Vírus , Criança , Pré-Escolar , Humanos , Lactente , Weissella
11.
Viruses ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215989

RESUMO

It has been established that blood vessels are a target for influenza virus; however, the mechanism by which virus affects the cardiovascular system remains unknown. The aim of the study is the identification of histological changes and changes in the functional activity of the pulmonary and mesenteric blood vessels of Wistar rats. Wistar rats were intranasally infected with the influenza A(H1N1)pdm09 virus. At 24 and 96 h post infection (hpi), histopathological changes were observed in lung tissues with the absence of histological changes in mesenteric tissues. The functional activity of pulmonary and mesenteric arteries was determined using wire myography. In pulmonary arteries, there was a tendency towards an increase in integral response to the vasodilator and a decrease in the integral response to the vasoconstrictor at 24 hpi (compared with control). At 96 hpi, a tendency towards a decrease in the integral response to the vasoconstrictor persisted, while the response to acetylcholine was slightly increased. The functional activity of the mesenteric blood vessels was inverted: a significant decrease in the integral response to the vasodilator and an increase in the response to the vasoconstrictor at 24 hpi were observed; at 96 hpi, the integral response to the vasoconstrictor persisted, while the response to the vasodilator remained significantly reduced. Obtained data indicate the development of endothelial dysfunction in non-lethal and clinically non-severe experimental influenza virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Pulmão/patologia , Artérias Mesentéricas/patologia , Infecções por Orthomyxoviridae/patologia , Células Epiteliais Alveolares/virologia , Animais , Imuno-Histoquímica , Pulmão/virologia , Masculino , Artérias Mesentéricas/virologia , Miografia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Ratos , Ratos Wistar
12.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614125

RESUMO

The use of vaccines is the most effective and reliable method for the prevention of viral infections. However, research on evaluation of effective therapeutic agents for use in treatment after infection is necessary. Zanamivir was administered through inhalation for treatment of pandemic influenza A/H1N1 in 2009. However, the emergence of drug-resistant strains can occur rapidly. Alloferon, an immunomodulatory drug developed as an NK cell activator, exerts antiviral effects against various viruses, particularly influenza viruses. Therefore, alloferon and zanamivir were administered in combination in an effort to improve the antiviral effect of zanamivir by reducing H1N1 resistance. First, we confirmed that administration of combined treatment would result in effective inhibition of viral proliferation in MDCK and A549 cells infected with H1N1. Production of IL-6 and MIP-1α in these cells and the activity of p38 MAPK and c-Jun that are increased by H1N1 were inhibited by combined treatment. Mice were then infected intranasally with H1N1, and examination of the antiviral efficacy of the alloferon/zanamivir combination was performed. The results showed that combined treatment after infection with H1N1 prevented weight loss, increased the survival rate, and improved lung fibrosis. Combined treatment also resulted in reduced infiltration of neutrophils and macrophages into the lungs. Combined treatment effectively inhibited the activity of p38 MAPK and c-Jun in lung tissue, which was increased by infection with H1N1. Therefore, the combination of alloferon/zanamivir effectively prevents the development of H1N1-mediated inflammation in the lungs by inhibiting the production of inflammatory mediators and migration of inflammatory cells into lung tissue.


Assuntos
Antivirais , Infecções por Orthomyxoviridae , Zanamivir , Animais , Humanos , Camundongos , Antivirais/farmacologia , Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1 , Neuraminidase , Oseltamivir/farmacologia , Zanamivir/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico
13.
J Crit Care Med (Targu Mures) ; 7(4): 302-307, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34934821

RESUMO

Acute Motor Axonal Neuropathy (AMAN) is an immune-mediated disorder of the peripheral nervous system, part of the spectrum of the Guillain-Barre syndrome (GBS). An infectious event most often triggers it reported a few weeks before the onset. The reported case is of a 56 years-old woman who developed acute motor axonal neuropathy three weeks after respiratory infection with influenza A virus subtype H1N1. Despite early treatment with plasmapheresis and intravenous immunoglobulins, the patient remained tetraplegic, mechanically ventilated for five months, with repetitive unsuccessful weaning trails. The probable cause was considered to be phrenic nerve palsy in the context of acute motor axonal neuropathy. This case highlights that acute motor axonal neuropathy is a severe and life-threatening form of Guillain-Barre syndrome associated with significant mortality and morbidity. Neurological and physical recovery strongly depend on the inter-professional effort in an intensive care unit and neurology professionals.

14.
Phytochemistry ; 192: 112935, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34478990

RESUMO

Thirteen compounds were isolated from the lipid-soluble extracts of Illicium ternstroemioides A. C. Smith, including eleven previously undescribed prenylated C6-C3 compounds, a previously undescribed prenylated C6-C3 derivative-abscisic acid ester hybrid, and a known compound (4S)-illicinone I. Their structures and configurations were mainly elucidated by spectroscopic analyses, CD experiments and X-ray crystallography. (2S,4R,11S)-4-O-methyl-12-chloroillifunone C, (2S,4R,11R)-2,3-dihydro-4-O-methyl illioliganfunone D, and illiternfunol A were found to exhibit weak activity against Coxsackievirus B3, with IC50 values ranging from 27.8 to 33.3 µM. Illiternone B exhibited more potent activities against Coxsackievirus B3 and influenza virus A than did its geometric isomer illiternone A, with IC50 values of 7.7 µM and 2.5 µM, respectively. None of these compounds displayed cytotoxic activities.


Assuntos
Illicium , Antivirais/farmacologia , Cristalografia por Raios X , Estrutura Molecular
15.
Transbound Emerg Dis ; 68(6): 3174-3179, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34288514

RESUMO

Influenza A virus (IAV) was a neglected swine pathogen in South America before the 2009 H1N1 pandemic (A(H1N1)pdm2009). The A(H1N1)pdm2009 strain has widely spread among the Chilean swine population and co-circulates with endemic H1N2 and H3N2 viruses. The presence of IAV as a swine pathogen in Chilean swine before the 2009 pandemic is unknown. To understand the IAV in swine prior to 2009, aY retrospective study of samples from pigs affected with respiratory diseases was conducted. Ninety formalin-fixed and paraffin-embedded lung tissues belonging to 21 intensive pig production companies located in five different administrative regions of Chile, collected between 2005 and 2008, were evaluated. The tissues were tested by immunohistochemistry (IHC), identifying that 9 out of 21 farms (42.8%) and 31 out of 90 (34.4%) samples were IAV positive. Only three out of the 31 IHC-positive samples were positive upon RNA extraction and rtRT-PCR analysis. Partial nucleotide sequences were obtained from one sample and characterized as an H3N2 subtype closely related to a human seasonal H3N2 IAVs that circulated globally in the mid-90s. These results indicate that IAV was circulating in swine before 2009 and highlight the value of conducting retrospective studies through genomic strategies to analyse historical samples.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Chile/epidemiologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Filogenia , Estudos Retrospectivos , Suínos , Doenças dos Suínos/epidemiologia
16.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204514

RESUMO

Nanodiamond (ND) has recently emerged as a potential nanomaterial for nanovaccine development. Here, a plant-based haemagglutinin protein (H5.c2) of A/H5N1 virus was conjugated with detonation NDs (DND) of 3.7 nm in diameter (ND4), and high-pressure and high-temperature (HPHT) oxidative NDs of ~40-70 nm (ND40) and ~100-250 nm (ND100) in diameter. Our results revealed that the surface charge, but not the size of NDs, is crucial to the protein conjugation, as well as the in vitro and in vivo behaviors of H5.c2:ND conjugates. Positively charged ND4 does not effectively form stable conjugates with H5.c2, and has no impact on the immunogenicity of the protein both in vitro and in vivo. In contrast, the negatively oxidized NDs (ND40 and ND100) are excellent protein antigen carriers. When compared to free H5.c2, H5.c2:ND40, and H5.c2:ND100 conjugates are highly immunogenic with hemagglutination titers that are both 16 times higher than that of the free H5.c2 protein. Notably, H5.c2:ND40 and H5.c2:ND100 conjugates induce over 3-folds stronger production of both H5.c2-specific-IgG and neutralizing antibodies against A/H5N1 than free H5.c2 in mice. These findings support the innovative strategy of using negatively oxidized ND particles as novel antigen carriers for vaccine development, while also highlighting the importance of particle characterization before use.

17.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921888

RESUMO

The influenza virus causes human disease on a global scale and significant morbidity and mortality. The existing vaccination regime remains vulnerable to antigenic drift, and more seriously, a small number of viral mutations could lead to drug resistance. Therefore, the development of a new additional therapeutic small molecule-based anti-influenza virus is urgently required. The NS1 influenza gene plays a pivotal role in the suppression of host antiviral responses, especially by inhibiting interferon (IFN) production and the activities of antiviral proteins, such as dsRNA-dependent serine/threonine-protein kinase R (PKR) and 2'-5'-oligoadenylate synthetase (OAS)/RNase L. NS1 also modulates important aspects of viral RNA replication, viral protein synthesis, and virus replication cycle. Taken together, small molecules that target NS1 are believed to offer a means of developing new anti-influenza drugs.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteínas não Estruturais Virais/metabolismo , Animais , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Influenza Humana/virologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/fisiologia
18.
Mar Drugs ; 19(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540563

RESUMO

Six undescribed polyhydroxy p-terphenyls, namely asperterphenyllins A-F, were isolated from an endophytic fungus Aspergillus candidus LDJ-5. Their structures were determined by NMR and MS data. Differing from the previously reported p-terphenyls, asperterphenyllin A represents the first p-terphenyl dimer connected by a C-C bond. Asperterphenyllin A displayed anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 53 µM and 21 µM, respectively. The anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity of p-terphenyls are reported for the first time. Asperterphenyllin G exhibited cytotoxicity against nine cell lines with IC50 values ranging from 0.4 to 1.7 µM. Asperterphenyllin C showed antimicrobial activity against Proteus species with a MIC value of 19 µg/mL.


Assuntos
Aspergillus/efeitos dos fármacos , Endófitos/efeitos dos fármacos , Rhizophoraceae , Compostos de Terfenil/isolamento & purificação , Compostos de Terfenil/farmacologia , Aspergillus/fisiologia , Endófitos/fisiologia , Células HCT116 , Células HL-60 , Células HeLa , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/fisiologia , Células K562 , Células MCF-7 , Compostos de Terfenil/química
19.
J Ethnopharmacol ; 268: 113555, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33152425

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Carvacrol, a monoterpene phenol from Mosla chinensis Maxim, which is a commonly Chinese herbal medicine. The most important pharmacology of it is dispelling exogenous evils by increasing perspiration. And it is the gentleman medicine in the Chinese herbal compound prescription of Xin-Jia-Xiang-Ru-Yin, mainly for the treatment of summer colds with dampness including influenza virus A infection. AIM OF THE STUDY: Our preliminary study verified that the Xin-Jia-Xiang-Ru-Yin could inhibit acute lung injury of mice with influenza virus A infection. And there have been some reports implicating the high antimicrobial activity of carvacrol for a wide range of product preservation, but little research including the effects of it on viral infection. The aim of this study was to reveal the antiviral effects of carvacrol, the main constituent in Mosla chinensis Maxim. MATERIALS AND METHODS: Initially, C57BL/6 mice were grouped and intranasally administered FM1 virus to construct viral infection models. After treatment with ribavirin and carvacrol for 5 days, all mice were euthanized, and specimens were immediately obtained. Histology, flow cytometry and Meso Scale Discovery (MSD) analysis were used to analyze pathological changes in lung tissue, the expression levels of cytokines and the differentiation and proportion of CD4+ T cells subsets, while Western blot and qRT-PCR were used to detect the expression of related proteins and mRNA. RESULTS: Carvacrol attenuated lung tissue damage, the proportions of Th1, Th2, Th17 and Treg in CD4+ T cells and the relative proportions of Th1/Th2 and Th17/Treg cells. Carvacrol inhibited the expression of inflammation-associated cytokines including IFN-γ, IL-2, IL-4, IL-5, IL-12 and TNF-ɑ, IL-1, IL-10, IL-6. Decreased levels of TLR7, MyD88, IRAK4, TRAK6, NF-κB, RIG-I, IPS-I and IRF mRNA in carvacrol-treated mice were observed comparing to the mice in VC group. Further, the total expression of RIG-I, MyD88 and NF-κB proteins had increased significantly in the VC group but reduced obviously in the group treated with ribavirin or carvacrol. CONCLUSIONS: These results indicate that carvacrol is a potential alternative treatment for the excessive immune response induced by influenza virus A infection, the cold-fighting effect of Mosla chinensis Maxim may depend on the anti-virus of carvacrol.


Assuntos
Alphainfluenzavirus/efeitos dos fármacos , Cimenos/farmacologia , Proteína DEAD-box 58/antagonistas & inibidores , Imunidade Inata/efeitos dos fármacos , Glicoproteínas de Membrana/antagonistas & inibidores , Receptor 7 Toll-Like/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Animais , Cimenos/uso terapêutico , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Feminino , Imunidade Inata/imunologia , Alphainfluenzavirus/imunologia , Alphainfluenzavirus/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Replicação Viral/imunologia
20.
J Hosp Infect ; 108: 15-18, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33197489

RESUMO

The performance of an in-house protocol for virus detection on commercialized electrostatic wipes (EWs) was assessed experimentally by impregnating them with suspensions of cytomegalovirus, adenovirus, and influenza virus, and by determining the recovery efficiency, repeatability, and detection limit of the protocol. The protocol was sensitive enough to detect 4 log10 gene copies of virus. At room temperature, influenza RNA was stable on EWs for at least four days. When EWs were placed high in 32 influenza-infected patients' rooms, influenza RNA was detectable in 75% (N = 24) of EWs, suggesting that EWs are simple and reliable methods for influenza virus airborne detection.


Assuntos
Microbiologia do Ar , Orthomyxoviridae/isolamento & purificação , Humanos , Influenza Humana/virologia , Limite de Detecção , Quartos de Pacientes , Reprodutibilidade dos Testes , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...