Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 75(1): e12875, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37070273

RESUMO

In vertebrates, arylalkylamine N-acetyltransferase (AANAT; EC 2.3.1.87) is the time-keeping and key regulatory enzyme in melatonin (Mel) biosynthesis. AANAT is present in the pineal gland, retina, and other regions where it is controlled by light, cyclic adenosine monophosphate (cAMP) levels, and the molecular clock. AANAT converts serotonin to N-acetyl serotonin (NAS) and the last enzyme in the pathway, hydroxy-o-methyltransferase (HIOMT), forms Mel by NAS methylation. We have previously shown that AANAT is expressed in chicken retinal ganglion cells (RGCs) during daytime at the level of mRNA and enzyme activity. Here we investigated the presence of AANAT protein and mRNA throughout development in the chicken embryonic retina as well as AANAT expression, phosphorylation, and its sub-cellular localization in primary cultures of retinal neurons from E10 embryonic retinas exposed to blue light (BL) and controls kept in the dark (D). From embryonic days 7-10 (E7-10) AANAT mRNA and protein were visualized mainly concentrated in the forming ganglion cell layer (GCL), while from E17 through postnatal days, expression was detectable all through the different retinal cell layers. At postnatal day 10 (PN10) when animals were subjected to a 12:12 h LD cycle, AANAT was mainly expressed in the GCL and inner nuclear layer cells at noon (Zeitgeber Time (ZT 6)) and in the photoreceptor cell layer at night (ZT 21). Primary cultures of retinal neurons exhibited an induction of AANAT protein when cells were exposed to BL for 1 h as compared with D controls. After BL exposure, AANAT showed a significant change in intracellular localization from the cytoplasm to the nucleus in the BL condition, remaining in the nucleus 1-2 h in the D after BL stimulation. BL induction of nuclear AANAT was substantially inhibited when cultures were treated with the protein synthesis inhibitor cycloheximide (CHD). Furthermore, the phosphorylated form of the enzyme (pAANAT) increased after BL in nuclear fractions obtained from primary cultures as compared with D controls. Finally, the knockdown of AANAT by sh-RNA in primary cultures affected cell viability regardless of the light condition. AANAT knockdown also affected the redox balance, sh-AANAT treated cultures showing higher levels of reactive oxygen species (ROS) than in the sh-control. Our results support the idea that AANAT is a BL-sensing enzyme in the inner retina of diurnal vertebrates, undergoing phosphorylation and nuclear importation in response to BL stimulation. Moreover, it can be inferred that AANAT plays a novel role in nuclear function, cell viability, and, likely, through redox balance regulation.


Assuntos
Arilalquilamina N-Acetiltransferase , Melatonina , Glândula Pineal , Animais , Embrião de Galinha , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Galinhas/genética , Galinhas/metabolismo , Ritmo Circadiano/fisiologia , Luz , Melatonina/metabolismo , Glândula Pineal/metabolismo , Retina/metabolismo , RNA Mensageiro/metabolismo , Serotonina/metabolismo
2.
Mol Neurobiol ; 54(4): 2507-2517, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26984602

RESUMO

The vertebrate retina contains typical photoreceptor (PR) cones and rods responsible for day/night vision, respectively, and intrinsically photosensitive retinal ganglion cells (ipRGCs) involved in the regulation of non-image-forming tasks. Rhodopsin/cone opsin photopigments in visual PRs or melanopsin (Opn4) in ipRGCs utilizes retinaldehyde as a chromophore. The retinoid regeneration process denominated as "visual cycle" involves the retinal pigment epithelium (RPE) or Müller glial cells. Opn4, on the contrary, has been characterized as a bi/tristable photopigment, in which a photon of one wavelength isomerizes 11-cis to all-trans retinal (Ral), with a second photon re-isomerizing it back. However, it is unknown how the chromophore is further metabolized in the inner retina. Nor is it yet clear whether an alternative secondary cycle occurs involving players such as the retinal G-protein-coupled receptor (RGR), a putative photoisomerase of unidentified inner retinal activity. Here, we investigated the role of RGR in retinoid photoisomerization in Opn4x (Xenopus ortholog) (+) RGC primary cultures free of RPE and other cells from chicken embryonic retinas. Opn4x (+) RGCs display significant photic responses by calcium fluorescent imaging and photoisomerize exogenous all-trans to 11-cis Ral and other retinoids. RGR was found to be expressed in developing retina and in primary cultures; when its expression was knocked down, the levels of 11-cis, all-trans Ral, and all-trans retinol in cultures exposed to light were significantly higher and those in all-trans retinyl esters lower than in dark controls. The results support a novel role for RGR in ipRGCs to modulate retinaldehyde levels in light, keeping the balance of inner retinal retinoid pools.


Assuntos
Proteínas do Olho/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Retina/metabolismo , Vias Visuais/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Embrião de Galinha , Galinhas , Isomerismo , Modelos Biológicos , Células Ganglionares da Retina/metabolismo , Retinaldeído/metabolismo , Retinoides/metabolismo
3.
J Neurochem ; 138(4): 557-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27221759

RESUMO

Evidence points to beneficial properties of caffeine in the adult central nervous system, but teratogenic effects have also been reported. Caffeine exerts most of its effects by antagonizing adenosine receptors, especially A1 and A2A subtypes. In this study, we evaluated the role of caffeine on the expression of components of the adenosinergic system in the developing avian retina and the impact of caffeine exposure upon specific markers for classical neurotransmitter systems. Caffeine exposure (5-30 mg/kg by in ovo injection) to 14-day-old chick embryos increased the expression of A1 receptors and concomitantly decreased A2A adenosine receptors expression after 48 h. Accordingly, caffeine (30 mg/kg) increased [(3) H]-8-cyclopentyl-1,3-dipropylxanthine (A1 antagonist) binding and reduced [(3) H]-ZM241385 (A2A antagonist) binding. The caffeine time-response curve demonstrated a reduction in A1 receptors 6 h after injection, but an increase after 18 and 24 h. In contrast, caffeine exposure increased the expression of A2A receptors from 18 and 24 h. Kinetic assays of [(3) H]-S-(4-nitrobenzyl)-6-thioinosine binding to the equilibrative adenosine transporter ENT1 revealed an increase in Bmax with no changes in Kd , an effect accompanied by an increase in adenosine uptake. Immunohistochemical analysis showed a decrease in retinal content of tyrosine hydroxylase, calbindin and choline acetyltransferase, but not Brn3a, after 48 h of caffeine injection. Furthermore, retinas exposed to caffeine had increased levels of phosphorylated extracellular signal-regulated kinase and cAMP-response element binding protein. Overall, we show an in vivo regulation of the adenosine system, extracellular signal-regulated kinase and cAMP-response element binding protein function and protein expression of specific neurotransmitter systems by caffeine in the developing retina. The beneficial or maleficent effects of caffeine have been demonstrated by the work of different studies. It is known that during animal development, caffeine can exert harmful effects, impairing the correct formation of CNS structures. In this study, we demonstrated cellular and tissue effects of caffeine's administration on developing chick embryo retinas. Those effects include modulation of adenosine receptors (A1 , A2 ) content, increasing in cAMP response element-binding protein (pCREB) and extracellular signal-regulated kinase phosphorylation (pERK), augment of adenosine equilibrative transporter content/activity, and a reduction of some specific cell subpopulations. ENT1, Equilibrative nucleoside transporter 1.


Assuntos
Adenosina/metabolismo , Cafeína/farmacologia , AMP Cíclico/metabolismo , Retina/crescimento & desenvolvimento , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Embrião de Galinha , Galinhas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Antagonistas de Receptores Purinérgicos P1 , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Retina/efeitos dos fármacos
4.
FASEB J ; 27(7): 2702-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23585397

RESUMO

All organisms have evolved photodetection systems to synchronize their physiology and behavior with the external light-dark (LD) cycles. In nonmammalian vertebrates, the retina, the pineal organ, and the deep brain can be photoreceptive. Inner retinal photoreceptors transmit photic information to the brain and regulate diverse nonvisual tasks. We previously reported that even after preventing extraretinal photoreception, blind GUCY1* chickens lacking functional visual photoreceptors could perceive light that modulates physiology and behavior. Here we investigated the contribution of different photoreceptive system components (retinal/pineal and deep brain photoreceptors) to the photic entrainment of feeding rhythms. Wild-type (WT) and GUCY1* birds with head occlusion to avoid extraocular light detection synchronized their feeding rhythms to a LD cycle with light >12 lux, whereas at lower intensities blind birds free-ran with a period of >24 h. When released to constant light, both WT and blind chickens became arrhythmic; however, after head occlusion, GUCY1* birds free-ran with a 24.5-h period. In enucleated birds, brain illumination synchronized feeding rhythms, but in pinealectomized birds only responses to high-intensity light (≥800 lux) were observed, revealing functional deep brain photoreceptors. In chickens, a multiple photoreceptive system, including retinal and extraretinal photoreceptors, differentially contributes to the synchronization of circadian feeding behavior.


Assuntos
Cegueira/fisiopatologia , Comportamento Alimentar/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Aviárias/genética , Cegueira/genética , Galinhas , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Guanilato Ciclase/genética , Luz , Mutação , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Glândula Pineal/fisiologia , Glândula Pineal/efeitos da radiação , Retina/metabolismo , Retina/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
5.
Clin Ophthalmol ; 4: 1311-4, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21139671

RESUMO

A unilateral electronegative electroretinogram (ERG) was seen in a 94-year-old man with presumed central retinal artery occlusion. Goldmann perimetry revealed central scotoma in the right eye and no abnormalities in the left eye. Full-field ERG in the right eye described a reduction of the b-wave with a relative preservation of the a-wave which is characteristic of electronegative ERG. Hence, our case illustrates that ERG testing is essential for the work-up of individuals with suspected retinal vascular disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA