Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
SAR QSAR Environ Res ; 35(8): 693-706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39212162

RESUMO

In the search for natural and non-toxic products alternatives to synthetic pesticides, the fumigant and repellent activities of 35 essential oils are predicted in the human head louse (Pediculus humanus capitis) through the Quantitative Structure-Activity Relationships (QSAR) theory. The number of constituents of essential oils with weight percentage composition greater than 1% varies from 1 to 15, encompassing up to 213 structurally diverse compounds in the entire dataset. The 27,976 structural descriptors used to characterizing these complex mixtures are calculated as linear combinations of non-conformational descriptors for the components. This approach is considered simple enough to evaluate the effects that changes in the composition of each component could have on the studied bioactivities. The best linear regression models found, obtained through the Replacement Method variable subset selection method, are applied to predict 13 essential oils from a previous study with unknown property data. The results show that the simple methodology applied here could be useful for predicting properties of interest in complex mixtures such as essential oils.


Assuntos
Inseticidas , Óleos Voláteis , Pediculus , Relação Quantitativa Estrutura-Atividade , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Pediculus/efeitos dos fármacos , Pediculus/química , Animais , Inseticidas/química , Inseticidas/farmacologia , Modelos Lineares , Humanos
2.
Fungal Biol ; 128(4): 1827-1835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876535

RESUMO

Metarhizium rileyi has a broad biocontrol spectrum but is highly sensitive to abiotic factors. A Colombian isolate M. rileyi Nm017 has shown notorious potential against Helicoverpa zea. However, it has a loss of up to 22 % of its conidial germination after drying, which limits its potential as a biocontrol agent and further commercialization. Conidial desiccation resistance can be enhanced by nutritional supplements, which promotes field adaptability and facilitates technological development as a biopesticide. In this study, the effect of culture medium supplemented with linoleic acid on desiccation tolerance in Nm017 conidia was evaluated. Results showed that using a 2 % linoleic acid-supplemented medium increased the relative germination after drying by 41 % compared to the control treatment, without affecting insecticidal activity on H. zea. Also, the fungus increased the synthesis of trehalose, glucose, and erythritol during drying, independently of linoleic acid use. Ultrastructural analyses of the cell wall-membrane showed a loss of thickness by 22 % and 25 %, in samples obtained from 2 % linoleic acid supplementation and the control, respectively. Regarding its morphological characteristics, conidia inner area from both treatments did not change after drying. However, conidia from the control had a 24 % decrease in length/width ratio, whereas there was no alteration in conidia from acid linoleic. The average value of dry conidia elasticity coefficient from linoleic acid treatment was 200 % above the control. Medium supplementation with linoleic acid is a promising fermentation strategy for obtaining more tolerant conidia without affecting production and biocontrol parameters, compatible solutes synthesis, or modifying its cell configuration.


Assuntos
Meios de Cultura , Ácido Linoleico , Metarhizium , Esporos Fúngicos , Metarhizium/fisiologia , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento , Ácido Linoleico/metabolismo , Ácido Linoleico/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Meios de Cultura/química , Animais , Dessecação , Controle Biológico de Vetores , Colômbia , Mariposas/microbiologia
3.
Neotrop Entomol ; 53(4): 937-954, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38691225

RESUMO

The fall armyworm (FAW) poses a significant global threat to food security, and economics. Timely detection is crucial, and this research explores innovative techniques like data analysis, remote sensing, satellite imagery, and AI with machine learning algorithms for predicting and managing outbreaks. Emphasizing the importance of community engagement and international collaboration, social network analysis (SNA) is employed to uncover collaborative networks in FAW management research. The study analyzes a decade of research, revealing trends, influential institutions, authors, and countries, providing insights for efficient FAW management strategies. The research highlights a growing interest in Spodoptera frugiperda (Smith and Abbott 1797) research, focusing on biological control, chemical insecticides, plant extracts, and pest resistance. Co-Citation analysis identifies key research concepts, while collaboration analysis emphasizes the contributions of actors and institutions, such as China, the USA, and Brazil, with international collaboration playing a vital role. Current research trends involve evolving resistance, insecticidal protein gene discovery, and bio-control investigations. Leveraging insights from collaborative networks is essential for formulating effective strategies to manage fall armyworm and ensure global food security. This comprehensive analysis serves as a valuable resource for researchers and stakeholders, guiding efforts to combat this pervasive agricultural pest.


Assuntos
Spodoptera , Animais , Inseticidas , Controle de Insetos/métodos , Controle Biológico de Vetores , Resistência a Inseticidas , Pesquisa , Cooperação Internacional
4.
Pestic Biochem Physiol ; 201: 105841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685257

RESUMO

This work evaluated the insecticidal, antifeedant and AChE inhibitory activity of compounds with eudesmane skeleton. The insecticidal activity was tested against larvae of Drosophila melanogaster and Cydia pomonella, the compounds 3 and 4 were the most active (LC50 of 104.2 and 106.7 µM; 82.0 and 84.4 µM, respectively). Likewise, the mentioned compounds were those that showed the highest acetylcholinesterase inhibitory activity, with IC50 of 0.26 ± 0.016 and 0.77 ± 0.016 µM, respectively. Enzyme kinetic studies, as well as molecular docking, show that the compounds would be non-competitive inhibitors of the enzyme. The antifeedant activity on Plodia interpunctella larvae showed an antifeedant index (AI) of 99% at 72 h for compounds 16, 27 and 20. The QSAR studies show that the properties associated with the polarity of the compounds would be responsible for the biological activities found.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Drosophila melanogaster , Inseticidas , Larva , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Sesquiterpenos de Eudesmano , Animais , Inseticidas/farmacologia , Inseticidas/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Larva/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Mariposas/efeitos dos fármacos , Sesquiterpenos/farmacologia , Sesquiterpenos/química
5.
Sci Rep ; 14(1): 9044, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641670

RESUMO

Vector control is one of the principal strategies used for reducing malaria transmission. Long-lasting insecticidal bed nets (LLINs) are a key tool used to protect populations at risk of malaria, since they provide both physical and chemical barriers to prevent human-vector contact. This study aimed to assess the physical durability and insecticidal efficacy of LLINs distributed in Cruzeiro do Sul (CZS), Brazil, after 4 years of use. A total of 3000 LLINs (PermaNet 2.0) were distributed in high malaria risk areas of CZS in 2007. After 4 years of use, 27 'rectangular' LLINs and 28 'conical' LLINs were randomly selected for analysis. The evaluation of physical integrity was based on counting the number of holes and measuring their size and location on the nets. Insecticidal efficacy was evaluated by cone bioassays, and the amount of residual insecticide remaining on the surface of the LLINs was estimated using a colorimetric method. After 4 years of use, physical damage was highly prevalent on the rectangular LLINs, with a total of 473 holes detected across the 27 nets. The upper portion of the side panels sustained the greatest damage in rectangular LLINs. The overall mosquito mortality by cone bioassay was < 80% in 25/27 rectangular LLINs, with panel A (at the end of the rectangular bednet) presenting the highest mortality (54%). The overall mean insecticide concentration was 0.5 µg/sample, with the bednet roof containing the highest average concentration (0.61 µg/sample). On the conical LLINs, 547 holes were detected, with the bottom areas sustaining the greatest damage. The cone bioassay mortality was < 80% in 26/28 of the conical LLINs. The mean insecticide concentration was 0.3 µg/sample. After 4 years of use, the insecticidal efficacy of the LLINs was diminished to below acceptable thresholds.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Animais , Humanos , Inseticidas/farmacologia , Brasil , Controle de Mosquitos/métodos , Mosquitos Vetores , Malária/prevenção & controle
6.
Toxins (Basel) ; 16(2)2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38393187

RESUMO

Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.


Assuntos
Mariposas , Nematoides , Xenorhabdus , Animais , Xenorhabdus/genética , Filogenia , Argentina , Nematoides/genética , Mariposas/genética , Análise de Sequência , Simbiose
7.
Braz. j. biol ; 84: e264786, 2024. tab
Artigo em Inglês | VETINDEX | ID: biblio-1403859

RESUMO

Excessive use of insecticides has led to resistance of some pathogenic organisms (nematodes, bacteria and fungi), environmental contamination, and the presence of hazardous residues. Therefore, the aim of the present study was to evaluate synthetic metabolites derived from previous studies with edible mushrooms against the soybean weevil Rhyssomatus nigerrimus Fahraeus (Curculonidae) because of the relevance of pest control in an economically important crop. Furthermore, this is one of the first studies where edible fungal molecules are evaluated for the control of these insects. Initially, two in vitro tests (toxic effect and immersion) were evaluated against R. nigerrimus. In these tests, sensitivity and viability were determined in the 2% Tween control in water. For these two tests, the synthetic metabolites pentadecanoic acid (PNA), palmitic acid (PMA), stearic acid (STA), linoleic acid (LNA), ß-sitosterol (ßT) were evaluated individually as well as in combinations, "the fraction of standards (E1)". Based on the results obtained, the dip test was selected to evaluate the mixtures of two standards (1. PMA + ßT, 2. PMA + PNA, 3. PMA + LNA, 4. PMA + STA, 5. STA + ßT, 6. STA + PNA, 7. STA + LNA, 8. PNA + ßT, 9. PNA + LNA, 10. LNA + ßT), three (1. PNA + ßT + LNA, 2. PNA + ßT + STA, 3. STA + LNA + PNA and 4. STA + LNA + ßT) and four (PNA, ßT, LNA and STA). The results showed that the mixture of three standards caused a higher percentage of mortality relative to the control group: l. PNA + ßT + LNA and 2. PNA + ßT + STA with 54.44 and 48% mortality of R. nigerrimus insects exposed for 15 days. These results show the importance of evaluating mixtures of molecules against R. nigerrimus.


O uso excessivo de inseticidas levou à resistência de alguns organismos patogênicos (nematódeos, bactérias e fungos), à contaminação ambiental e à presença de resíduos perigosos. Portanto, o objetivo do presente estudo foi avaliar a mortalidade de metabólitos sintéticos derivados de estudos anteriores com cogumelos comestíveis contra o gorgulho-da-soja Rhyssomatus nigerrimus Fahraeus (Curculonidae) por causa da relevância do controle de pragas em uma cultura economicamente importante. Além disso, este é um dos primeiros estudos em que as moléculas fúngicas comestíveis são avaliadas para o controle desses insetos. Inicialmente, dois testes in vitro (efeito tóxico e imersão) foram avaliados contra R. nigerrimus. Nesses testes, a sensibilidade e a viabilidade foram determinadas no controle de 2% de Tween na água. Para esses dois testes, os metabólitos sintéticos ­ ácido pentadecanoico (PNA), ácido palmítico (PMA), ácido esteárico (STA), ácido linoleico (LNA) e ß-sitosterol (ßT) ­ foram avaliados individualmente, bem como a combinação dos 5, "a fração de padrões (E1)". Com base nos resultados obtidos, o teste de imersão foi selecionado para avaliar as misturas de dois padrões (1. PMA + ßT, 2. PMA + PNA, 3. PMA + LNA, 4. PMA + STA, 5. STA + ßT, 6. STA + PNA, 7. STA + LNA, 8. PNA + ßT, 9. PNA + LNA, 10. LNA + ßT), três (1. PNA + ßT + LNA, 2. PNA + ßT + STA, 3. STA + LNA + PNA e 4. STA + LNA + ßT) e quatro (PNA, ßT, LNA e STA). Os resultados mostraram que a mistura de três padrões foi a com maior porcentagem de mortalidade em relação ao grupo controle, quais sejam, l. PNA + ßT + LNA e 2. PNA + ßT + STA, com 54,44% e 48% de mortalidade, respectivamente, em uma exposição de 15 dias contra R. nigerrimus. Estes resultados mostram a importância de avaliar as misturas entre moléculas contra R. nigerrimus.


Assuntos
Agaricales , Inseticidas
8.
Braz. j. biol ; 84: e262479, 2024. tab
Artigo em Inglês | VETINDEX | ID: biblio-1420700

RESUMO

The methanolic, chloroformic and aqueous extract of Achillea millefolium and Chaerophyllum villosum were investigated for cytotoxicity, phytotoxic and insecticidal activities. Cytotoxicity was investigated by brine shrimp lethality assay indicating that the crude methanolic extract of A.millefolium and chloroformic extract of C.villosum revealed highest mortality of brine shrimps with (LD50 of 52.60 µg/ml) and (14.81 µg/ml). Phytotoxicity was evaluated using the Lemna minor bioassay which revealed that the crude methanolic extract of A.millefolium and C.villosum extract has maximum inhibition of Lemna minor with (Fl50 6.60 µg/ml) and (0.67 µg/ml).The insecticidal activity showed that among all the insects studied it was observed that methanolic extract of A. millefoliumand C. villosum was highly toxic to Sphenoptera dadkhani with (LD50=4.17 µg/ml) and (0.34 µg/ml). From the present study it can be concluded that different extracts from A. millefolium and C. villosum showed good cytotoxic, phytotoxic and insecticidal activity in a dose dependent manner.


Neste estudo, os extratos metanólico, clorofórmico e aquoso de Achillea millefolium e Chaerophyllum villosum foram analisados em relação à citotoxicidade, atividade fitotóxica e inseticida. A citotoxicidade foi analisada através do ensaio de letalidade de artémia, indicando que o extrato metanólico bruto de A. millefolium e o extrato clorofórmico de C. villosum revelaram maior mortalidade de artêmias com DL50 de 52,60 µg/ml e 14,81 µg/ml. A fitotoxicidade foi avaliada utilizando o bioensaio de Lemna minor que revelou que o extrato metanólico bruto de A. millefolium e extrato de C. villosum têm inibição máxima de Lemna minor com Fl50 6,60 µg/ml e 0,67 µg/ml. A atividade inseticida mostrou que dentre todos os insetos estudados, o extrato metanólico de A. millefolium e de C. villosum foi altamente tóxico para Sphenoptera dadkhanicom DL50 = 4,17 µg/ml e 0,34 µg/ml . Por outro lado, diferentes extratos, como A. millefolium e C. villosum apresentaram boa atividade citotóxica, fitotóxica e inseticida de forma dose-dependente.


Assuntos
Extratos Vegetais , Citotoxinas , Achillea , Inseticidas
9.
Toxins (Basel) ; 15(11)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999486

RESUMO

GroEL is a chaperonin that helps other proteins fold correctly. However, alternative activities, such as acting as an insect toxin, have also been discovered. This work evaluates the chaperonin and insecticidal activity of different GroEL proteins from entomopathogenic nematodes on G. mellonella. The ability to synergize with the ExoA toxin of Pseudomonas aeruginosa was also investigated. The GroELXn protein showed the highest insecticidal activity among the different GroELs. In addition, it was able to significantly activate the phenoloxidase system of the target insects. This could tell us about the mechanism by which it exerts its toxicity on insects. GroEL proteins can enhance the toxic activity of the ExoA toxin, which could be related to its chaperonin activity. However, there is a significant difference in the synergistic effect that is more related to its alternative activity as an insecticidal toxin.


Assuntos
Inseticidas , Mariposas , Nematoides , Animais , Inseticidas/toxicidade , Inseticidas/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/farmacologia , Insetos/metabolismo , Bactérias/metabolismo , Larva/metabolismo
10.
Plants (Basel) ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687289

RESUMO

The fall armyworm (Spodoptera frugiperda), a polyphagous insect pest, is a major threat to food production, rapidly spreading through all the tropical areas in the world. Resistance has developed to the control protocols used so far (pyrethroids, organophosphorus, and genetically modified plants), and alternative strategies must be found. The bioactivity in essential oils is usually associated with the major constituents, but synergistic interactions among the constituents (even minor ones) can improve the levels of activity considerably. Herein, we tested the insecticidal activity of several constituents of the essential oil from Piper aduncum, an Amazonian Piperaceae, both separately and as binary mixtures, through their application on the dorsal side of the larva pronotum. Dillapiole proved to be, isolated, the most active compound in this oil (LD50 = 0.35 ppm). In binary mixtures, a strong synergistic effect was observed for the pairs of dillapiole with ß-caryophyllene (LD50 = 0.03 ppm), methyl eugenol (LD50 = 0.05 ppm), and α-humulene (LD50 = 0.05 ppm). In some cases, however, antagonism was recorded, as for dillapiole + ß-pinene (LD50 = 0.44 ppm). The use of binary mixtures of essential oil constituents as low-environmental-toxicity insecticides allows a fine tuning of the insecticidal activity, and the exploitation of synergy effects.

11.
Nat Prod Res ; : 1-8, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732609

RESUMO

Plutella xylostella is considered the main pest of cabbage in Brazil and the world, causing damage of up to 100%. Thus, this study evaluated the insecticidal activity of extracts obtained from the fruits, seeds, bark, leaves, and flowers of Handroanthus impetiginosus against the diamondback moth, P. xylostella larvae. The seed extract showed the highest mortality (97.0%) compared to the control treatment. The LC50 values indicated that the seed and flower extracts (0.01003 and 0.01288 mg/L respectively) assumed the highest toxicity to P. xylostella larvae after 24 h of exposure. The results of this study indicated that the seeds extract is the most promising toxic extract, with measured mortality of approximately 97.0% for P. xylostella larvae after 144 h of exposure in kale plants. Seed extract showed the best insecticidal activity. Thus, this extract can be applied to develop an insecticide based on H. impetiginosus seed.

12.
Toxins (Basel) ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505685

RESUMO

Chihuahua is the largest state in Mexico. The ecosystem of this region is composed of large area of bushes, forests, and grasslands, which allows for a specific diversity of fauna; among them are interesting species of non-lethal scorpions. Most of the Chihuahuan scorpions have been previously morphologically and molecularly described; however, this manuscript could be the first to describe the composition of those venoms. This work aimed at the collection of two scorpion species from the region of Jiménez (Southwest of the State of Chihuahua), which belong to the species Chihuahuanus cohauilae and Chihuahuanus crassimanus; the two species were taxonomically and molecularly identified using a 16S DNA marker. Reverse-phase high-performance liquid chromatography (RP-HPLC) of C. coahuilae and C. crassimanus venoms allowed the identification of three fractions lethal to mice. Additionally, three fractions of each scorpion displayed an effect on house crickets. In the end, three new fractions from the venom of C. coahuilae were positive for antimicrobial activity, although none from C. crassimanus venom displayed growth inhibition. Despite being a preliminary study, the venom biochemical analysis of these two uncharacterized scorpion species opens the opportunity to find new molecules with potential applications in the biomedical and biotechnological fields.


Assuntos
Venenos de Escorpião , Peçonhas , Animais , Camundongos , Escorpiões/química , México , Ecossistema , Venenos de Escorpião/química
13.
Toxins (Basel) ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505687

RESUMO

Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.


Assuntos
Venenos de Aranha , Peçonhas , Animais , Peçonhas/farmacologia , Brasil , Mosquitos Vetores , Peptídeos/farmacologia , Insetos , Venenos de Aranha/toxicidade , Venenos de Aranha/química
14.
Toxins (Basel) ; 15(7)2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505705

RESUMO

Spider venoms are composed, among other substances, of peptide toxins whose selectivity for certain physiological targets has made them powerful tools for applications such as bioinsecticides, analgesics, antiarrhythmics, antibacterials, antifungals and antimalarials, among others. Bioinsecticides are an environmentally friendly alternative to conventional agrochemicals. In this paper, the primary structure of an insecticidal peptide was obtained from the venom gland transcriptome of the ctenid spider Phoneutria depilata (Transcript ID PhdNtxNav24). The peptide contains 53 amino acids, including 10 Cys residues that form 5 disulfide bonds. Using the amino acid sequence of such peptide, a synthetic gene was constructed de novo by overlapping PCRs and cloned into an expression vector. A recombinant peptide, named delta-ctenitoxin (rCtx-4), was obtained. It was expressed, folded, purified and validated using mass spectrometry (7994.61 Da). The insecticidal activity of rCtx-4 was demonstrated through intrathoracic injection in crickets (LD50 1.2 µg/g insect) and it was not toxic to mice. rCtx-4 is a potential bioinsecticide that could have a broad spectrum of applications in agriculture.


Assuntos
Inseticidas , Venenos de Aranha , Aranhas , Camundongos , Animais , Inseticidas/farmacologia , Inseticidas/química , Transcriptoma , Colômbia , Peptídeos/farmacologia , Peptídeos/toxicidade , Venenos de Aranha/genética , Venenos de Aranha/toxicidade , Venenos de Aranha/química , Aranhas/genética
15.
Pest Manag Sci ; 79(11): 4162-4171, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37319327

RESUMO

BACKGROUND: The development of novel and ecofriendly tools plays an important role in insect pest management. Nanoemulsions (NEs) based on essential oils (EOs) offer a safer alternative for human health and the environment. This study aimed to elaborate and evaluate the toxicological effects of NEs containing peppermint or palmarosa EOs combined with ß-cypermethrin (ß-CP) using ultrasound technique. RESULTS: The optimized ratio of active ingredients to surfactant was 1:2. The NEs containing peppermint EO combined with ß-CP (NEs peppermint/ß-CP) were polydisperse with two peaks at 12.77 nm (33.4% intensity) and 299.1 nm (66.6% intensity). However, the NEs containing palmarosa EO combined with ß-CP (NEs palmarosa/ß-CP) were monodisperse with a size of 104.5 nm. Both NEs were transparent and stable for 2 months. The insecticidal effect of NEs was evaluated against Tribolium castaneum and Sitophilus oryzae adults, as well as Culex pipiens pipiens larvae. On all these insects, NEs peppermint/ß-CP enhanced pyrethroid bioactivity from 4.22- to 16-folds while NEs palmarosa/ß-CP, from 3.90- to 10.6-folds. Moreover, both NEs maintained high insecticidal activities against all insects for 2 months, although a slight increase of the particle size was detected. CONCLUSION: The NEs elaborated in this work can be considered as highly promising formulations for the development of new insecticides. © 2023 Society of Chemical Industry.

16.
Pest Manag Sci ; 79(5): 1912-1921, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36656155

RESUMO

BACKGROUND: The amino acids R- and S-proline were used to synthesize novel neonicotinoid derivatives that, after being characterized by 1 H, DEPTQ 135, and HRMS-QTOF, were evaluated for use as insecticides against Galleria mellonella (caterpillar), Sitophilus zeamais, Xylosandrus morigerus, Xyleborus affinis, and Xyleborus ferrugineus. RESULTS: Comparisons of biological activity and absolute configuration showed that the R enantiomer had excellent and outstanding insecticidal activity against the insects tested, with up to 100% mortality after 12 h compared with dinotefuran at the same concentration. CONCLUSIONS: The results suggest that compound R6 is an excellent lead enantiopure insecticide for future development in the field of crop protection. Furthermore, intermolecular interactions between nicotinic acetylcholine receptors and the R enantiomer displays a lower score which mean a higher affinity to the nAChR receptor and the π-π interactions are more stable than the S derivative. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Inseticidas/química , Prolina , Neonicotinoides/química , Insetos/metabolismo , Receptores Nicotínicos/metabolismo
17.
Neotrop Entomol ; 52(1): 104-113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36626092

RESUMO

A multiple nucleopolyhedrovirus native isolate (SfCH32) of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) was encapsulated by spray-drying in a matrix based on oxidized corn starch without and with a fluorescent brightener. The microcapsules were exposed to UV radiation (365 nm) for 0, 2, 4, and 8 h at 25 °C or temperatures of 35, 40, and 45 °C for 8 h. The data obtained with temperatures 35, 40, and 45 °C were contrasted with those obtained at 25 °C. The microcapsules were evaluated for size, shape, and insecticidal capacity against third instar S. frugiperda larvae under laboratory conditions. The 82-84.2% of the encapsulating matrix, in a dry-weight basis, was recovered as NPV microcapsules of heterogeneous shape and size. The exposure to UV radiation and temperatures reduced significantly the insecticidal capacity of tested viruses; however, such capacity was higher for microencapsulated than for non-microencapsulated viruses. The non-encapsulated virus that had been exposed to 45 °C or maintained at UV radiation for 8 h showed the lowest insecticidal activity at 5th day post-inoculation, with a larvae mortality of 25.3 and 16%, respectively. The fluorescent brightener increased significantly the insecticidal capacity of encapsulated and non-encapsulated viruses, causing a mortality of 100% at that time point, and decreased the median lethal time independently of the incubation temperature and exposure time to radiation. The findings suggested that an encapsulating matrix based on oxidized corn starch might protect the insecticidal capacity of NPV under field conditions.


Assuntos
Inseticidas , Nucleopoliedrovírus , Animais , Spodoptera , Raios Ultravioleta , Temperatura , Zea mays , Cápsulas , Controle Biológico de Vetores , Larva
18.
Nat Prod Res ; 37(23): 4058-4062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36622895

RESUMO

Essential oils from aerial parts of six aromatic plants were analysed by GC-MS. The major compounds identified were γ-terpinene (11.5%), cuminaldehyde (26.6%) and γ-terpinen-7-al (40.6%) in Cuminum cyminum, trans-anethol (95.2%) in Pimpinella anisum, α-pinene (11.6%), limonene (21.0%), ß-caryophyllene (22.3%) and α-humulene (16.7%) in Lippia integrifolia, limonene (40.8%) and artemisia ketone (19.3%) in Lippia junelliana, trans-ß-ocimene (15.6%), 4-ethyl-4-methyl-1-hexene (24.5%), trans-tagetone (20.5%) and verbenone (27.2%) in Tagetes minuta, 1,8-cineole (17.9%),elixene (10.3%) and spathulenol (13.8%) in Aloysia gratissima. Oils with strong insecticidal activity on Carpophilus dimidiatus and Oryzaephilus mercator were from P. anisum (LC50 = 4 µl/L; LC100 = 10 µl/L) and T. minuta (LC50=10.19-12.57 µl/L; LC100=20 µl/L). Scents of C. cyminum and L. junelliana were strong insecticides on O. mercator (LC50=7.02-7.17 µl/L; LC100=10.00-20.00 µl/L). The insecticidal activity was associated to the whole content of C10 molecules and oxygenated constituents. The P. anisum oil is promising as protective agent of nut products.


Assuntos
Besouros , Inseticidas , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Limoneno , Inseticidas/farmacologia , Argentina
19.
Toxins (Basel) ; 16(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276528

RESUMO

Bacillus thuringiensis is a Gram-positive bacterium known for its insecticidal proteins effective against various insect pests. However, limited strains and proteins target coleopteran pests like Anthonomous grandis Boheman, causing substantial economic losses in the cotton industry. This study focuses on characterizing a Bacillus sp. strain, isolated from Oncativo (Argentina), which exhibits ovoid to amorphous parasporal crystals and was designated Bt_UNVM-84. Its genome encodes genes for the production of two pairs of binary Vpb1/Vpa2 proteins and three Cry-like proteins showing similarity with different Cry8 proteins. Interestingly, this gene content was found to be conserved in a previously characterized Argentine isolate of B. thuringiensis designated INTA Fr7-4. SDS-PAGE analysis revealed a major band of 130 kDa that is proteolytically processed to an approximately 66-kDa protein fragment by trypsin. Bioassays performed with spore-crystal mixtures demonstrated an interesting insecticidal activity against the cotton boll weevil A. grandis neonate larvae, resulting in 91% mortality. Strain Bt_UNVM-84 is, therefore, an interesting candidate for the efficient biological control of this species, causing significant economic losses in the cotton industry in the Americas.


Assuntos
Bacillus thuringiensis , Besouros , Inseticidas , Gorgulhos , Animais , Humanos , Recém-Nascido , Besouros/metabolismo , Gorgulhos/genética , Gorgulhos/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/metabolismo , Proteínas de Bactérias/metabolismo , Larva/metabolismo , Proteínas Hemolisinas/genética , Endotoxinas/genética , Controle Biológico de Vetores
20.
Plants (Basel) ; 11(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36432799

RESUMO

Sitophilus zeamais is a primary pest of maize. Our aim was to perform a qualitative review and meta-analyses with 56 scientific articles published from 1 January 2000 to 1 October 2022 dealing with direct (topical application) and indirect (impregnation of essential oils, EOs, onto filter paper or maize grains) contact toxicity of EOs against S. zeamais. Three independent meta-analyses of single means of LD50 (direct contact) and LC50 (indirect contact) were conducted using a random effect model. Essential oils more frequently evaluated were those belonging to Asteraceae, Apiaceae, Lamiaceae, Myrtaceae, Piperaceae, and Rutaceae. The LC50 global mean values were 33.19 µg/insect (CI95 29.81-36.95) for topical application; 0.40 µL/cm2 (CI95 0.25-0.65) for filter paper indirect contact; and 0.50 µL/g maize (CI95 0.27-0.90) for maize grains indirect contact. The species Carum carvi, Salvia umbratica, Ilicium difengpi, Periploca sepium, Cephalotaxus sinensis, Murraya exotica, Rhododendron anthopogonoides, Ruta graveolens, Eucalyptus viminalis, Ocotea odorifera, Eucalyptus globulus, Eucalyptus dunnii, Anethum graveolens, Ilicium verum, Cryptocarya alba, Azadirachta indica, Chenopodium ambrosioides, Cupressus semperivens, Schinus molle, Piper hispidinervum, Mentha longifolia, and Croton pulegiodorus showed LC50 or LD50 values lower than the global means, indicating good insecticidal properties. Our results showed that EOs have great potential to be used as bioinsecticides against S. zeamais.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA