Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Environ Res ; : 120090, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374754

RESUMO

Antibiotic resistance genes (ARGs) have been identified as emerging contaminants, raising concerns around the world. As environmentally friendly bioagents (BA), plant growth-promoting rhizobacteria (PGPR) have been used in agricultural systems. The introduction of BA will lead to the turnover of the microbial communities structure. Nevertheless, it is still unclear how the colonization of the invaded microorganisms could affects the rhizosphere resistome. Consequently, 190 ARGs and 25 integrative and conjugative elements (ICEs) were annotated using the metagenomic approach in 18 samples from the Solanaceae crop rhizosphere soil under BA and conventional treatment (CK) groups. Our study found that, after 90 days of treatment, ARG abundance was lower in the CK group than in the BA group. The results showed that aminoglycoside antibiotic resistance (OprZ), phenicol antibiotic resistance (OprN), aminoglycoside antibiotic resistance (ceoA/B), aminocoumarin antibiotic resistance (mdtB) and phenicol antibiotic resistance (MexW) syntenic with ICEs. Moreover, in 11 sequences, OprN (phenicol antibiotic resistance) was observed to have synteny with ICEPaeLESB58-1, indicating that the ICEs could contribute to the spread of ARGs. Additionally, the binning result showed that the potential bacterial hosts of the ARGs were beneficial bacteria which could promote the nutrition cycle, such as Haliangium, Nitrospira, Sideroxydans, Burkholderia, etc, suggesting that bacterial hosts have a great influence on ARG profiles. According to the findings, considering the dissemination of ARGs, BA should be applied with caution, especially the use of beneficial bacteria in BA. In a nutshell, this study offers valuable insights into ARGs pollution control from the perspective of the development and application of BA, to make effective strategies for blocking pollution risk migration in the ecological environment.

2.
Microbiol Spectr ; 12(10): e0060724, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39264161

RESUMO

ICEKKS102Tn4677 carries a bph operon for the mineralization of polychlorinated biphenyls (PCBs)/biphenyl and belongs to the Tn4371 ICE (integrative and conjugative element) family. In this study, we investigated the role of the traR gene in ICE transfer. The traR gene encodes a LysR-type transcriptional regulator, which is conserved in sequence, positioning, and directional orientation among Tn4371 family ICEs. The traR belongs to the bph operon, and its overexpression on solid medium resulted in modest upregulation of traG (threefold), marked upregulation of xis (80-fold), enhanced ICE excision and, most notably, ICE transfer frequency. We propose the evolutional roles of traR, which upon insertion to its current position, might have connected the cargo gene activation and ICE transfer. This property of ICE, i.e., undergoing transfer under environmental conditions that lead to cargo gene activation, would instantly confer fitness advantages to bacteria newly acquiring this ICE, thereby resulting in efficient dissemination of the Tn4371 family ICEs.IMPORTANCEOnly ICEKKS102Tn4677 is proven to transfer among the widely disseminating Tn4371 family integrative and conjugative elements (ICEs) from ß and γ-proteobacteria. We showed that the traR gene in ICEKKS102Tn4677, which is conserved in the ICE family with fixed location and direction, is co-transcribed with the cargo gene and activates ICE transfer. We propose that capturing of traR by an ancestral ICE to the current position established the Tn4371 family of ICEs. Our findings provide insights into the evolutionary processes that led to the widespread distribution of the Tn4371 family of ICEs across bacterial species.


Assuntos
Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Elementos de DNA Transponíveis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular , Óperon , Regulação para Cima , Conjugação Genética
3.
Antibiotics (Basel) ; 13(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38786161

RESUMO

The recognition of the Aerococcus urinae complex (AUC) as an emerging uropathogen has led to growing concerns due to a limited understanding of its disease spectrum and antibiotic resistance profiles. Here, we investigated the prevalence of macrolide resistance within urinary AUC isolates, shedding light on potential genetic mechanisms. Phenotypic testing revealed a high rate of macrolide resistance: 45%, among a total of 189 urinary AUC isolates. Genomic analysis identified integrative and conjugative elements (ICEs) as carriers of the macrolide resistance gene ermA, suggesting horizontal gene transfer as a mechanism of resistance. Furthermore, comparison with publicly available genomes of related pathogens revealed high ICE sequence homogeneity, highlighting the potential for cross-species dissemination of resistance determinants. Understanding mechanisms of resistance is crucial for developing effective surveillance strategies and improving antibiotic use. Furthermore, the findings underscore the importance of considering the broader ecological context of resistance dissemination, emphasizing the need for community-level surveillance to combat the spread of antibiotic resistance within the urinary microbiome.

4.
Emerg Microbes Infect ; 13(1): 2352435, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38703011

RESUMO

Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.


Assuntos
Sorogrupo , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Streptococcus suis/patogenicidade , Streptococcus suis/genética , Streptococcus suis/classificação , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/isolamento & purificação , Animais , Suínos , Humanos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Virulência , Camundongos , Genoma Bacteriano , Peixe-Zebra , Antibacterianos/farmacologia , Filogenia , Testes de Sensibilidade Microbiana , Fatores de Virulência/genética
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731857

RESUMO

Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.


Assuntos
Erysipelothrix , Gansos , Prófagos , Animais , Gansos/microbiologia , Polônia , Erysipelothrix/genética , Prófagos/genética , Antibacterianos/farmacologia , Infecções por Erysipelothrix/microbiologia , Infecções por Erysipelothrix/genética , Doenças das Aves Domésticas/microbiologia , Sequenciamento Completo do Genoma , Genoma Bacteriano , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Conjugação Genética , Plasmídeos/genética
6.
Virulence ; 15(1): 2359467, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38808732

RESUMO

Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Infecções por Pasteurella , Pasteurella multocida , Filogenia , Pasteurella multocida/genética , Pasteurella multocida/classificação , Animais , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/transmissão , Elementos de DNA Transponíveis , Conjugação Genética , Evolução Molecular , Aves Domésticas/microbiologia , Prevalência , Sequenciamento de Nucleotídeos em Larga Escala
7.
mSystems ; 8(6): e0017823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032189

RESUMO

IMPORTANCE: Different from other extensively studied mobile genetic elements (MGEs) whose discoveries were initiated decades ago (1950s-1980s), integrative and conjugative elements (ICEs), a diverse array of more recently identified elements that were formally termed in 2002, have aroused increasing concern for their crucial contribution to the dissemination of antibiotic resistance genes (ARGs). However, the comprehensive understanding on ICEs' ARG profile across the bacterial tree of life is still blurred. Through a genomic study by comparison with two key MGEs, we, for the first time, systematically investigated the ARG profile as well as the host range of ICEs and also explored the MGE-specific potential to facilitate ARG propagation across phylogenetic barriers. These findings could serve as a theoretical foundation for risk assessment of ARGs mediated by distinct MGEs and further to optimize therapeutic strategies aimed at restraining antibiotic resistance crises.


Assuntos
Antibacterianos , Conjugação Genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal/genética , Genômica , Filogenia
8.
mSphere ; 8(6): e0026823, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37850800

RESUMO

IMPORTANCE: Obligate intracellular bacteria, or those only capable of growth inside other living cells, have limited opportunities for horizontal gene transfer with other microbes due to their isolated replicative niche. The human pathogen Ot, an obligate intracellular bacterium causing scrub typhus, encodes an unusually high copy number of a ~40 gene mobile genetic element that typically facilitates genetic transfer across microbes. This proliferated element is heavily degraded in Ot and previously assumed to be inactive. Here, we conducted a detailed analysis of this element in eight Ot strains and discovered two strains with at least one intact copy. This implies that the element is still capable of moving across Ot populations and suggests that the genome of this bacterium may be even more dynamic than previously appreciated. Our work raises questions about intracellular microbial evolution and sounds an alarm for gene-based efforts focused on diagnosing and combatting scrub typhus.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Humanos , Orientia tsutsugamushi/genética , Orientia tsutsugamushi/metabolismo , Tifo por Ácaros/genética , Tifo por Ácaros/microbiologia , Transferência Genética Horizontal , Genoma Bacteriano , Estudos Longitudinais
9.
Genome Biol ; 24(1): 240, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864197

RESUMO

Diversity-generating and mobile genetic elements are key to microbial and viral evolution and can result in evolutionary leaps. State-of-the-art algorithms to detect these elements have limitations. Here, we introduce DIVE, a new reference-free approach to overcome these limitations using information contained in sequencing reads alone. We show that DIVE has improved detection power compared to existing reference-based methods using simulations and real data. We use DIVE to rediscover and characterize the activity of known and novel elements and generate new biological hypotheses about the mobilome. Building on DIVE, we develop a reference-free framework capable of de novo discovery of mobile genetic elements.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Elementos de DNA Transponíveis
10.
Anaerobe ; 83: 102785, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37743024

RESUMO

We describe Tn7563, a 31,844-bp integrative and conjugative element (ICE) carrying promoters upregulating the cfiA carbapenemase gene in Bacteroides fragilis strain Tbg-22. Excision and circularization of Tn7563 was demonstrated by PCR. Previously, only insertion sequences (IS) have been shown to carry mobile promoters for cfiA.


Assuntos
Infecções Bacterianas , Infecções por Bacteroides , Humanos , Bacteroides fragilis/genética , Regulação para Cima , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Elementos de DNA Transponíveis
11.
Mol Microbiol ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658686

RESUMO

In recent decades, there has been a rapid increase in the prevalence of multidrug-resistant pathogens, posing a challenge to modern antibiotic-based medicine. This has highlighted the need for novel treatments that can specifically affect the target microorganism without disturbing other co-inhabiting species, thus preventing the development of dysbiosis in treated patients. Moreover, there is a pressing demand for tools to effectively manipulate complex microbial populations. One of the approaches suggested to address both issues was to use conjugation as a tool to modify the microbiome by either editing the genome of specific bacterial species and/or the removal of certain taxonomic groups. Conjugation involves the transfer of DNA from one bacterium to another, which opens up the possibility of introducing, modifying or deleting specific genes in the recipient. In response to this proposal, there has been a significant increase in the number of studies using this method for gene delivery in bacterial populations. This MicroReview aims to provide a detailed overview on the use of conjugation for microbiome engineering, and at the same time, to initiate a discussion on the potential, limitations and possible future directions of this approach.

13.
Vet Microbiol ; 283: 109795, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269713

RESUMO

Streptococcus parasuis is a potential opportunistic zoonotic pathogen which is a close relative to Streptococcus suis, which exhibit extensive genetic exchange. The occurrence and dissemination of oxazolidinone resistance poses a severe threat to public health. However, such knowledge about the optrA gene in S. parasuis is limited. Herein, we characterized an optrA-positive multi-resistant S. parasuis isolate AH0906, in which the capsular polysaccharide locus exhibited a hybrid structure of S. suis serotype 11 and S. parasuis serotype 26. The optrA and erm(B) genes were co-located on a novel ICE of the ICESsuYZDH1 family, designated ICESpsuAH0906. IS1216E-optrA-carrying translocatable unit could be formed when excised from ICESpsuAH0906. ICESpsuAH0906 was found to be transferable from isolate AH0906 to Streptococcus suis P1/7RF at a relative high frequency of ∼ 10-5. Nonconservative integrations of ICESpsuAH0906 into the primary site SSU0877 and secondary site SSU1797 with 2-/4-nt imperfect direct repeats in recipient P1/7RF were observed. Upon transfer, the transconjugant displayed elevated MICs of the corresponding antimicrobial agents and performed a weak fitness cost when compared with the recipient strain. To our knowledge, it is the first description of the transfer of optrA in S. prarasuis and the first report of interspecies transfer of ICE with triplet serine integrases (of the ICESsuYZDH1 family). Considering the high transmission frequency of the ICEs and the extensive genetic exchange potential of S. parasuis with other streptococci, attention should be paid to the dissemination of the optrA gene from S. parasuis to clinically more important bacterial pathogens.


Assuntos
Anti-Infecciosos , Oxazolidinonas , Streptococcus suis , Animais , Genes Bacterianos , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia
14.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37215039

RESUMO

The rickettsial human pathogen Orientia tsutsugamushi (Ot) is an obligate intracellular Gram-negative bacterium with one of the most highly fragmented and repetitive genomes of any organism. Around 50% of its ~2.3 Mb genome is comprised of repetitive DNA that is derived from the highly proliferated Rickettsiales amplified genetic element (RAGE). RAGE is an integrative and conjugative element (ICE) that is present in a single Ot genome in up to 92 copies, most of which are partially or heavily degraded. In this report, we analysed RAGEs in eight fully sequenced Ot genomes and manually curated and reannotated all RAGE-associated genes, including those encoding DNA mobilisation proteins, P-type (vir) and F-type (tra) type IV secretion system (T4SS) components, Ankyrin repeat- and tetratricopeptide repeat-containing effectors, and other piggybacking cargo. Originally, the heavily degraded Ot RAGEs led to speculation that they are remnants of historical ICEs that are no longer active. Our analysis, however, identified two Ot genomes harbouring one or more intact RAGEs with complete F-T4SS genes essential for mediating ICE DNA transfer. As similar ICEs have been identified in unrelated rickettsial species, we assert that RAGEs play an ongoing role in lateral gene transfer within the Rickettsiales. Remarkably, we also identified in several Ot genomes remnants of prophages with no similarity to other rickettsial prophages. Together these findings indicate that, despite their obligate intracellular lifestyle and host range restricted to mites, rodents and humans, Ot genomes are highly dynamic and shaped through ongoing invasions by mobile genetic elements and viruses.

15.
Microbiol Spectr ; 11(3): e0030923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154736

RESUMO

Streptococcus suis is a zoonotic pathogen that causes disease in humans after exposure to infected pigs or pig-derived food products. In this study, we examined the serotype distribution, antimicrobial resistance phenotypes and genotypes, integrative and conjugative elements (ICEs), and associated genomic environments of S. suis isolates from humans and pigs in China from 2008 to 2019. We identified isolates of 13 serotypes, predominated by serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1 (6/96; 6.3%). Whole-genome sequencing analysis revealed that these isolates possessed 36 different sequence types (STs), and ST242 and ST117 were the most prevalent. Phylogenetic analysis revealed possible animal and human clonal transmission, while antimicrobial susceptibility testing indicated high-level resistance to macrolides, tetracyclines, and aminoglycosides. These isolates carried 24 antibiotic resistance genes (ARGs) that conferred resistance to 7 antibiotic classes. The antibiotic resistance genotypes were directly correlated with the observed phenotypes. We also identified ICEs in 10 isolates, which were present in 4 different genetic environments and possessed differing ARG combinations. We also predicted and confirmed by PCR analysis the existence of a translocatable unit (TU) in which the oxazolidinone resistance gene optrA was flanked by IS1216E elements. One-half (5/10) of the ICE-carrying strains could be mobilized by conjugation. A comparison of the parental recipient with an ICE-carrying transconjugant in a mouse in vivo thigh infection model indicated that the ICE strain could not be eliminated with tetracycline treatment. S. suis therefore poses a significant challenge to global public health and requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation. IMPORTANCE S. suis is a serious zoonotic pathogen. In this study, we investigated the epidemiological and molecular characteristics of 96 S. suis isolates from 10 different provinces of China from 2008 to 2019. A subset of these isolates (10) carried ICEs that were able to be horizontally transferred among isolates of different S. suis serotypes. A mouse thigh infection model revealed that ICE-facilitated ARG transfer promoted resistance development. S. suis requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation.


Assuntos
Oxazolidinonas , Streptococcus suis , Humanos , Suínos , Animais , Camundongos , Streptococcus suis/genética , Filogenia , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
16.
Int J Antimicrob Agents ; 61(5): 106793, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933870

RESUMO

Mobile genetic elements (MGEs), such as integrative and conjugative elements (ICEs), plasmids and translocatable units (TUs), are important drivers for the spread of antibiotic resistance. Although ICEs have been reported to support the spread of plasmids among different bacteria, their role in mobilizing resistance plasmids and TUs has not yet been fully explored. In this study, a novel TU bearing optrA, a novel non-conjugative plasmid p5303-cfrD carrying cfr(D) and a new member of the ICESa2603 family, ICESg5301 were identified in streptococci. Polymerase chain reaction (PCR) assays revealed that three different types of cointegrates can be formed by IS1216E-mediated cointegration between the three different MGEs, including ICESg5301::p5303-cfrD::TU, ICESg5301::p5303-cfrD, and ICESg5301::TU. Conjugation assays showed that ICEs carrying p5303-cfrD and/or TU successfully transferred into recipient strains, thereby confirming that ICEs can serve as vectors for other non-conjugative MGEs, such as TUs and p5303-cfrD. As neither the TU nor plasmid p5303-cfrD can spread on their own between different bacteria, their integration into an ICE via IS1216E-mediated cointegrate formation not only increases the plasticity of ICEs, but also furthers the dissemination of plasmids and TUs carrying oxazolidinone resistance genes.


Assuntos
Conjugação Genética , Streptococcus , Plasmídeos/genética , Streptococcus/genética , Resistência Microbiana a Medicamentos , Transferência Genética Horizontal
17.
Microb Genom ; 9(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748564

RESUMO

Mesorhizobia are soil bacteria that establish nitrogen-fixing symbioses with various legumes. Novel symbiotic mesorhizobia frequently evolve following horizontal transfer of symbiosis-gene-carrying integrative and conjugative elements (ICESyms) to indigenous mesorhizobia in soils. Evolved symbionts exhibit a wide range in symbiotic effectiveness, with some fixing nitrogen poorly or not at all. Little is known about the genetic diversity and symbiotic potential of indigenous soil mesorhizobia prior to ICESym acquisition. Here we sequenced genomes of 144 Mesorhizobium spp. strains cultured directly from cultivated and uncultivated Australian soils. Of these, 126 lacked symbiosis genes. The only isolated symbiotic strains were either exotic strains used previously as legume inoculants, or indigenous mesorhizobia that had acquired exotic ICESyms. No native symbiotic strains were identified. Indigenous nonsymbiotic strains formed 22 genospecies with phylogenomic diversity overlapping the diversity of internationally isolated symbiotic Mesorhizobium spp. The genomes of indigenous mesorhizobia exhibited no evidence of prior involvement in nitrogen-fixing symbiosis, yet their core genomes were similar to symbiotic strains and they generally lacked genes for synthesis of biotin, nicotinate and thiamine. Genomes of nonsymbiotic mesorhizobia harboured similar mobile elements to those of symbiotic mesorhizobia, including ICESym-like elements carrying aforementioned vitamin-synthesis genes but lacking symbiosis genes. Diverse indigenous isolates receiving ICESyms through horizontal gene transfer formed effective symbioses with Lotus and Biserrula legumes, indicating most nonsymbiotic mesorhizobia have an innate capacity for nitrogen-fixing symbiosis following ICESym acquisition. Non-fixing ICESym-harbouring strains were isolated sporadically within species alongside effective symbionts, indicating chromosomal lineage does not predict symbiotic potential. Our observations suggest previously observed genomic diversity amongst symbiotic Mesorhizobium spp. represents a fraction of the extant diversity of nonsymbiotic strains. The overlapping phylogeny of symbiotic and nonsymbiotic clades suggests major clades of Mesorhizobium diverged prior to introduction of symbiosis genes and therefore chromosomal genes involved in symbiosis have evolved largely independent of nitrogen-fixing symbiosis.


Assuntos
Lotus , Mesorhizobium , Transferência Genética Horizontal , Mesorhizobium/genética , Simbiose/genética , Metagenômica , Nitrogênio , Austrália , Lotus/microbiologia , Solo
18.
Can J Microbiol ; 69(3): 123-135, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495587

RESUMO

Integrative and conjugative elements (ICEs) are self-transferable mobile genetic elements that play a significant role in disseminating antimicrobial resistance between bacteria via horizontal gene transfer. A recently identified ICE in a clinical isolate of Histophilus somni (ICEHs02) is 72 914 base pairs in length and harbours seven predicted antimicrobial resistance genes conferring resistance to tetracycline (tetR-tet(H)), florfenicol (floR), sulfonamide (Sul2), aminoglycosides (APH(3″)-Ib, APH(6)-Id, APH(3')-Ia), and copper (mco). This study investigated ICEHs02 host range, assessed effects of antimicrobial stressors on transfer frequency, and examined effects of ICEHs02 acquisition on hosts. Conjugation assays examined transfer frequency of ICEHs02 to H. somni and Pasteurella multocida strains. Polymerase chain reaction assays confirmed the presence of a circular intermediate, ICE-associated core genes, and cargo genes in recipient strains. Susceptibility testing examined ICEHs02-associated resistance phenotypes in recipient strains. Tetracycline and ciprofloxacin induction significantly increased the transfer rates of ICEHs02 in vitro. The copy numbers of the circular intermediate of ICEHs02 per chromosome exhibited significant increases of ∼37-fold after tetracycline exposure and ∼4-fold after ciprofloxacin treatment. The acquisition of ICEHs02 reduced the relative fitness of H. somni transconjugants (TG) by 28% (w = 0.72 ± 0.04) and the relative fitness of P. multocida TG was decreased by 15% (w = 0.85 ± 0.01).


Assuntos
Transferência Genética Horizontal , Pasteurellaceae , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Ciprofloxacina , Tetraciclinas , Conjugação Genética
19.
Front Vet Sci ; 9: 1040266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387383

RESUMO

Histophilus somni, a member of the Pasteurellaceae family, causes various diseases, including thrombotic meningoencephalitis and respiratory diseases. Here, 166 isolates recovered from Japanese cattle with various diseases between the late 1970s and the 2010s were subjected to susceptibility testing against 14 antimicrobials (ampicillin, amoxicillin, cefazolin, ceftiofur, kanamycin, streptomycin, nalidixic acid, enrofloxacin, danofloxacin, florfenicol, erythromycin, tylosin, oxytetracycline, and fosfomycin). The proportions of antimicrobial-resistant/intermediate isolates were low in the total isolates, with resistance rates ranging from 0% for ceftiofur and florfenicol to 13.2% for ampicillin. However, relatively high minimum inhibitory concentrations (MICs) and resistance/intermediate rates were observed in the isolates from cattle with respiratory diseases; i.e., 21/53 isolates (39.6%) showed resistance or intermediate to one or more antimicrobials for treatment of respiratory diseases, and the resistance/intermediate rates to oxytetracycline, kanamycin, ampicillin, amoxicillin, nalidixic acid, and danofloxacin were 28.3, 24.5, 24.5, 13.2, 1.9, and 1.9%, respectively. Isolates with high MICs tended to possess antimicrobial resistance genes, which may confer antimicrobial resistance phenotypes. In particular, all isolates with MICs of ampicillin/amoxicillin, kanamycin, and oxytetracycline ≥2 µg/mL, ≥512 µg/mL, and ≥4 µg/mL possessed bla ROB - 1, aphA-1, and tetH/tetR, respectively, whereas isolates whose MICs were lower than the above-mentioned values did not possess these resistance genes. These results suggest that the resistance genes detected in this study are primarily responsible for the reduced susceptibility of H. somni strains to these antimicrobials. As integrative and conjugative element (ICEs)-associated genes were detected only in genetically related isolates possessing antimicrobial resistance genes, ICEs may play an important role in the spread of resistance genes in some genetic groups of H. somni strains.

20.
Access Microbiol ; 4(10): acmi000415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415734

RESUMO

Xanthomonas is a highly evolved group of phytopathogenic bacteria infecting nearly 400 host plants having vast genomic resources available with heterogenicity in representation from different species and pathovars. Unfortunately, the wealth of data is extremely biased and restricted to a few Xanthomonas pathogens that infect economically important plants, while those reported to infect the most diverse plants remain neglected. In the present study, we report the first complete genome sequence of Xanthomonas citri pv. durantae that was reported to infect Duranta repens L. or golden dewdrop, a hedge plant of ornamental importance native to the American region. Phylogenomic analysis with its closest relatives placed it amongst X. citri pv. citri A* pathotype strains and further comparative studies revealed various large unique genomic regions of chromosomal origin. The association of integrative and conjugative elements and prophages with unique genomic regions suggests the role of mobilome in genome dynamics. A large number of IS elements and transcription activator-like effectors encoding genes on each of the four plasmids indicate the further scope of diversification in Xanthomonas .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA