Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39329621

RESUMO

Increasing inter-pedal distance (Q-Factor: QF) in cycling increases peak internal knee abduction moments (KAbM). The effect of smaller and normalized changes in QF has not been investigated. The purposes of this study were to examine changes in KAbM with small and normalized increases and whether static knee alignment accounts for any changes in knee biomechanics in cycling. Fifteen healthy participants were included (age: 22.7 ± 2.5 years, BMI: 23.95 ± 3.21 kg/m2). Motion capture and instrumented pedals collected kinematic and pedal reaction force (PRF) data, respectively, while participants cycled at five different QFs. Each participant's mechanical axis angle (MAA) was estimated using motion capture. Each participant's QFs were normalized by starting at 160 mm and increasing by 2% of the participant's leg length (L), where the five QF conditions were as follows: QF1 (160), QF2 (160 + 0.02 × L), QF3 (160 + 0.04 × L), QF4 (160 + 0.06 × L), and QF5 (160 + 0.08 × L). A linear mixed model was performed to detect differences between QF conditions. KAbM increased by more than 30% in QF5 from QF1, QF2, QF3, and QF4. Medial PRF increased by at least 20% in QF5 from QF1, QF2, and QF3. MAA had varying degrees of correlation with the variables of interest. These results suggest that KAbM is more sensitive to changes in QF at greater QF increases.

2.
J Sport Health Sci ; 9(3): 258-264, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32444150

RESUMO

BACKGROUND: Q-Factor (QF), or the inter-pedal width, in cycling is similar to step-width in gait. Although increased step-width has been shown to reduce peak knee abduction moment (KAbM), no studies have examined the biomechanical effects of increased QF in cycling at different workrates in healthy participants. METHODS: A total of 16 healthy participants (8 males, 8 females, age: 22.4 ± 2.6 years, body mass index: 22.78 ± 1.43 kg/m2, mean ± SD) participated. A motion capture system and customized instrumented pedals were used to collect 3-dimensional kinematic (240 Hz) and pedal reaction force (PRF) (1200 Hz) data in 12 testing conditions: 4 QF conditions-Q1 (15.0 cm), Q2 (19.2 cm), Q3 (23.4 cm), and Q4 (27.6 cm)-under 3 workrate conditions-80 watts (W), 120 W, and 160 W. A 3 × 4 (QF × workrate) repeated measures of analysis of variance were performed to analyze differences among conditions (p < 0.05). RESULTS: Increased QF increased peak KAbM by 47%, 56%, and 56% from Q1 to Q4 at each respective workrate. Mediolateral PRF increased from Q1 to Q4 at each respective workrate. Frontal-plane knee angle and range of motion decreased with increased QF. No changes were observed for peak vertical PRF, knee extension moment, sagittal plane peak knee joint angles, or range of motion. CONCLUSION: Increased QF increased peak KAbM, suggesting increased medial compartment loading of the knee. QF modulation may influence frontal-plane joint loading when using stationary cycling for exercise or rehabilitation purposes.


Assuntos
Ciclismo/fisiologia , Articulação do Joelho/fisiologia , Equipamentos Esportivos , Artralgia/fisiopatologia , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Humanos , Masculino , Percepção/fisiologia , Esforço Físico/fisiologia , Amplitude de Movimento Articular , Estudos de Tempo e Movimento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA