Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.437
Filtrar
1.
Clin Exp Immunol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953458

RESUMO

The recent pandemic was caused by the emergence of a new human pathogen, SARS-CoV-2. While the rapid development of many vaccines provided an end to the immediate crisis, there remains an urgent need to understand more about this new virus and what constitutes a beneficial immune response in terms of successful resolution of infection. Indeed, this is key for development of vaccines that provide long lasting protective immunity. The interferon lambda (IFNL) family of cytokines are produced early in response to infection and are generally considered anti-viral and beneficial. However, data regarding production of IFNL cytokines in COVID-19 patients is highly variable, and generally from underpowered studies. In this study, we measured all three IFNL1, IFNL2 and IFNL3 cytokines in plasma from a well characterised, large COVID-19 cohort (n=399) that included good representation from patients with a more indolent disease progression, and hence a beneficial immune response. While all three cytokines were produced, they differed in both the frequency of expression in patients, and the levels produced. IFNL3 was produced in almost all patients but neither protein level nor IFNL3/IFNL4 SNPs were associated with clinical outcome. In contrast, both IFNL1 and IFNL2 levels were significantly lower, or absent, in plasma of patients that had a more severe disease outcome. These data are consistent with the concept that early IFNL1 and IFNL2 cytokine production is protective against SARS-CoV-2 infection.

2.
Clin Infect Dis ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954503

RESUMO

BACKGROUND: Interferon-gamma release assays (IGRA) are widely used for diagnosis of latent tuberculosis infection. However, with repeat testing, IGRA transformation (conversion or reversion) may be detected and is challenging to interpret. We reviewed the frequency of and risk factors for IGRA transformation. METHODS: We screened public databases for studies of human participants that reported the frequency of IGRA transformation. We extracted study and subject characteristics, details of IGRA testing and results. We calculated the pooled frequency of IGRA transformation (and transient transformation) and examined associated risk factors. RESULTS: The pooled frequency of IGRA conversion or reversion from 244 studies was estimated at 7.3% (95% CI 6.1-8.5%) or 22.8% (20.1-25.7%), respectively. Transient conversion or reversion were estimated at 46.0% (35.7-56.4%) or 19.6% (9.2-31.7%) of conversion or reversion events respectively. Indeterminate results seldom reverted to positive (1.2% [0.1-3.5%]). IGRA results in the borderline positive or negative range were associated with increased risk of conversion or reversion (pooled OR: conversion, 4.15 [3.00-5.30]; reversion, 4.06 [3.07-5.06]). BCG vaccination was associated with decreased risk of conversion (0.70, 0.56-0.84), cigarette smoking with decreased risk of reversion (0.44, 0.06-0.82), and female sex with decreased risk of either conversion or reversion (conversion, 0.66 [0.58-0.75]; reversion, 0.46 [0.31-0.61]). CONCLUSIONS: IGRA conversion is less common than reversion, and frequently transient. Research is needed to determine whether individuals with reversion would benefit from tuberculosis preventive treatment. Re-testing of people with indeterminate results is probably not indicated, since indeterminate results seldom revert to positive.

3.
Immunity ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38955184

RESUMO

An important property of the host innate immune response during microbial infection is its ability to control the expression of antimicrobial effector proteins, but how this occurs post-transcriptionally is not well defined. Here, we describe a critical antibacterial role for the classic antiviral gene 2'-5'-oligoadenylate synthetase 1 (OAS1). Human OAS1 and its mouse ortholog, Oas1b, are induced by interferon-γ and protect against cytosolic bacterial pathogens such as Francisella novicida and Listeria monocytogenes in vitro and in vivo. Proteomic and transcriptomic analysis showed reduced IRF1 protein expression in OAS1-deficient cells. Mechanistically, OAS1 binds and localizes IRF1 mRNA to the rough endoplasmic reticulum (ER)-Golgi endomembranes, licensing effective translation of IRF1 mRNA without affecting its transcription or decay. OAS1-dependent translation of IRF1 leads to the enhanced expression of antibacterial effectors, such as GBPs, which restrict intracellular bacteria. These findings uncover a noncanonical function of OAS1 in antibacterial innate immunity.

4.
BMC Genomics ; 25(1): 650, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951796

RESUMO

BACKGROUND: Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS: For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS: Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.


Assuntos
Cyprinidae , Inflamação , Animais , Cyprinidae/metabolismo , Cyprinidae/genética , Inflamação/metabolismo , Inflamação/genética , Imunidade Inata , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linhagem Celular , Sistemas CRISPR-Cas , Interferon Tipo I/metabolismo , Edição de Genes , Regulação da Expressão Gênica
5.
Biochimie ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960371

RESUMO

Congenital zika virus syndrome (CZS) has become a significant worldwide concern since the sudden rise of microcephaly related to zika virus (ZIKV) in Brazil. Primarily transmitted by Aedes mosquitoes, ZIKV shares serologic similarities with dengue virus (DENV), complicating the diagnosis and/or clinical management. The Angiotensin I-Converting Enzyme (ACE) was associated with either neuroprotective or anti-inflammatory properties in the central nervous system (CNS). The possible role(s) of ACE in these two flaviviruses infection remain largely unexplored. In this study, we evaluate ACE activity in the brain of ZIKV- or DENV-infected mice, both compared to MOCK, showing about 30% increased ACE activity only in ZIKV-infected mice (p = 0.024), while no change was noticed in brain from DENV-infected animals (p = 0.888). In addition, the treatment with interferon beta (IFNß), under conditions previously demonstrated to rescue the normal size of microcephalic brains determined by ZIKV infection, also restored ACE activity in ZIKV-infected animals to levels close to that of the MOCK control group. Although inflammatory responses expected for either ZIKV or DENV infections, only ZIKV was associated with microcephaly, as well as with increased ACE activity and reversion by treatment with IFNß. Furthermore, this increase in ACE activity was observed only after intracerebroventricular (ICV) injection (F (2, 16) = 7.907, p = 0.004), but not for intraperitoneal (IP) administration of ZIKV (F (2, 26) = 1.996, p = 0.156), suggesting that the observed central ACE activity modulation may be associated with the presence of this specific flavivirus in the brain.

6.
Br J Haematol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960381

RESUMO

This prospective clinical study aimed to evaluate the efficacy and safety of the pre-emptive treatment modality of azacitidine in combination with interferon-α (IFN-α) in AML/MDS patients post-transplantation. Forty-seven patients aged 17-62 were enrolled with 14 patients having completed the planned 12 cycles. Following initiation, 72.3% responded positively after the first cycle, peaking at 77.2% by the fifth cycle. Notably, 24 patients maintained sustained responses throughout a median follow-up of 1050 days (range, 866-1234). Overall survival, leukaemia-free survival and event-free survival probabilities at 3 years were 69.5%, 60.4% and 35.7% respectively. Cumulative incidences of relapse and non-relapse mortality were 36.5% and 4.3% respectively. Multivariate analysis identified that receiving pre-emptive treatment for fewer than six cycles and the absence of chronic graft-versus-host disease after intervention was significantly associated with poorer clinical outcomes. The combination of azacitidine with IFN-α was well-tolerated with no observed severe myelotoxicity, and the majority of adverse events were reversible and manageable. In conclusion, the use of azacitidine in conjunction with IFN-α as pre-emptive therapy is a safe and effective treatment to prevent disease progression in AML/MDS patients with MRD positivity post-allo-HSCT.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38958085

RESUMO

INTRODUCTION: the advent of biological therapies has already revolutionized treatment strategies and disease course of several rheumatologic conditions, and monoclonal antibodies (mAbs) targeting cytokines and interleukins represent a considerable portion of this family of drugs. In Systemic Lupus Erythematosus (SLE) dysregulation of different cytokine and interleukin-related pathways have been linked to disease development and perpetration, offering palatable therapeutic targets addressable via such mAbs. AREAS COVERED: In this review, we provide an overview of the different biological therapies under development targeting cytokines and interleukins, with a focus on mAbs, while providing the rationale behind their choice as therapeutic targets and analyzing the scientific evidence linking them to SLE pathogenesis. EXPERT OPINION: an unprecedented number of clinical trials on biological drugs targeting different immunological pathways are ongoing in SLE. Their success might allow us to tackle present challenges of SLE management, including the overuse of glucocorticoids in daily clinical practice, as well as SLE heterogenicity in treatment response among different individuals, hopefully paving the way toward precision medicine.

8.
Virus Res ; : 199431, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969013

RESUMO

Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-ß production and signaling. In particular NS4A was very effective at suppressing IFN-ß production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-ß production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.

9.
Nagoya J Med Sci ; 86(2): 341-344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38962409

RESUMO

We describe a case of erythema induratum of Bazin (EIB) that presented recurrently on the extremities during treatment with anti-tuberculosis medications. The anti-tuberculosis medications were effective, so they were continued despite the occurrence of the EIB lesions, and those lesions disappeared 5 months after first appearing. EIB is currently considered a multifactorial disorder with many different causes, with tuberculosis being an example, and it is thought to be a hypersensitive immune response to Mycobacterium tuberculosis. The clinical manifestations may fluctuate depending on the immune response of the host. Our patient was affected with myelodysplastic syndrome, and we believe that this was a major factor that interfered with a normal immune response. This case illustrates the importance of providing intensive anti-tuberculosis treatment from the start, and in cases where EIB co-presents, to continue this treatment until the end, in order to prevent relapse.


Assuntos
Antituberculosos , Eritema Endurado , Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/tratamento farmacológico , Eritema Endurado/tratamento farmacológico , Eritema Endurado/patologia , Antituberculosos/uso terapêutico , Recidiva , Masculino , Idoso , Feminino
10.
J Infect Public Health ; 17(8): 102489, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964175

RESUMO

BACKGROUND: There are numerous human genes associated with viral infections, and their identification in specific populations can provide suitable therapeutic targets for modulating the host immune system response and better understanding the viral pathogenic mechanisms. Many antiviral signaling pathways, including Type I interferon and NF-κB, are regulated by TRIM proteins. Therefore, the identification of TRIM proteins involved in COVID-19 infection can play a significant role in understanding the innate immune response to this virus. METHODS: In this study, the expression of TRIM25 gene was evaluated in a blood sample of 330 patients admitted to the hospital (142 patients with severe disease and 188 patients with mild disease) as well as in 160 healthy individuals. The relationship between its expression and the severity of COVID-19 disease was assessed and compared among the study groups by quantitative Real-time PCR technique. The statistical analysis of the results demonstrated a significant reduction in the expression of TRIM25 in the group of patients with severe infection compared to those with mild infection. Furthermore, the impact of increased expression of TRIM25 gene in HEK-293 T cell culture was investigated on the replication of attenuated SARS-CoV-2 virus. RESULTS: The results of Real-time PCR, Western blot for the viral nucleocapsid gene of virus, and CCID50 test indicated a decrease in virus replication in these cells. The findings of this research indicated that the reduced expression of the TRIM25 gene was associated with increased disease severity of COVID-19 in individuals. Additionally, the results suggested the overexpression of TRIM25 gene can impress the replication of attenuated SARS-CoV-2 and the induction of beta-interferon. CONCLUSION: TRIM25 plays a critical role in controlling viral replication through its direct interaction with the virus and its involvement in inducing interferon during the early stages of infection. This makes TRIM25 a promising target for potential therapeutic interventions.

11.
J Med Case Rep ; 18(1): 321, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965631

RESUMO

BACKGROUND: Thrombotic microangiopathy is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and organ injury. The pathological features include vascular damage that is manifested by arteriolar and capillary thrombosis with characteristic abnormalities in the endothelium and vessel wall. Thrombocytopenia is one of the common adverse effects of interferon therapy. However, a more serious but rare side effect is thrombotic microangiopathy. CASE PRESENTATION: We report the case of a 36-year-old Asian male patient with clinical manifestations of hypertension, blurred vision, acute renal failure, thrombocytopenia, and thrombotic microangiopathy. Renal biopsy showed interstitial edema with fibrosis, arteriolar thickening with vitreous changes, and epithelial podocytes segmental fusion. Immunofluorescence microscopy showed C3(+), Ig A(+) deposition in the mesangial region, which was pathologically consistent with thrombotic microangiopathy renal injury and Ig A deposition. The patient had a history of hepatitis B virus infection for more than 5 years. Lamivudine was used in the past, but the injection of long-acting interferon combined with tenofovir alafenamide fumarate was used since 2018. The comprehensive clinical investigation and laboratory examination diagnosed the condition as thrombotic microangiopathy kidney injury caused by interferon. After stopping interferon in his treatment, the patient's renal function partially recovered after three consecutive therapeutic plasma exchange treatments and follow-up treatment without immunosuppressant. The renal function of the patient remained stable. CONCLUSIONS: This report indicates that interferon can induce thrombotic microangiopathy with acute renal injury, which can progress to chronic renal insufficiency.


Assuntos
Antivirais , Microangiopatias Trombóticas , Humanos , Masculino , Microangiopatias Trombóticas/induzido quimicamente , Adulto , Antivirais/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Troca Plasmática , Hepatite B/complicações , Interferons/efeitos adversos
12.
J Control Release ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971428

RESUMO

Immunogenic cell death (ICD) holds the potential for in situ tumor vaccination while concurrently eradicating tumors and stimulating adaptive immunity. Most ICD inducers, however, elicit insufficient immune responses due to negative feedback against ICD biomarkers, limited infiltration of antitumoral immune cells, and the immunosuppressive tumor microenvironment (TME). Recent findings highlight the pivotal roles of stimulators of interferon gene (STING) activation, particularly in stimulating antigen-presenting cells (APCs) and TME reprogramming, addressing ICD limitations. Herein, we introduced 'tumor phagocytosis-driven STING activation', which involves the activation of STING in APCs during the recognition of ICD-induced cancer cells. We developed a polypeptide-based nanocarrier encapsulating both doxorubicin (DOX) and diABZI STING agonist 3 (dSA3) to facilitate this hypothesis in vitro and in vivo. After systemic administration, nanoparticles predominantly accumulated in tumor tissue and significantly enhanced anticancer efficacy by activating tumor phagocytosis-driven STING activation in MC38 and TC1 tumor models. Immunological activation of APCs occurred within 12 h, subsequently leading to the activation of T cells within 7 days, observed in both the TME and spleen. Furthermore, surface modification of nanoparticles with cyclic RGD (cRGD) moieties, which actively target integrin αvß3, enhances tumor accumulation and eradication, thereby verifying the establishment of systemic immune memory. Collectively, this study proposes the concept of tumor phagocytosis-driven STING activation and its effectiveness in generating short-term and long-term immune responses.

13.
Microbiol Spectr ; : e0046924, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975791

RESUMO

Interferon-gamma (IFN-γ) release assays play a pivotal role in tuberculosis infection (TBI) diagnosis, with QuantiFERON-TB Gold Plus-an enzyme-linked immunosorbent assay (ELISA)-among the most widely utilized. Newer QuantiFERON-TB platforms with shorter turnaround times were recently released. We aimed to evaluate these platforms' agreement in the diagnosis of TBI. Blood samples from a prospective cohort of tuberculosis household contacts were collected at baseline and after 12 weeks of follow-up, and tested with LIAISON, an automated chemiluminescence immunoassay (CLIA) system, QIAreach, a lateral flow (QFT-LF) semi-automated immunoassay, and the ELISA QuantiFERON-TB Gold Plus platform. Test concordances were analyzed. ELISA vs CLIA overall agreement was 83.3% for all tested samples (120/144) [Cohen's kappa coefficient (κ): 0.66 (95% CI: 0.54-0.77)]. Samples positive with CLIA provided consistently higher IFN-γ levels than with ELISA (P < 0.001). Twenty-four (16.7%) discordant pairs were obtained, all CLIA-positive/ELISA-negative: 15 (62.5%) had CLIA IFN-γ levels within borderline values (0.35-0.99 IU/mL) and 9 (37.5%) >0.99 IU/mL. QFT-LF showed only 76.4% (68/89) overall agreement with ELISA [κ: 0.53 (95% CI: 0.37-0.68)] with 21 (23.6%) discordant results obtained, all QFT-LF-positive/ELISA-negative. Overall concordance between ELISA and CLIA platforms was substantial, and only moderate between ELISA and QFT-LF. The CLIA platform yielded higher IFN-γ levels than ELISA, leading to an almost 17% higher positivity rate. The techniques do not seem interchangeable, and validation against other gold standards, such as microbiologically-confirmed tuberculosis disease, is required to determine whether these cases represent true new infections or whether CLIA necessitates a higher cutoff. IMPORTANCE: Tuberculosis is an airborne infectious disease caused by Mycobacterium tuberculosis that affects over 10 million people annually, with over 2 billion people carrying an asymptomatic tuberculosis infection (TBI) worldwide. Currently, TBI diagnosis includes tuberculin skin test and the blood-based interferon-gamma (IFN-γ) release assays, with Qiagen QuantiFERON-TB Gold Plus (QFT) being among those most widely utilized. We evaluated Qiagen's newer QFT platforms commercially available in a prospective cohort of tuberculosis contacts. A substantial agreement was obtained between the current QFT-enzyme-linked immunosorbent assay (ELISA) and the new QFT-chemiluminescence immunoassay (CLIA) platform, although QFT-CLIA provided higher concentrations of IFN-γ, leading to a 16.6% higher positivity rate. We highlight that both platforms may not be directly interchangeable and that further validation is required.

14.
Am J Infect Control ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964661

RESUMO

Laboratory algorithms using Acid Fast Bacilli (AFB) staining and Mycobacterium tuberculosis (Mtb) polymerase chain reaction (PCR) are often used to remove isolation precautions. A retrospective case review of 52 patients with culture confirmed pulmonary Mtb revealed 4 subjects with negative sputum AFB smears and negative Mtb PCRs. All had significant risk factors for Mtb and had a positive interferon gamma release assay. A negative PCR test result does not exclude an Mtb diagnosis.

15.
Biomed Pharmacother ; 177: 117074, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972149

RESUMO

Glioma, a common and highly malignant central nervous system tumor, markedly influences patient prognosis via interactions with glioma-associated macrophages. Previous research has revealed the anticancer potential of ß-mangostin, a xanthone derivative obtained from the mangosteen fruit. This research investigated the role of ß-mangostin on microglia in the glioma microenvironment and evaluated the efficacy of ß-mangostin combined with anti-PD-1 antibody (αPD-1) in glioma-bearing mice. The results showed that, ß-mangostin attenuated M2 polarization in BV2 cells and promoted M1-related interleukin (IL)-1ß and IL-6 secretion, thereby inhibiting glioma invasion. In addition, ß-mangostin improved the anti-glioma effects of αPD-1 and increased CD8+T cell and M1-type microglia infiltration. Mechanistically, ß-mangostin bound to the stimulator of interferon genes (STING) protein, which is crucial for the anti-tumor innate immune response, and promoted STING phosphorylation in microglia, both in vivo and in vitro. These results provide insights into its mode of action and supporting further investigation into ß-mangostin as a therapeutic agent.

16.
Braz J Otorhinolaryngol ; 90(5): 101449, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38972285

RESUMO

OBJECTIVES: Exophytic Sinonasal Papilloma (ESP) is a benign tumor of the sinonasal tract. Complete surgical excision by endoscopic surgery is the treatment of choice. However, a high recurrence rate (36% at 5-year follow-up) is associated with this method, which may indicate the presence of microorganisms such as Human Papillomavirus (HPV). It is important to note that the standard treatment for ESP does not include antiviral drugs. In our study, we are testing the effectiveness of an interferon-containing drug in reducing recurrence and postoperative reactions in patients with ESP. METHODS: We included 78 patients aged 23-83 years with a confirmed diagnosis of ESP by rhinoscopy and nasal endoscopy and a positive PCR test for HPV in nasal scrapings. To compare the results, we divided the patients into main and control groups. The main group received recombinant human interferon after surgery, while the control group did not receive the drug. We performed a statistical analysis to compare the proportion of patients without reactive manifestations at different stages of the postoperative period, as well as to compare the proportion of patients with recurrent ESP at certain stages of observation. RESULTS: The introduction of recombinant human interferon accelerated the resolution of postoperative reactions and promoted the healing of the nasal mucosa after surgical removal of the ESP. We also found a statistically significant association between treatment with recombinant interferon and a reduction in the recurrence rate of ESP. CONCLUSION: According to the results of the study, it was found that in the main group of patients who received rhIFN-α2b (recombinant human Interferon alpha 2b) in the postoperative period, the frequency of relapses of ESP and the time of postoperative recovery were significantly lower than in patients in the control group who did not take the drug. LEVEL OF EVIDENCE: Cohort Study.

17.
Cell Commun Signal ; 22(1): 354, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972975

RESUMO

BACKGROUND: Hyperactive neutrophil extracellular traps (NETs) formation plays a crucial role in active severe systemic lupus erythematosus (SLE). However, what triggers the imbalance in dysregulated NETs formation in SLE is elusive. Transfer RNA-derived small RNAs (tsRNAs) are novel non-coding RNAs, which participate in various cellular processes. We explore the role of tsRNAs on NETs formation in SLE. METHODS: We analyzed the levels of NETs DNA and platelet-derived extracellular vesicles (pEVs) from 50 SLE patients and 20 healthy control subjects. The effects of pEVs on NETs formation were evaluated by using immunofluorescence assay and myeloperoxidase-DNA PicoGreen assay. The regulatory mechanism of pEVs on NETs formation and inflammatory cytokines production were investigated using an in vitro cell-based assay. RESULTS: Increased circulating NETs DNA and pEVs were shown in SLE patients and were associated with disease activity (P < 0.005). We demonstrated that SLE patient-derived immune complexes (ICs) induced platelet activation, followed by pEVs release. ICs-triggered NETs formation was significantly enhanced in the presence of pEVs through Toll-like receptor (TLR) 8 activation. Increased levels of tRF-His-GTG-1 in pEVs and neutrophils of SLE patients were associated with disease activity. tRF-His-GTG-1 interacted with TLR8 to prime p47phox phosphorylation in neutrophils, resulting in reactive oxygen species production and NETs formation. Additionally, tRF-His-GTG-1 modulated NF-κB and IRF7 activation in neutrophils upon TLR8 engagement, resulting IL-1ß, IL-8, and interferon-α upregulation, respectively. CONCLUSIONS: The level of tRF-His-GTG-1 was positively correlated with NETs formation in SLE patients; tRF-His-GTG-1 inhibitor could efficiently suppress ICs-triggered NETs formation/hyperactivation, which may become a potential therapeutic target.


Neutrophils and platelets are key members in the immunopathogenesis of SLE. EVs play a key role in intercellular communication. Abnormal NETs formation promotes vascular complications and organ damage in SLE patients. tsRNA is a novel regulatory small non-coding RNA and participates in diverse pathological processes. Herein, we showed that SLE patient-derived ICs activates platelets directly, followed by intracellular tRF-His-GTG-1 upregulation, which is loaded into pEVs. The pEV-carried tRF-His-GTG-1 could interact with TLR8 in neutrophils, followed by activation of the downstream signaling pathway, including p47phox-NOX2-ROS, which causes NETs enhancement, while IRF7 promotes the expression of IFN-α. The tRF-His-GTG-1 inhibitor could suppress efficiently SLE ICs-induced NETs formation and pEVs primed NETs enhancement. This study offers new molecular machinery to explain the association between the platelets-derived tsRNAs, pEVs, and hyperactive NETs formation in lupus. tRF-His-GTG-1 may serve as a potential therapeutic target and help to advance our understanding of tsRNAs in SLE pathogenesis.


Assuntos
Armadilhas Extracelulares , Vesículas Extracelulares , Interferon-alfa , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/genética , Armadilhas Extracelulares/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Adulto , Masculino , Interferon-alfa/metabolismo , Neutrófilos/metabolismo , Pessoa de Meia-Idade , Receptor 8 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Plaquetas/metabolismo
18.
Heliyon ; 10(12): e32730, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975233

RESUMO

Background: The correlation between metabolic syndrome (MetS) and hepatitis B surface antigen (HBsAg) loss remains to be further elucidated, particularly in patients receiving pegylated interferon-α (PEG-IFN) treatment. Methods: 758 patients with low HBsAg quantification who had received nucleos(t)ide analog (NUC) therapy for at least one year and subsequently switched to or add on PEG-IFN therapy over an unfixed course were enrolled. 412 patients were obtained with baseline data matched. A total of 206 patients achieved HBsAg loss (cured group) within 48 weeks. Demographic and biochemical data associated with MetS were gathered for analysis. HepG2.2.15 cell line was used in vitro experiments to validate the efficacy of interferon-α (IFN-α). Results: The proportion of patients with diabetes or hypertension in the uncured group was significantly higher than in the cured group. The levels of fasting blood glucose (FBG) and glycated albumin remained elevated in the uncured group over the 48 weeks. In contrast, the levels of blood lipids and uric acid remained higher in the cured group within 48 weeks. Triglycerides levels and liver steatosis of all patients increased after PEG-IFN therapy. Baseline elevated uric acid levels and hepatic steatosis may be beneficial for HBsAg loss. IFN-α could induce hepatic steatosis and indirectly promote HBsAg loss by increasing triglyceride level through upregulation of acyl-CoA synthetase long-chain family member 1(ACSL1). Conclusions: IFN-α could induce liver steatosis to promote HBsAg loss by increasing triglyceride level through upregulation of ACSL1. Comorbid diabetes may be detrimental to obtaining HBsAg loss with PEG-IFN therapy in CHB patients.

19.
Immunol Med ; : 1-11, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952099

RESUMO

Type I interferons (IFN-Is) play a significant role in systemic lupus erythematosus (SLE) pathogenesis. Double-filtration plasmapheresis (DFPP) is a treatment option for SLE; however, its effect on IFN-Is remains unclear. Therefore, we investigated the effects of DFPP on IFN-Is. Plasma from patients with SLE (n = 11) who regularly underwent DFPP was analysed using a cell-based reporter system to detect the bioavailability and inducing activity of IFN-I. The concentration of plasma dsDNA was measured, and western blotting analysis was used to assess the phosphorylation of the STING pathway. A higher IFN-I bioavailability and inducing activity were observed in patients compared to healthy controls, and both parameters decreased after DFPP. The reduction in IFN-I-inducing activity was particularly prominent in patients with high disease activity. Notably, this reduction was not observed in STING-knockout reporter cells. Additionally, plasma dsDNA levels decreased after DFPP treatment, suggesting that inhibition of the STING pathway was responsible for the observed decrease in activity. Western blotting analysis revealed suppression of STING pathway phosphorylation after DFPP. DFPP reduced IFN-I bioavailability and the inducing activity of plasma. This reduction is likely attributable to the inhibition of the STING pathway through the elimination of dsDNA.

20.
J Cancer ; 15(13): 4328-4344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947390

RESUMO

Purpose: Atractylodes macrocephala Koidz is a widely used classical traditional Chinese herbal medicine, that has shown remarkable efficacy in cancers. Colorectal cancer (CRC) is the most common malignant tumor globally. Interferon (IFN)-γ, a prominent cytokine involved in anti-tumor immunity that has cytostatic, pro-apoptotic, and immune-stimulatory properties for the detection and removal of transformed cells. Atractylenolides-II (AT-II) belongs to the lactone compound that is derived from Atractylodes macrocephala Koidz with anti-cancer activity. However, whether AT-II combined with IFN-γ modulates CRC progression and the underlying mechanisms remain unclear. The present study aimed to elucidate the efficacy and pharmaceutical mechanism of action of AT-II combined with IFN-γ synergistically against CRC by regulating the NF-kB p65/PD-L1 signaling pathway. Methods: HT29 and HCT15 cells were treated with AT-II and IFN-γ alone or in combination and cell viability, migration, and invasion were then analyzed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. Furthermore, the underlying mechanism was investigated through western blot assay. The role of AT-II combined with IFN-γ on tumor growth and lung metastases was estimated in vivo. Finally, the population of lymphocytes in tumor tissues of lung metastatic C57BL/6 mice and the plasma cytokine levels were confirmed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Results: AT-II or the combination IFN-γ significantly inhibited the growth and migration abilities of CRC cells in vitro and in vivo. The biological mechanisms behind the beneficial effects of AT-II combined with IFN-γ were also measured and inhibition of p38 MAPK, FAK, Wnt/ß-catenin, Smad, and NF-kB p65/PD-L1 pathways was observed. Moreover, AT-II combined with IFN-γ significantly inhibited HCT15 xenograft tumor growth and lung metastases in C57BL/6 mice, which was accompanied by lymphocyte infiltration into the tumor tissues and inflammatory response inactivation. Conclusions: The results showed that the AT-II in combination with IFN-γ could be used as a potential strategy for tumor immunotherapy in CRC. More importantly, the mechanism by which AT-II suppressed CRC progressions was by inhibiting the NF-kB p65/PD-L1 signal pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...