Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Behav Ecol ; 35(6): arae072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380688

RESUMO

In this era of rapid global change, understanding the mechanisms that enable or prevent species from co-occurring has assumed new urgency. The convergent agonistic character displacement (CACD) hypothesis posits that signal similarity enables the co-occurrence of ecological competitors by promoting aggressive interactions that reduce interspecific territory overlap and hence, exploitative competition. In northwestern Switzerland, ca. 10% of Phylloscopus sibilatrix produce songs containing syllables that are typical of their co-occurring sister species, Phylloscopus bonelli ("mixed singers"). To examine whether the consequences of P. sibilatrix mixed singing are consistent with CACD, we combined a playback experiment and an analysis of interspecific territory overlap. Although P. bonelli reacted more aggressively to playback of mixed P. sibilatrix song than to playback of typical P. sibilatrix song, interspecific territory overlap was not reduced for mixed singers. Thus, the CACD hypothesis was not supported, which stresses the importance of distinguishing between interspecific aggressive interactions and their presumed spatial consequences.

2.
Ann Bot ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312215

RESUMO

BACKGROUND AND AIMS: Mixed forest plantations are increasingly recognised for their role in mitigating the impacts of climate change and enhancing ecosystem resilience. Yet, there remains a significant gap in understanding the early-stage dynamics of species trait diversity and interspecies interactions, particularly in pure deciduous mixtures. This study aims to explore the timing and mechanisms by which trait diversity of deciduous species and competitive interactions influence yield, carbon allocation, and space occupation in mixed forests, both above- and belowground. METHODS: A forest inventory was conducted in planted monocultures, 2-species, and 4-species mixtures of European Acer, Tilia, Carpinus, and Quercus, representing a spectrum from acquisitive to conservative tree species. Competition effects were assessed with linear mixed-effects models at the level of biomass and space acquisition, including leaf, canopy, stem, and fine root traits. KEY RESULTS: Early aboveground growth effects were observed six years post-planting, with significant biomass accumulation after eight years, strongly influenced by species composition. Mixtures, especially with acquisitive species, exhibited aboveground overyielding, 1.5- to 1.9-times higher than monocultures. Fine roots showed substantial overyielding in high diversity stands. Biomass allocation was species-specific and varied markedly by tree size, the level of diversity, and between acquisitive Acer and the more conservative species. No root segregation was found. CONCLUSIONS: Our findings underscore the critical role of species trait diversity in enhancing productivity in mixed deciduous forest plantations. Allometric changes highlight the need to differentiate between (active) acclimations and (passive) tree size-related changes, but illustrate major consequences of competitive interactions for the functional relation between leaves, stem, and roots. This study points towards the significant contributions of both above- and belowground components to overall productivity of planted mixed-species forests.

3.
Tree Physiol ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244730

RESUMO

Mixed-species forests are, for multiple reasons, promising options for forest management in Central Europe. However, the extent to which interspecific competition affects tree hydrological processes is not clear. High-resolution dendrometers capture sub-daily variations in stem diameter; they can simultaneously monitor stem growth (irreversible changes in diameter) and water status (reversible changes) of individual trees. Using the information on water status, we aimed to assess potential effects of tree species mixture, expressed as local neighborhood identity, on night-time rehydration and water stress. We deployed 112 sensors in pure and mixed forest stands of European beech, Norway spruce, and Douglas fir on four sites in north-western Germany, measuring stem diameter in 10-minute intervals for a period of four years (2019-2022). In a mixture distribution model, we used environmental variables, namely soil matric potential, atmospheric vapor pressure deficit, temperature, precipitation, and neighborhood identity to explain night-time rehydration, measured as the daily minimum tree water deficit (TWDmin). TWDmin was used as a daily indicator of water stress and the daily occurrence of sufficient water supply, allowing for stem growth (potential growth). We found that species and neighborhood identity affected night-time rehydration, but the impacts varied depending on soil water availability. While there was no effect at high water availability, increasing drought revealed species-specific patterns. Beech improved night-time rehydration in mixture with Douglas fir, but not in mixture with spruce. Douglas fir however, only improved rehydration at a smaller share of beech in the neighborhood, while beech dominance tended to reverse this effect. Spruce was adversely affected when mixed with beech. At species level and under dry conditions, we found that night-time rehydration was reduced in all species, but beech had a greater capacity to rehydrate under high to moderate soil water availability than the conifers, even under high atmospheric water demand. Our study gives new insights into neighborhood effects on tree water status and highlights the importance of species-specific characteristics for tree-water relations in mixed-species forests. It shows that drought stress of European beech can be reduced by admixing Douglas fir, which may point towards a strategy to adapt beech stands to climate change.

4.
Curr Res Insect Sci ; 6: 100093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220234

RESUMO

Due to the increasing pressures on bees, many beekeepers currently wish to move their managed livestock of Apis mellifera into little disturbed ecosystems such as protected natural areas. This may, however, exert detrimental competitive effects upon local wild pollinators. While it appears critical for land managers to get an adequate knowledge of this issue for effective wildlife conservation schemes, the frequency of this competition is not clear to date. Based on a systematic literature review of 96 studies, we assessed the frequency of exploitative competition between honey bees and wild pollinators. We found that 78% of the studies highlighted exploitative competition from honey bees to wild pollinators. Importantly, these studies have mostly explored competition with wild bees, while only 18% of them considered other pollinator taxa such as ants, beetles, bugs, butterflies, flies, moths, and wasps. The integration of non-bee pollinators into scientific studies and conservation plans is urgently required as they are critical for the pollination of many wild plants and crops. Interestingly, we found that a majority (88%) of these studies considering also non-bee pollinators report evidence of competition. Thus, neglecting non-bee pollinators could imply an underestimation of competition risks from honey bees. More inclusive work is needed to estimate the risks of competition in its entirety, but also to apprehend the context-dependency of competition so as to properly inform wildlife conservation schemes.

5.
Sci Rep ; 14(1): 20736, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237616

RESUMO

Climate and land use/land cover (LULC) changes have far-reaching effects on various biological processes in wildlife, particularly interspecific interactions. Unfortunately, interspecific interactions are often overlooked when assessing the impacts of environmental changes on endangered species. In this study, we examined niche similarities and habitat overlaps between wild Crested Ibis and sympatric Egret and Heron species (EHs) in Shaanxi, China, using Ecological niche models (ENMs). We aimed to forecast potential alterations in habitat overlaps due to climate and LULC changes. The results showed that although EHs possess a broader niche breadth compared to the Crested Ibis, they still share certain niche similarities, as indicated by Schoener's D and Hellinger's I values exceeding 0.5, respectively. Notably, despite varying degrees of habitat reduction, the shared habitat area of all six species expands with the changes in climate and LULC. We suggest that with the climate and LULC changes, the habitats of sympatric EHs are likely to suffer varying degrees of destruction, forcing them to seek refuge and migrate to the remaining wild Ibis habitat. This is primarily due to the effective conservation efforts in the Crested Ibis habitat in Yangxian County and neighboring areas. Consequently, due to the niche similarity, they will share and compete for limited habitat resources, including food and space. Therefore, we recommend that conservation efforts extend beyond protecting the Crested Ibis habitat. It is crucial to control human activities that contribute to LULC changes to safeguard the habitats of both Crested Ibis and other sympatric birds.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Animais , China , Aves/fisiologia , Simpatria , Mudança Climática , Clima
6.
Animals (Basel) ; 14(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39123765

RESUMO

Animal personalities play a crucial role in invasion dynamics. During the invasion process, the behavioral strategies of native species vary among personalities, just as the invasive species exhibit variations in behavior strategies across personalities. However, the impact of personality interactions between native species and invasive species on behavior and growth are rarely illustrated. The red-eared slider turtle (Trachemys scripta elegans) is one of the worst invasive species in the world, threatening the ecology and fitness of many freshwater turtles globally. The Chinese pond turtle (Mauremys reevesii) is one of the freshwater turtles most threatened by T. scripta elegans in China. In this study, we used T. scripta elegans and M. reevesii to investigate how the personality combinations of native and invasive turtles would impact the foraging strategy and growth of both species during the invasion process. We found that M. reevesii exhibited bolder and more exploratory personalities than T. scripta elegans. The foraging strategy of M. reevesii was mainly affected by the personality of T. scripta elegans, while the foraging strategy of T. scripta elegans was influenced by both their own personality and personalities of M. reevesii. Additionally, we did not find that the personality combination would affect the growth of either T. scripta elegans or M. reevesii. Differences in foraging strategy may be due to the dominance of invasive species and variations in the superficial exploration and thorough exploitation foraging strategies related to personalities. The lack of difference in growth may be due to the energy allocation trade-offs between personalities or be masked by the slow growth rate of turtles. Overall, our results reveal the mechanisms of personality interaction effects on the short-term foraging strategies of both native and invasive species during the invasion process. They provide empirical evidence to understand the effects of personality on invasion dynamics, which is beneficial for enhancing comprehension understanding of the personality effects on ecological interactions and invasion biology.

7.
Plants (Basel) ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124185

RESUMO

Periphytic algal colonization is common in aquatic systems, but its interspecific competition remains poorly understood. In order to fill the gap, the process of periphytic algal colonization in the Middle Route of the South to North Water Diversion Project was studied. The results showed that the process was divided into three stages: the initial colonization stage (T1, 3-6 days), community formation stage (T2, 12-18 days) and primary succession stage (T3, 24-27 days). In T1, the dominant species were Diatoma vulgaris (Bory), Navicula phyllepta (Kützing) and Fragilaria amphicephaloides (Lange-Bertalot) belonging to Heterokontophyta; these species boasted wide niche widths (NWs), low niche overlap (NO) and low ecological response rates (ERRs). In T2, the dominant species were Diatoma vulgaris, Cymbella affinis (Kützing), Navicula phyllepta, Fragilaria amphicephaloides, Gogorevia exilis (Kützing), Melosira varians (C.Agardh), Phormidium willei (N.L.Gardner) and Cladophora rivularis (Kuntze). These species displayed wider NWs, lower NO, and lower ERRs than those in T1. In T3, the dominant species were Diatoma vulgaris, Cymbella affinis, Navicula phyllepta, Fragilaria amphicephaloides, Achnanthes exigu (Grunow), etc. Among them, Heterokontophyta such as Diatoma vulgaris and Cymbella affinis had a competitive advantage based on NWs and ERRs. Cyanobacteria like Phormidium willei lost their dominant status due to the narrower NW and the increased NO. It could be concluded the interspecific competition became fiercer and shaped the colonization process; this study will be helpful in understanding the colonization of periphytic algal communities.

8.
Water Res ; 265: 122308, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39180952

RESUMO

Global warming and eutrophication contribute to frequent occurrences of toxic algal blooms in freshwater systems globally, while there is a limited understanding of their combined impacts on toxin-producing algal species under interspecific competitions. This study investigated the influences of elevated temperatures, lights, nutrient enrichments and interspecific interactions on growth and microcystin (MC) productions of Microcystis aeruginosa in laboratory condition. Our results indicated that elevated temperatures and higher nutrient levels significantly boosted biomass and specific growth rates of Microcystis aeruginosa, which maintained a competitive edge over Chlorella sp. Specifically, with phosphorus levels between 0.10 and 0.70 mg P L-1, the growth rate of Microcystis aeruginosa in mixed cultures increased by 23 %-52 % compared to mono-cultures, while the growth rate of Chlorella sp. shifted from positive in mono-cultures to negative in mixed cultures. Redundancy and variance partition analyses suggested that Chlorella sp. stimulate MC production in Microcystis aeruginosa and nutrient levels outshine temperature for toxin productions during competition. Lotka‒Volterra model revealed a positive correlation between the intensities of competitions and MC concentration. Our findings indicate that future algal bloom mitigation strategies should consider combined influence of temperature, nutrients, and interspecific competition due to their synergistic effects on MC productions.


Assuntos
Microcistinas , Microcystis , Nutrientes , Temperatura , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Microcistinas/metabolismo , Microcistinas/biossíntese , Nutrientes/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Fósforo/metabolismo , Eutrofização , Biomassa , Proliferação Nociva de Algas
9.
Environ Entomol ; 53(5): 860-869, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-38965911

RESUMO

Interspecific competition is an important ecological concept which can play a major role in insect population dynamics. In the southeastern United States, a complex of stink bugs (Hemiptera: Pentatomidae), primarily the brown stink bug, Euschistus servus (Say), and corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), are the 2 most common pests of field corn, Zea mays L. (Poales: Poaceae). Stink bugs have the greatest potential for economic injury during the late stages of vegetative corn development when feeding can result in deformed or "banana-shaped" ears and reduced grain yield. Corn earworm moths lay eggs on corn silks during the first stages of reproductive development. A 2-year field study was conducted to determine the impact of feeding by the brown stink bug during late-vegetative stages on subsequent corn earworm oviposition, larval infestations, and grain yield. Brown stink bug feeding prior to tasseling caused deformed ears and reduced overall grain yield by up to 92%. Across all trials, varying levels of brown stink bug density and injury reduced the number of corn earworm larvae by 29-100% and larval feeding by 46-85%. Averaged across brown stink bug densities, later planted corn experienced a 9-fold increase in number of corn earworm larvae. This is the first study demonstrating a competitive interaction between these major pests in a field corn setting, and these results have potential implications for insect resistance management.


Assuntos
Heterópteros , Larva , Mariposas , Zea mays , Animais , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Heterópteros/fisiologia , Heterópteros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Oviposição , Comportamento Competitivo , Feminino , Dinâmica Populacional , Herbivoria
10.
Plants (Basel) ; 13(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065520

RESUMO

Understanding the biodiversity-productivity relationship (BPR) is crucial for biodiversity conservation and ecosystem management. While it is known that diversity enhances forest productivity, the underlying mechanisms at the local neighborhood level remain poorly understood. We established a 9.6 ha dynamic forest plot to study how neighborhood diversity, intraspecific competition, and interspecific competition influence tree growth across spatial scales using linear mixed-effects models. Our analysis reveals a significant positive correlation between neighborhood species richness (NSR) and relative growth rate (RGR). Notably, intraspecific competition, measured by conspecific neighborhood density and resource competition, negatively impacts RGR at finer scales, indicating intense competition among conspecifics for limited resources. In contrast, interspecific competition, measured by heterospecific density and resource competition, has a negligible impact on RGR. The relative importance of diversity and intra/interspecific competition in influencing tree growth varies with scale. At fine scales, intraspecific competition dominates negatively, while at larger scales, the positive effect of NSR on RGR increases, contributing to a positive BPR. These findings highlight the intricate interplay between local interactions and spatial scale in modulating tree growth, emphasizing the importance of considering biotic interactions and spatial variability in studying BPR.

11.
Sci Total Environ ; 948: 174794, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39009164

RESUMO

The invasion of non-native amphipods often leads to severe changes in the composition of aquatic communities and may also result in the local replacement of native species. Particularly, a lower risk of being preyed upon resulting from high swimming velocities can be an advantage in interspecific competition. Furthermore, as swimming velocities are ecologically important, they are often used in ecotoxicological studies to estimate effects of different stressors. However, knowledge on swimming velocities of native and non-native amphipods is still rather limited. We experimentally investigated the maximum swimming velocities of three native and three non-native amphipods via video analyses in the laboratory. Results showed that non-native species reach higher maximum swimming velocities compared to natives probably leading to a higher predation success and reduced risk of being preyed upon. Additionally, body length correlates positively with swimming velocities, except for the invader Dikerogammarus villosus. As D. villosus can be cannibalistic, the high swimming velocities of the small individuals may reduce the intraspecific predation and may increase the survival rates of smaller specimen. Hence, knowledge about the swimming velocities of species contribute to the understanding of interspecific competition among species and might support explanation approaches for the success of invasive species. Furthermore, it provides baselines for ecotoxicological studies of stressor impacts.


Assuntos
Anfípodes , Espécies Introduzidas , Natação , Animais , Anfípodes/fisiologia , Ecossistema
12.
AoB Plants ; 16(4): plae036, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988683

RESUMO

Competition affects mixed-mating strategies by limiting available abiotic or biotic resources such as nutrients, water, space, or pollinators. Cleistogamous species produce closed (cleistogamous, CL), obligately selfed, simultaneously with open (chasmogamous, CH), potentially outcrossed flowers. The effects of intraspecific competition on fitness and cleistogamy variation can range from limiting the production of costly CH flowers because of resource limitation, to favouring CH production because of fitness advantages of outcrossed, CH offspring. Moreover, the effects of competition can be altered when it co-occurs with other environmental variations. We grew plants from seven populations of the ruderal Lamium amplexicaule, originating from different climates and habitats, in a common garden experiment combining drought, interspecific competition, and seasonal variation. All these parameters have been shown to influence the degree of cleistogamy in the species on their own. In spring, competition and drought negatively impacted fitness, but the CL proportion only increased when plants were exposed to both treatments combined. We did not observe the same results in autumn, which can be due to non-adaptive phenotypic variation, or to differences in soil compactness between seasons. The observed responses are largely due to phenotypic plasticity, but we also observed phenotypic differentiation between populations for morphological, phenological, and cleistogamy traits, pointing to the existence of different ecotypes. Our data do not support the hypothesis that CL proportion should decrease when resources are scarce, as plants with reduced growth had relatively low CL proportions. We propose that variation in cleistogamy could be an adaptation to pollinator abundance, or to environment-dependent fitness differences between offspring of selfed and outcrossed seeds, two hypotheses worth further investigation. This opens exciting new possibilities for the study of the maintenance of mixed-mating systems using cleistogamous species as models that combine the effects of inbreeding and reproductive costs.

13.
Mol Ecol ; 33(13): e17420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837546

RESUMO

In this study, we investigated the invasiveness of Gekko japonicus, a prevalent gecko species in Japan and an ancient non-native species, focusing on its competition with both the undescribed endemic Gekko species (referred to as Nishiyamori in Japanese) and G. hokouensis. These species are co-distributed with G. japonicus, leading us to hypothesize that G. japonicus was invasive upon its initial introduction. We employed niche analysis and population genetics through ddRAD-seq to assess the historical invasiveness of G. japonicus by comparing regions with and without interspecies competition. Our niche analysis across the Goto Islands, Hiradojima Island (colonized by G. japonicus) and the Koshikishima Islands (not colonized by G. japonicus) indicated that endemic Gekko sp. alter their microhabitat usage in response to invasions by other gecko species, despite having similar suitable habitats and microhabitat preferences. Population genetic analysis revealed significant population declines in Gekko sp. within areas of introduced competition, in contrast to stable populations in areas without such competition. These findings suggest a tripartite competitive relationship among the gecko species, with G. japonicus and G. hokouensis invasions restricting the distribution of the endemic Gekko sp. Consequently, G. japonicus may have historically acted as an invasive species. Acknowledging the historical dynamics of current biodiversity is crucial for addressing complex ecological issues and making informed conservation decisions.


Assuntos
Ecossistema , Genética Populacional , Espécies Introduzidas , Lagartos , Animais , Lagartos/genética , Japão , Ilhas
14.
Elife ; 132024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904661

RESUMO

The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.


Assuntos
Adaptação Fisiológica , Drosophila , Interações Hospedeiro-Parasita , Vespas , Animais , Vespas/fisiologia , Drosophila/parasitologia , Pupa/parasitologia , Larva/parasitologia , Larva/metabolismo
15.
Microbiol Resour Announc ; 13(7): e0018424, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38860800

RESUMO

Here, we present the draft genome sequence of Alteromonas gracilis strain J4, isolated from the green macroalga Caulerpa prolifera. The draft genome is 4,492,914 bp in size and contains 4,719 coding DNA sequences, 67 tRNAs, and 16 rRNA-coding genes. Strain J4 may exhibit host growth-promoting properties.

16.
Ecol Evol ; 14(5): e11373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711489

RESUMO

Megaherbivore carcasses represent sporadic but energetically rewarding resources for carnivores, offering a unique opportunity to study coexistence dynamics between facultative scavengers. South African fenced protected areas, such as Madikwe Game Reserve (Madikwe hereafter), host viable populations of large carnivores and high densities of elephants, Loxodonta africana. However, high carnivore densities can lead to potentially fatal interspecific encounters and increased competition, particularly around high-quality trophic resources. This study explores the temporal partitioning and co-detection strategies of carnivores at six elephant carcasses in Madikwe, aiming to understand how the increased carrion biomass available at elephant carcasses influences coexistence dynamics. Camera traps were deployed to monitor carcasses during two periods (2019 and 2020), revealing occurrences of six carnivore species. Carnivores, particularly black-backed jackals, Lupulella mesomelas, (hereafter jackal), lions, Panthera leo, and spotted hyaenas, Crocuta crocuta, comprised 56.7% of carcass observations, highlighting their pivotal roles in scavenging dynamics. Pairwise co-detection analysis demonstrated consistent association and shared peak activity periods between jackals and spotted hyaenas, indicating potential resource sharing. However, the minimal co-detection rates between lions and other carnivores highlight their resource domination. There was some evidence of temporal partitioning between carnivores, with most species exhibiting earlier peaks in nocturnal activity to avoid temporal overlap with lions. This study emphasises the importance of elephant carcasses in the diet of multiple species and coexistence techniques utilised to exploit this ephemeral resource. As fenced protected areas become crucial for conserving intact carnivore guilds globally, further research into carnivore behavioural adaptations at carcasses is recommended to shed light on their coexistence strategies.

17.
Biodivers Data J ; 12: e122453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817270

RESUMO

Primate communities in the Genting Highlands consist of a single species of Hylobatidae and four species of Cercopithecidae, which are known to exhibit social interaction behaviour. Thus, a study on the diets of Symphalangussyndactylus (siamang; family Hylobatidae) and Macacanemestrina (pig-tailed macaque; family Cercopithecidae) was carried out at Genting Highlands, in order to compare the dietary preferences and interspecific competition between the two primate families. A DNA metabarcoding approach was used to analyse diet intake using non-invasive samples based on the trnL region. Based on the 140 amplicon sequence variants (ASVs) generated, 26 plant orders, 46 different families, 60 genera and 49 species were identified from 23 different plant classes. Fabaceae and Moraceae were classified as the most preferred plants at the family level for S.syndactylus; meanwhile, Piperaceae and Arecaceae were classified as the most preferred for M.nemestrina. Only six out of the 60 different plant genera classified in this study, were found to be consumed by both species. Therefore, the low similarity of preferred plants in the diets between the two families suggests that there is little interspecific competition. These findings are important for future conservation management of highland primates, especially in the Genting Highlands.

18.
Insects ; 15(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38786889

RESUMO

The invasive Argentine ant (Linepithema humile) poses a significant threat to ecosystem stability worldwide. In Mediterranean citrus ecosystems, its spread may be limited by interactions with dominant native ant species. We conducted laboratory experiments to investigate the competitive dynamics between Argentine ants and two major native species, Tapinoma nigerrimum and Lasius grandis. At the individual level, both native species exhibited superior competitive performance, attributed to their larger body sizes and potential differences in chemical defences. At the colony level, T. nigerrimum demonstrated efficiency in interference competition, successfully defending food resources from Argentine ants. However, the Argentine ant exhibited higher recruitment capacity, albeit it was density-dependent. Our findings support the hypothesis that dominant native ants can serve as barriers against Argentine ant invasion in citrus ecosystems, highlighting the importance of interspecific competition in shaping community dynamics and invasive species management. This study underscores the potential role of native ant species in mitigating the impacts of invasive ants on ecosystem functioning and biodiversity conservation in agricultural landscapes, offering valuable insights for invasive species management strategies in Mediterranean citrus ecosystems.

19.
Ecol Evol ; 14(4): e11244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590550

RESUMO

The mutualistic network of plant-pollinator also involves interspecific pollination caused by pollinator sharing. Plant-pollinator networks are commonly based on flower visit observations, which may not adequately represent the actual pollen transfer between co-flowering plant species. Here, we compared the network structure of plant-pollinator interactions based on flower visits (FV) and pollen loads (PL) on the bodies of pollinators and tested how the degree of pollinator sharing in the two networks affected heterospecific pollen transfer (HPT) between plant species in a subalpine meadow. The FV and PL networks were largely overlapped. PL network included more links than FV network. The positions of plant and pollinator species in the FV and PL networks were positively correlated, indicating that both networks could detect major plant-pollinator interactions. The degree of pollinator sharing, based on either the FV or the PL network, positively influenced the amount of heterospecific pollen transferred between plant species pairs. However, the degree of pollinator sharing had a low overall explanatory power for HPT, and the explanatory powers of the FV and PL networks were similar. Overall, our study highlights the importance of FV and PL for understanding the drivers and outcomes of plant-pollinator interactions, as well as their relevance to HPT.

20.
Front Microbiol ; 15: 1364355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591033

RESUMO

Introduction: The positive effect of intercropping on host plant growth through plant-soil feedback has been established. However, the mechanisms through which intercropping induces interspecific competition remain unclear. Methods: In this study, we selected young apple trees for intercropping with two companion plants: medium growth-potential Mentha haplocalyx Briq. (TM) and high growth-potential Ageratum conyzoides L. (TA) and conducted mixed intercropping treatment with both types (TMA) and a control treatment of monocropping apples (CT). Results: Our findings revealed that TM increased the under-ground biomass of apple trees and TA and TMA decreased the above-ground biomass of apple trees, with the lowest above-ground biomass of apple trees in TA. The above- and under-ground biomass of intercrops in TA and TMA were higher than those in TM, with the highest in TA, suggesting that the interspecific competition was the most pronounced in TA. TA had a detrimental effect on the photosynthesis ability and antioxidant capacity of apple leaves, resulting in a decrease in above-ground apple biomass. Furthermore, TA led to a reduction in organic acids, alcohols, carbohydrates, and hydrocarbons in the apple rhizosphere soil (FRS) compared to those in both soil bulk (BS) and aromatic plant rhizosphere soil (ARS). Notably, TA caused an increase in pentose content and a decrease in the hexose/pentose (C6/C5) ratio in FRS, while ARS exhibited higher hexose content and a higher C6/C5 ratio. The changes in exudates induced by TA favored an increase in taxon members of Actinobacteria while reducing Proteobacteria in FRS compared to that in ARS. This led to a higher eutrophic/oligotrophic bacteria ratio relative to TM. Discussion: This novel perspective sheds light on how interspecific competition, mediated by root exudates and microbial community feedback, influences plant growth and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA