Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35755, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170251

RESUMO

Intestinal flora metabolites played a crucial role in immunomodulation by influencing host immune responses through various pathways. Macrophages, as a type of innate immune cell, were essential in chemotaxis, phagocytosis, inflammatory responses, and microbial elimination. Different macrophage phenotypes had distinct biological functions, regulated by diverse factors and mechanisms. Advances in intestinal flora sequencing and metabolomics have enhanced understanding of how intestinal flora metabolites affect macrophage phenotypes and functions. These metabolites had varying effects on macrophage polarization and different mechanisms of influence. This study summarized the impact of gut microbiota metabolites on macrophage phenotype and function, along with the underlying mechanisms associated with different metabolites produced by intestinal flora.

2.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4693-4701, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802808

RESUMO

This study aimed to examine the effect and underlying mechanism of Puerariae Lobatae Radix on insulin resistance in db/db mice with type 2 diabetes mellitus(T2DM) based on the analysis of intestinal flora. Fifty db/db mice were randomly divided into a model group(M group), a metformin group(YX group), a high-dose Puerariae Lobatae Radix group(YGG group), a medium-dose Puerariae Lobatae Radix group(YGZ group), and a low-dose Puerariae Lobatae Radix group(YGD group). Another 10 db/m mice were assigned to the normal group(K group). After continuous administration for eight weeks, body weight and blood sugar of mice were measured. Enzyme linked immunosorbent assay(ELISA) was used to detect glycosylated serum protein(GSP) and fasting serum insulin(FINS), and insulin resistance index(HOMA-IR) was calculated. The histopathological changes in the pancreas were observed by HE staining. Tumor necrosis factor(TNF)-α expression in the pancreas was detected using immunohistochemistry. The structural changes in fecal intestinal flora in the K, M, and YGZ groups were detected by 16S rRNA. Western blot was used to detect the expression of farnesoid X receptor(FXR) and takeda G protein-coupled receptor 5(TGR5) in the ileum, cholesterol 7α-hydroxylase(CYP7A1) and sterol 27α-hydroxylase(CYP27A1) in the liver, and G protein-coupled receptors 41(GPR41) and 43(GPR43) in the colon. Compared with the K group, the M group showed increased body weight, blood sugar, serum GSP, fasting blood glucose(FBG), and FINS, increased HOMA-IR, inflammatory infiltration of islet cells, necrosis and degeneration of massive acinar cells, unclear boundary between islet cells and acinar cells, disturbed intestinal flora, and down-regulated FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43. Compared with the M group, the YX, YGG, YGZ, and YGD groups showed decreased body weight, blood sugar, serum GSP, FBG, and FINS, islet cells with intact and clumpy morphology and clear boundary, necrosis of a few acinar cells, and more visible islet cells. The intestinal flora in the YGZ group changed from phylum to genus levels, and the relative abundance of intestinal flora affecting the metabolites of intestinal flora increased. The protein expression of FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43 increased. The results show that Puerariae Lobatae Radix can improve the inflammatory damage of pancreatic islet cells and reduce insulin resistance in db/db mice with T2DM. The mechanism of action may be related to the increase in the abundance of Actinobacteria, Bifidobacterium, and Bacteroides in the intestinal tract and the protein expression related to metabolites of intestinal flora.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Pueraria , Camundongos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Pueraria/química , RNA Ribossômico 16S , Peso Corporal , Necrose
3.
CNS Neurosci Ther ; 29(6): 1690-1704, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890624

RESUMO

BACKGROUND: The intestinal flora has been shown to be involved in the progression of Alzheimer's disease (AD) and can be improved by ß-glucan, a polysaccharide derived from Saccharomyces cerevisiae, which affects cognitive function through the intestinal flora. However, it is not known if this effect of ß-glucan is involved in AD. METHOD: This study used behavioral testing to measure cognitive function. After that, high-throughput 16 S rRNA gene sequencing and GC-MS were used to analyze the intestinal microbiota and metabolite SCFAs of AD model mice, and further explore the relationship between intestinal flora and neuroinflammation. Finally, the expressions of inflammatory factors in the mouse brain were detected by Western blot and Elisa methods. RESULTS: We found that appropriate supplementation of ß-glucan during the progression of AD can improve cognitive impairment and reduce A ß plaque deposition. In addition, supplementation of ß-glucan can also promote changes in the composition of the intestinal flora, thereby changing the flora metabolites in the intestinal content and reduce the activation of inflammatory factors and microglia in the cerebral cortex and hippocampus through the brain-gut axis. While reducing the expression of inflammatory factors in the hippocampus and cerebral cortex, thereby controlling neuroinflammation. CONCLUSION: The imbalance of the gut microbiota and metabolites plays a role in the progression of AD; ß-glucan blocks the development of AD by improving the gut microbiota and its metabolites and reducing neuroinflammation. ß-Glucan is a potential strategy for the treatment of AD by reshaping the gut microbiota and improving its metabolites.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Transgênicos , Doenças Neuroinflamatórias , beta-Glucanas
4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-989035

RESUMO

The intestinal tract is an essential digestive organ of the human body, which is known as the "second brain". The intestinal flora disorder is closely related to the occurrence of host diseases.It has been found that the dysbiosis of intestinal flora plays an important role in the development of neonatal diseases.Gut microflora metabolites are bioactive, and the key metabolites can regulate or affect the host′s metabolic changes through different metabolic pathways.The metabolites of the neonatal intestine participate in and affect the progression and outcome of the diseases, and determine their short- and long-term quality of life.This review summarizes the effects of gut flora metabolites on neonatal diseases.

5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-989079

RESUMO

It is the hotspot that studying the interplay and mechanism between intestinal flora metabolites and diseases.Deoxycholic acid, one of the intestinal flora metabolites, is one of the most abundant secondary bile acids in human intestinal tract, which is corelated with many diseases, while the mechanisms remain unclear.The imbalance of deoxycholic acid is connected with the intestinal flora disorder and high fat diet, which could result in several immunoreaction and inflammatory reaction.In this review, the interaction between deoxycholic acid and digestive diseases in children, such as non-alcoholic fatty liver disease, inflammatory bowel disease and irritable bowel syndrome, is discussed to explore their related mechanism, so as to clarify the direction of further study on the influence of intestinal microbiota metabolites deoxycholic acid on the human body.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008636

RESUMO

This study aimed to examine the effect and underlying mechanism of Puerariae Lobatae Radix on insulin resistance in db/db mice with type 2 diabetes mellitus(T2DM) based on the analysis of intestinal flora. Fifty db/db mice were randomly divided into a model group(M group), a metformin group(YX group), a high-dose Puerariae Lobatae Radix group(YGG group), a medium-dose Puerariae Lobatae Radix group(YGZ group), and a low-dose Puerariae Lobatae Radix group(YGD group). Another 10 db/m mice were assigned to the normal group(K group). After continuous administration for eight weeks, body weight and blood sugar of mice were measured. Enzyme linked immunosorbent assay(ELISA) was used to detect glycosylated serum protein(GSP) and fasting serum insulin(FINS), and insulin resistance index(HOMA-IR) was calculated. The histopathological changes in the pancreas were observed by HE staining. Tumor necrosis factor(TNF)-α expression in the pancreas was detected using immunohistochemistry. The structural changes in fecal intestinal flora in the K, M, and YGZ groups were detected by 16S rRNA. Western blot was used to detect the expression of farnesoid X receptor(FXR) and takeda G protein-coupled receptor 5(TGR5) in the ileum, cholesterol 7α-hydroxylase(CYP7A1) and sterol 27α-hydroxylase(CYP27A1) in the liver, and G protein-coupled receptors 41(GPR41) and 43(GPR43) in the colon. Compared with the K group, the M group showed increased body weight, blood sugar, serum GSP, fasting blood glucose(FBG), and FINS, increased HOMA-IR, inflammatory infiltration of islet cells, necrosis and degeneration of massive acinar cells, unclear boundary between islet cells and acinar cells, disturbed intestinal flora, and down-regulated FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43. Compared with the M group, the YX, YGG, YGZ, and YGD groups showed decreased body weight, blood sugar, serum GSP, FBG, and FINS, islet cells with intact and clumpy morphology and clear boundary, necrosis of a few acinar cells, and more visible islet cells. The intestinal flora in the YGZ group changed from phylum to genus levels, and the relative abundance of intestinal flora affecting the metabolites of intestinal flora increased. The protein expression of FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43 increased. The results show that Puerariae Lobatae Radix can improve the inflammatory damage of pancreatic islet cells and reduce insulin resistance in db/db mice with T2DM. The mechanism of action may be related to the increase in the abundance of Actinobacteria, Bifidobacterium, and Bacteroides in the intestinal tract and the protein expression related to metabolites of intestinal flora.


Assuntos
Camundongos , Animais , Resistência à Insulina , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Pueraria/química , Microbioma Gastrointestinal , RNA Ribossômico 16S , Peso Corporal , Necrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA