Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Rep ; 43(10): 114797, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39352808

RESUMO

Human-specific genes are potential drivers of brain evolution. Among them, SRGAP2C has contributed to the emergence of features characterizing human cortical synapses, including their extended period of maturation. SRGAP2C inhibits its ancestral copy, the postsynaptic protein SRGAP2A, but the synaptic molecular pathways differentially regulated in humans by SRGAP2 proteins remain largely unknown. Here, we identify CTNND2, a protein implicated in severe intellectual disability (ID) in Cri-du-Chat syndrome, as a major partner of SRGAP2. We demonstrate that CTNND2 slows synaptic maturation and promotes neuronal integrity. During postnatal development, CTNND2 moderates neuronal excitation and excitability. In adults, it supports synapse maintenance. While CTNND2 deficiency is deleterious and results in synaptic loss of SYNGAP1, another major ID-associated protein, the human-specific protein SRGAP2C, enhances CTNND2 synaptic accumulation in human neurons. Our findings suggest that CTNND2 regulation by SRGAP2C contributes to synaptic neoteny in humans and link human-specific and ID genes at the synapse.

2.
Addict Biol ; 29(8): e13430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39121884

RESUMO

Approximately 50 million Americans suffer from chronic pain, and nearly a quarter of chronic pain patients have reported misusing opioid prescriptions. Repeated drug seeking is associated with reactivation of an ensemble of neurons sparsely scattered throughout the dorsomedial prefrontal cortex (dmPFC). Prior research has demonstrated that chronic pain increases intrinsic excitability of dmPFC neurons, which may increase the likelihood of reactivation during drug seeking. We tested the hypothesis that chronic pain would increase oxycodone-seeking behaviour and that the pain state would differentially increase intrinsic excitability in dmPFC drug-seeking ensemble neurons. TetTag mice self-administered intravenous oxycodone. After 7 days of forced abstinence, a drug-seeking session was performed, and the ensemble was tagged. Mice received spared nerve injury (SNI) to induce chronic pain during the period between the first and second seeking session. Following the second seeking session, we performed electrophysiology on individual neurons within the dmPFC to assess intrinsic excitability of the drug-seeking ensemble and non-ensemble neurons. SNI had no impact on sucrose seeking or intrinsic excitability of dmPFC neurons from these mice. In females, SNI increased oxycodone seeking and intrinsic excitability of non-ensemble neurons. In males, SNI had no impact on oxycodone seeking or neuron excitability. Data from females are consistent with clinical reports that chronic pain can promote drug craving and relapse and support the hypothesis that chronic pain itself may lead to neuroadaptations which promote opioid seeking.


Assuntos
Analgésicos Opioides , Comportamento de Procura de Droga , Neuralgia , Neurônios , Oxicodona , Córtex Pré-Frontal , Animais , Oxicodona/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Comportamento de Procura de Droga/efeitos dos fármacos , Camundongos , Neuralgia/fisiopatologia , Neurônios/efeitos dos fármacos , Masculino , Feminino , Analgésicos Opioides/farmacologia , Autoadministração , Dor Crônica/fisiopatologia , Fatores Sexuais
3.
Neuron ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39153478

RESUMO

The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPePV) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTADA) cells projecting to the dorsomedial striatum (DMS). Interestingly, GPePV cell activity in cocaine-naive mice is correlated with behavioral responses following cocaine, effectively predicting cocaine sensitivity. Expression of the voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability following cocaine was downregulated, contributing to the elevation in GPePV cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPePV cell excitability and impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its therapeutic potential to counteract psychostimulant use disorder.

4.
Front Syst Neurosci ; 18: 1413780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966330

RESUMO

Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.

5.
Cell Mol Life Sci ; 81(1): 268, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884814

RESUMO

It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.


Assuntos
Potenciais de Ação , Glicina , Neurônios , Núcleo Accumbens , Receptores Acoplados a Proteínas G , Animais , Glicina/farmacologia , Glicina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/citologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Potenciais de Ação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glicina/metabolismo , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Neurônios Espinhosos Médios
6.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38858080

RESUMO

The resurgent sodium current (INaR) activates on membrane repolarization, such as during the downstroke of neuronal action potentials. Due to its unique activation properties, INaR is thought to drive high rates of repetitive neuronal firing. However, INaR is often studied in combination with the persistent or noninactivating portion of sodium currents (INaP). We used dynamic clamp to test how INaR and INaP individually affect repetitive firing in adult cerebellar Purkinje neurons from male and female mice. We learned INaR does not scale repetitive firing rates due to its rapid decay at subthreshold voltages and that subthreshold INaP is critical in regulating neuronal firing rate. Adjustments to the voltage-gated sodium conductance model used in these studies revealed INaP and INaR can be inversely scaled by adjusting occupancy in the slow-inactivated kinetic state. Together with additional dynamic clamp experiments, these data suggest the regulation of sodium channel slow inactivation can fine-tune INaP and Purkinje neuron repetitive firing rates.


Assuntos
Potenciais de Ação , Células de Purkinje , Canais de Sódio , Animais , Camundongos , Feminino , Masculino , Potenciais de Ação/fisiologia , Células de Purkinje/fisiologia , Canais de Sódio/fisiologia , Canais de Sódio/metabolismo , Sódio/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Modelos Neurológicos
7.
Neurobiol Stress ; 31: 100638, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737421

RESUMO

Repeated alcohol drinking contributes to a number of neuropsychiatric diseases, including alcohol use disorder and co-expressed anxiety and mood disorders. Women are more susceptible to the development and expression of these diseases with the same history of alcohol exposure as men, suggesting they may be more sensitive to alcohol-induced plasticity in limbic brain regions controlling alcohol drinking, stress responsivity, and reward processing, among other behaviors. Using a translational model of alcohol drinking in rhesus monkeys, we examined sex differences in the basal function and plasticity of neurons in the bed nucleus of the stria terminalis (BNST), a brain region in the extended amygdala shown to be a hub circuit node dysregulated in individuals with anxiety and alcohol use disorder. We performed slice electrophysiology recordings from BNST neurons in male and female monkeys following daily "open access" (22 h/day) to 4% ethanol and water for more than one year or control conditions. We found that BNST neurons from control females had reduced overall current density, hyperpolarization-activated depolarizing current (Ih), and inward rectification, as well as higher membrane resistance and greater synaptic glutamatergic release and excitatory drive, than those from control males, suggesting that female BNST neurons are more basally excited than those from males. Chronic alcohol drinking produced a shift in these measures in both sexes, decreasing current density, Ih, and inward rectification and increasing synaptic excitation. In addition, network activity-dependent synaptic inhibition was basally higher in BNST neurons of males than females, and alcohol exposure increased this in both sexes, a putative homeostatic mechanism to counter hyperexcitability. Altogether, these results suggest that the rhesus BNST is more basally excited in females than males and chronic alcohol drinking produces an overall increase in excitability and synaptic excitation. These results shed light on the mechanisms contributing to the female-biased susceptibility to neuropsychiatric diseases including co-expressed anxiety and alcohol use disorder.

8.
Bioessays ; 46(6): e2400008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697917

RESUMO

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Assuntos
Plasticidade Neuronal , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Animais , Plasticidade Neuronal/genética , Humanos , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Sinapses/metabolismo , Sinapses/genética , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , Córtex Cerebelar/fisiologia
9.
Transl Neurosci ; 15(1): 20220339, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38681523

RESUMO

The ventral bed nucleus of the stria terminalis (vBNST) plays a key role in cocaine addiction, especially relapse. However, the direct effects of cocaine on corticotropin-releasing hormone (CRH) neurons in the vBNST remain unclear. Here, we identify that cocaine exposure can remarkably attenuate the intrinsic excitability of CRH neurons in the vBNST in vitro. Accumulating studies reveal the crucial role of Sigma-1 receptors (Sig-1Rs) in modulating cocaine addiction. However, to the authors' best knowledge no investigations have explored the role of Sig-1Rs in the vBNST, let alone CRH neurons. Given that cocaine acts as a type of Sig-1Rs agonist, and the dramatic role of Sig-1Rs played in intrinsic excitability of neurons as well as cocaine addiction, we employ BD1063 a canonical Sig-1Rs antagonist to block the effects of cocaine, and significantly recover the excitability of CRH neurons. Together, we suggest that cocaine exposure leads to the firing rate depression of CRH neurons in the vBNST via binding to Sig-1Rs.

10.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659781

RESUMO

Repeated alcohol drinking contributes to a number of neuropsychiatric diseases, including alcohol use disorder and co-expressed anxiety and mood disorders. Women are more susceptible to the development and expression of these diseases with the same history of alcohol exposure as men, suggesting they may be more sensitive to alcohol-induced plasticity in limbic brain regions controlling alcohol drinking, stress responsivity, and reward processing, among other behaviors. Using a translational model of alcohol drinking in rhesus monkeys, we examined sex differences in the basal function and plasticity of neurons in the bed nucleus of the stria terminalis (BNST), a brain region in the extended amygdala shown to be a hub circuit node dysregulated in individuals with anxiety and alcohol use disorder. We performed slice electrophysiology recordings from BNST neurons in male and female monkeys following daily "open access" (22 hr/day) to 4% ethanol and water for more than one year or control conditions. We found that BNST neurons from control females had reduced overall current density, hyperpolarization-activated depolarizing current (Ih), and inward rectification, as well as higher membrane resistance and greater synaptic glutamatergic release and excitatory drive, than those from control males, suggesting that female BNST neurons are more basally excited than those from males. Chronic alcohol drinking produced a shift in these measures in both sexes, decreasing current density, Ih, and inward rectification and increasing synaptic excitation. In addition, network activity-dependent synaptic inhibition was basally higher in BNST neurons of males than females, and alcohol exposure increased this in both sexes, a putative homeostatic mechanism to counter hyperexcitability. Altogether, these results suggest that the rhesus BNST is more basally excited in females than males and chronic alcohol drinking produces an overall increase in excitability and synaptic excitation. These results shed light on the mechanisms contributing to the female-biased susceptibility to neuropsychiatric diseases including co-expressed anxiety and alcohol use disorder.

11.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38302440

RESUMO

Magnetic fields are being used for detailed anatomical and functional examination of the human brain. In addition, evidence for their efficacy in treatment of brain dysfunctions is accumulating. Transcranial static magnetic field stimulation (tSMS) is a recently developed technique for noninvasively modifying brain functions. In tSMS, a strong and small magnet when placed over the skull can temporarily suppress brain functions. Its modulatory effects persist beyond the time of stimulation. However, the neurophysiological mechanisms underlying tSMS-induced plasticity remain unclear. Here, using acute motor cortical slice preparation obtained from male C57BL/6N mice, we show that tSMS alters the intrinsic electrical properties of neurons by altering the activity of chloride (Cl-) channels in neurons. Exposure of mouse pyramidal neurons to a static magnetic field (SMF) at a strength similar to human tSMS temporarily decreased their excitability and induced transient neuronal swelling. The effects of SMF were blocked by DIDS and GlyH-101, but not by NPPB, consistent with the pharmacological profile of SLC26A11, a transporter protein with Cl- channel activity. Whole-cell voltage-clamp recordings of the GlyH-101-sensitive Cl- current component showed significant enhancement of the component at both subthreshold and depolarized membrane potentials after SMF application, resulting in shunting inhibition and reduced repetitive action potential (AP) firing at the respective potentials. Thus, this study provides the first neurophysiological evidence for the inhibitory effect of tSMS on neuronal activity and advances our mechanistic understanding of noninvasive human neuromodulation.


Assuntos
Cloretos , Glicina/análogos & derivados , Hidrazinas , Campos Magnéticos , Masculino , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Magnética Transcraniana/métodos
12.
Biol Sex Differ ; 14(1): 87, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082417

RESUMO

BACKGROUND: The nucleus accumbens (NAc) is an important region in motivation and reward. Glutamatergic inputs from the infralimbic cortex (ILC) to the shell region of the NAc (NAcSh) have been implicated in driving the motivation to seek reward through repeated action-based behavior. While this has primarily been studied in males, observed sex differences in motivational circuitry and behavior suggest that females may be more sensitive to rewarding stimuli. These differences have been implicated for the observed vulnerability in women to substance use disorders. METHODS: We used an optogenetic self-stimulation task in addition to ex vivo electrophysiological recordings of NAcSh neurons in mouse brain slices to investigate potential sex differences in ILC-NAcSh circuitry in reward-seeking behavior. Glutamatergic neurons in the ILC were infected with an AAV delivering DNA encoding for channelrhodopsin. Entering the designated active corner of an open field arena resulted in photostimulation of the ILC terminals in the NAcSh. Self-stimulation occurred during two consecutive days of testing over three consecutive weeks: first for 10 Hz, then 20 Hz, then 30 Hz. Whole-cell recordings of medium spiny neurons in the NAcSh assessed both optogenetically evoked local field potentials and intrinsic excitability. RESULTS: Although both sexes learned to seek the active zone, within the first day, females entered the zone more than males, resulting in a greater amount of photostimulation. Increasing the frequency of optogenetic stimulation amplified female reward-seeking behavior. Males were less sensitive to ILC stimulation, with higher frequencies and repeated days required to increase male reward-seeking behavior. Unexpectedly, ex vivo optogenetic local field potentials in the NAcSh were greater in slices from male animals. In contrast, female medium-spiny neurons (MSNs) displayed significantly greater intrinsic neuronal excitability. CONCLUSIONS: Taken together, these data indicate that there are sex differences in the motivated behavior driven by glutamate within the ILC-NAcSh circuit. Though glutamatergic signaling was greater in males, heightened intrinsic excitability in females appears to drive this sex difference.


The shell region of the nucleus accumbens (NAcSh) is involved in motivation and reward. It receives excitatory glutamatergic inputs from multiple brain regions. One specific region is the infralimbic cortex (ILC), which when activated, influences reward-seeking behavior. While previous research has focused on males, there are inherent sex differences in reward circuitry and reward-seeking behavior. Using an optogenetic self-stimulation task, in addition to ex vivo electrophysiological recordings, we found inherent sex differences in the ILC-NAcSh circuit in behavioral output, synaptic strength, and intrinsic neurophysiology. Female mice showed more robust reward-seeking behavior. Increasing the frequency of stimulation intensified this behavior in females, while males required higher frequencies and repeated testing days to increase their reward-seeking behavior. Surprisingly, optogenetically stimulating the ILC terminals in the NAcSh in brain slices resulted in stronger responses in males. More consistent with the behavioral data, female MSNs displayed higher intrinsic excitability. Our results suggest that there are sex differences in motivated behavior, driven by glutamatergic signaling in the ILC-NAc circuit. Despite stronger ILC-based glutamatergic signaling in males, heightened intrinsic excitability of MSNs in females seems to be the driving force behind this sex difference in reward-seeking behavior. These findings contribute to our understanding of the neural mechanisms behind sex-based differences in motivation and their potential implications for substance use disorders.


Assuntos
Núcleo Accumbens , Caracteres Sexuais , Camundongos , Animais , Feminino , Masculino , Humanos , Núcleo Accumbens/fisiologia , Neurônios/fisiologia , Córtex Cerebral
13.
Proteins ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37982354

RESUMO

What physiological role does a slow hyperpolarization-activated ion channel with mixed cation selectivity play in the fast world of neuronal action potentials that are driven by depolarization? That puzzling question has piqued the curiosity of physiology enthusiasts about the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are widely expressed across the body and especially in neurons. In this review, we emphasize the need to assess HCN channels from the perspective of how they respond to time-varying signals, while also accounting for their interactions with other co-expressing channels and receptors. First, we illustrate how the unique structural and functional characteristics of HCN channels allow them to mediate a slow negative feedback loop in the neurons that they express in. We present the several physiological implications of this negative feedback loop to neuronal response characteristics including neuronal gain, voltage sag and rebound, temporal summation, membrane potential resonance, inductive phase lead, spike triggered average, and coincidence detection. Next, we argue that the overall impact of HCN channels on neuronal physiology critically relies on their interactions with other co-expressing channels and receptors. Interactions with other channels allow HCN channels to mediate intrinsic oscillations, earning them the "pacemaker channel" moniker, and to regulate spike frequency adaptation, plateau potentials, neurotransmitter release from presynaptic terminals, and spike initiation at the axonal initial segment. We also explore the impact of spatially non-homogeneous subcellular distributions of HCN channels in different neuronal subtypes and their interactions with other channels and receptors. Finally, we discuss how plasticity in HCN channels is widely prevalent and can mediate different encoding, homeostatic, and neuroprotective functions in a neuron. In summary, we argue that HCN channels form an important class of channels that mediate a diversity of neuronal functions owing to their unique gating kinetics that made them a puzzle in the first place.

14.
Front Cell Neurosci ; 17: 1221176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876914

RESUMO

Introduction: New learning results in modulation of intrinsic plasticity in the underlying brain regions. Such changes in intrinsic plasticity can influence allocation and encoding of future memories such that new memories encoded during the period of enhanced excitability are linked to the original memory. The temporal window during which the two memories interact depends upon the time course of intrinsic plasticity following new learning. Methods: Using the well-characterized lateral amygdala-dependent auditory fear conditioning as a behavioral paradigm, we investigated the time course of changes in intrinsic excitability within lateral amygdala neurons. Results: We found transient changes in the intrinsic excitability of amygdala neurons. Neuronal excitability was increased immediately following fear conditioning and persisted for up to 4 days post-learning but was back to naïve levels 10 days following fear conditioning. We also determined the relationship between learning-induced intrinsic and synaptic plasticity. Synaptic plasticity following fear conditioning was evident for up to 24 h but not 4 days later. Importantly, we demonstrated that the enhanced neuronal intrinsic excitability was evident in many of the same neurons that had undergone synaptic plasticity immediately following fear conditioning. Interestingly, such a correlation between synaptic and intrinsic plasticity following fear conditioning was no longer present 24 h post-learning. Discussion: These data demonstrate that intrinsic and synaptic changes following fear conditioning are transient and co-localized to the same neurons. Since intrinsic plasticity following fear conditioning is an important determinant for the allocation and consolidation of future amygdala-dependent memories, these findings establish a time course during which fear memories may influence each other.

15.
Cell Rep ; 42(10): 113287, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37843977

RESUMO

The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.


Assuntos
Doença de Parkinson , Parte Reticular da Substância Negra , Camundongos , Animais , Substância Negra , Parvalbuminas , Neurônios/fisiologia
16.
Zhen Ci Yan Jiu ; 48(9): 833-42, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37730253

RESUMO

OBJECTIVE: To investigate the relationship between the sensitization state of acupoints on the surface of the myocardial ischemia (MI) model mice and the changes in the electrophysiological properties of the dorsal root ganglion (DRG) neurons in the corresponding spinal cord segment, and its underlying mechanism. METHODS: Sixty-eight male C57BL/6J mice were randomly divided into control and model groups (34 mice in each group). The model group received an intraperitoneal injection of 160 mg/kg isoproterenol (ISO) to establish the MI model, and the control group received an injection of the same dose of normal saline as the model group. After modeling for about 6 days, MI proportion was measured by HE staining to verify the pathological changes in the heart tissue. Evans blue (EB) dye was injected into the tail vein of mice to reflect the size, location, distribution, and number of exudates on the body surface. Then, whole-cell membrane currents, intrinsic excitability and membrane properties of different types of DRG neurons were evaluated by electrophysiological experiment in vitro. RESULTS: Compared with the control group, the heart size was larger, with pathological outcomes showing enlarged myocardial hypertrophy, destroyed structure of cardiomyocytes, with mononuclear cell infiltration among the cardiomyocytes in the model group. Compared with the control group, the number of EB exudation points was significantly increased (P<0.01), which were mainly concentrated in the epidermis near the T1-T5 segment of the spinal cord, "Feishu" (BL13), "Jueyinshu" (BL14) and "Xinshu" (BL15) in the model group. Compared with the control group, the rheobase and action potential amplitude (APA) of DRG medium-sized neurons were obviously decreased (P<0.01, P<0.05), while the whole-cell membrane currents, the spike numbers, the average instantaneous frequency, and the average discharge frequency were markedly increased (P<0.01). There were no significant alterations in the membrane properties and intrinsic excitability induced by depolarized currents of small-sized neurons between groups. Compared with the control group, the whole-cell membrane currents, spike numbers, and the average instantaneous frequency were significantly increased in the model group(P<0.05, P<0.01) while rheobase was significantly decreased (P<0.05) in DRG medium-sized neurons labeled with biotin and CGRP. CONCLUSION: After the mice were modeled by ISO, the DRG medium-size neurons in the T1-T5 segment of the spinal cord may mediate the sensitization of acupoints on the body surface through their different neuronal membrane properties and intrinsic excitabilities.


Assuntos
Pontos de Acupuntura , Isquemia Miocárdica , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Gânglios Espinais , Isquemia Miocárdica/terapia , Azul Evans
17.
Front Neurosci ; 17: 1154549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284663

RESUMO

Sodium potassium ATPases (Na/K pumps) mediate long-lasting, dynamic cellular memories that can last tens of seconds. The mechanisms controlling the dynamics of this type of cellular memory are not well understood and can be counterintuitive. Here, we use computational modeling to examine how Na/K pumps and the ion concentration dynamics they influence shape cellular excitability. In a Drosophila larval motor neuron model, we incorporate a Na/K pump, a dynamic intracellular Na+ concentration, and a dynamic Na+ reversal potential. We probe neuronal excitability with a variety of stimuli, including step currents, ramp currents, and zap currents, then monitor the sub- and suprathreshold voltage responses on a range of time scales. We find that the interactions of a Na+-dependent pump current with a dynamic Na+ concentration and reversal potential endow the neuron with rich response properties that are absent when the role of the pump is reduced to the maintenance of constant ion concentration gradients. In particular, these dynamic pump-Na+ interactions contribute to spike rate adaptation and result in long-lasting excitability changes after spiking and even after sub-threshold voltage fluctuations on multiple time scales. We further show that modulation of pump properties can profoundly alter a neuron's spontaneous activity and response to stimuli by providing a mechanism for bursting oscillations. Our work has implications for experimental studies and computational modeling of the role of Na/K pumps in neuronal activity, information processing in neural circuits, and the neural control of animal behavior.

18.
Neurobiol Dis ; 183: 106177, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271286

RESUMO

PRRT2 is a neuronal protein that controls neuronal excitability and network stability by modulating voltage-gated Na+ channel (Nav). PRRT2 pathogenic variants cause pleiotropic syndromes including epilepsy, paroxysmal kinesigenic dyskinesia and episodic ataxia attributable to loss-of-function pathogenetic mechanism. Based on the evidence that the transmembrane domain of PRRT2 interacts with Nav1.2/1.6, we focused on eight missense mutations located within the domain that show expression and membrane localization similar to the wild-type protein. Molecular dynamics simulations showed that the mutants do not alter the structural stability of the PRRT2 membrane domain and preserve its conformation. Using affinity assays, we found that the A320V and V286M mutants displayed respectively decreased and increased binding to Nav1.2. Accordingly, surface biotinylation showed an increased Nav1.2 surface exposure induced by the A320V mutant. Electrophysiological analysis confirmed the lack of modulation of Nav1.2 biophysical properties by the A320V mutant with a loss-of-function phenotype, while the V286M mutant displayed a gain-of-function with respect to wild-type PRRT2 with a more pronounced left-shift of the inactivation kinetics and delayed recovery from inactivation. The data confirm the key role played by the PRRT2-Nav interaction in the pathogenesis of the PRRT2-linked disorders and suggest an involvement of the A320 and V286 residues in the interaction site. Given the similar clinical phenotype caused by the two mutations, we speculate that circuit instability and paroxysmal manifestations may arise when PRRT2 function is outside the physiological range.


Assuntos
Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.2 , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mutação/genética
19.
Biol Psychiatry ; 94(11): 875-887, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330163

RESUMO

BACKGROUND: Most efforts in addiction research have focused on the involvement of the medial prefrontal cortex, including the infralimbic, prelimbic, and anterior cingulate cortical areas, in cocaine-seeking behaviors. However, no effective prevention or treatment for drug relapse is available. METHODS: We focused instead on the motor cortex, including both the primary and supplementary motor areas (M1 and M2, respectively). Addiction risk was evaluated by testing cocaine seeking after intravenous self-administration (IVSA) of cocaine in Sprague Dawley rats. The causal relationship between the excitability of cortical pyramidal neurons (CPNs) in M1/M2 and addiction risk was explored by ex vivo whole-cell patch clamp recordings and in vivo pharmacological or chemogenetic manipulation. RESULTS: Our recordings showed that on withdrawal day 45 (WD45) after IVSA, cocaine, but not saline, increased the excitability of CPNs in the cortical superficial layers (primarily layer 2, denoted L2) but not in layer 5 (L5) in M2. Bilateral microinjection of the GABAA (gamma-aminobutyric acid A) receptor agonist muscimol to the M2 area attenuated cocaine seeking on WD45. More specifically, chemogenetic inhibition of CPN excitability in L2 of M2 (denoted M2-L2) by the DREADD (designer receptor exclusively activated by designer drugs) agonist compound 21 prevented drug seeking on WD45 after cocaine IVSA. This chemogenetic inhibition of M2-L2 CPNs had no effects on sucrose seeking. In addition, neither pharmacological nor chemogenetic inhibition manipulations altered general locomotor activity. CONCLUSIONS: Our results indicate that cocaine IVSA induces hyperexcitability in the motor cortex on WD45. Importantly, the increased excitability in M2, particularly in L2, could be a novel target for preventing drug relapse during withdrawal.


Assuntos
Cocaína , Córtex Motor , Ratos , Animais , Ratos Sprague-Dawley , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Comportamento de Procura de Droga , Recidiva , Autoadministração
20.
Neuroendocrinology ; 113(11): 1127-1139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37271140

RESUMO

INTRODUCTION: Sex and ovarian hormones influence cocaine seeking and relapse vulnerability, but less is known regarding the cellular and synaptic mechanisms contributing to these behavioral sex differences. One factor thought to influence cue-induced seeking behavior following withdrawal is cocaine-induced changes in the spontaneous activity of pyramidal neurons in the basolateral amygdala (BLA). However, the mechanisms underlying these changes, including potential sex or estrous cycle effects, are unknown. METHODS: Ex vivo whole-cell patch clamp electrophysiology was conducted to investigate the effects of cocaine exposure, sex, and estrous cycle fluctuations on two properties that can influence spontaneous activity of BLA pyramidal neurons: (1) frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) and (2) intrinsic excitability. Recordings of BLA pyramidal neurons were conducted in adult male and female rats and across the estrous cycle following 2-4 weeks of withdrawal from extended-access cocaine self-administration (6 h/day for 10 days) or drug-naïve conditions. RESULTS: In both sexes, cocaine exposure increased the frequency, but not amplitude, of sEPSCs and neuronal intrinsic excitability. Across the estrous cycle, sEPSC frequency and intrinsic excitability were significantly elevated only in cocaine-exposed females in the estrus stage of the cycle, a stage when cocaine-seeking behavior is known to be enhanced. CONCLUSIONS: Here, we identify potential mechanisms underlying cocaine-induced alterations in the spontaneous activity of BLA pyramidal neurons in both sexes along with changes in these properties across the estrous cycle.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Cocaína , Ratos , Animais , Feminino , Masculino , Cocaína/farmacologia , Ratos Sprague-Dawley , Transmissão Sináptica , Ciclo Estral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA