Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
J Wildl Dis ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39013547

RESUMO

Chronic phalaris toxicity (CPT) is a neurological disease caused by animals ingesting toxins produced by early growth stages of Phalaris aquatica, a pasture plant introduced to the southeastern regions of Australia postcolonization. Little is known about the clinical progression of CPT in wildlife, as incidents are sporadic and predominantly reported when animals are in the end stages of disease and in a poor welfare state. We studied a cohort of 35 eastern gray kangaroos (Macropus giganteus) affected by CPT to clarify clinical prognosis and survival rates. Kangaroos were captured in May, June, and July of 2022 at Plenty Gorge Parklands, Victoria, Australia. Each animal was radiotracked for 180 d, clinical progression and disease outcomes monitored twice a week. By the conclusion of the study, 24 animals had died (19 by euthanasia due to deterioration, five found dead). Ten animals survived, with two demonstrating a reduction in clinical signs and eight showing full resolution of clinical signs. One animal was disqualified from the study. The overall survival rate was 29.4% (95% confidence interval 17.5-49.5%). The survival duration of animals that died ranged from 5 to 133 d. There was no difference in survival rate based on sex (P=0.2), age class (P=0.49) or the month of capture (P=0.49). These results suggest that CPT is an important health and welfare concern for at-risk macropod populations, with high case-fatality rates and prolonged clinical durations. Further research to manage the disease via methods such as reducing Phalaris aquatica plant coverage and preventative treatments for animals is warranted to reduce disease incidences and improve disease outcomes in wildlife populations.

2.
Dis Aquat Organ ; 159: 9-14, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989789

RESUMO

Glypthelmins quieta is a frog trematode native to North and Central America. This trematode was recently detected in Japan in the American bullfrog Lithobates catesbeianus, which was introduced from North America to Japan. As the first intermediate host of G. quieta, typically a snail, has not yet been identified in Japan, we conducted a snail survey in eastern Japan to screen for an intermediate host using DNA barcoding based on the nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1. We sampled 3 different snail species, Orientogalba ollula, Physella acuta, and Sinotaia quadrata histrica (157 individuals in total), and only the freshwater snail Physella acuta, which is also believed to have been introduced from North America to Japan, had sporocysts of G. quieta in its hepatopancreas. The introduction of the intermediate and definitive hosts from North America may have facilitated the invasion of G. quieta into Japan.


Assuntos
Caramujos , Trematódeos , Animais , Japão , Trematódeos/genética , Caramujos/parasitologia , Espécies Introduzidas , Interações Hospedeiro-Parasita , RNA Ribossômico 28S/genética
3.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999587

RESUMO

Seed germination and dispersal have an important impact on the establishment and spread of invasive plants. Understanding the extent of intraspecific seed trait variations can enhance our understanding of how invasive plants respond to environmental change after introduction and help predict the dynamic of invasive species under future environmental conditions. However, less attention has been given to the variation in seed traits within species as opposed to among species. We compared seed production, seed morphological traits, dispersal ability, and seedling performance of Chromolaena odorata from 10 introduced populations in Asia and 12 native populations in America in a common garden. The results showed that range (introduced vs. native) and climate affected these traits. Compared with the native population, the introduced populations had higher seed numbers per capitula, lighter seeds, and higher potential dispersal ability seeds (lower terminal velocity) but lower germination rates and seedling lengths. Climatic clines in seed numbers per capitula and pappus length were observed; however, the clines in pappus length differed between the introduced and native populations. Trait covariation patterns were also different between both ranges. In the native populations, there was a trade-off between seed numbers per capitula and seed mass, while this relationship was not found for the introduced populations. These results indicate that C. odorata alters the ecological strategy of seed following invasion, which facilitates its establishment and fast dispersal and contributes to successful invasion in the introduced ranges.

4.
New Phytol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952235

RESUMO

Ectomycorrhizal (ECM) fungi distribute tree-derived carbon (C) via belowground hyphal networks in forest ecosystems. Here, we asked the following: (1) Is C transferred belowground to a neighboring tree retained in fungal structures or transported within the recipient tree? (2) Is the overlap of ectomycorrhizal fungi in mycorrhizal networks related to the amount of belowground C transfer? We used potted sapling pairs of European beech (Fagus sylvatica) and North-American Douglas-fir (Pseudotsuga menziesii) for 13CO2 pulse-labeling. We compared 13C transfer from beech (donor) to either beech or Douglas-fir (recipient) and identified the ECM species. We measured the 13C enrichment in soil, plant tissues, and ECM fractions of fungal-containing parts and plant transport tissues. In recipients, only fungal-containing tissue of ectomycorrhizas was significantly enriched in 13C and not the plant tissue. Douglas-fir recipients shared on average one ECM species with donors and had a lower 13C enrichment than beech recipients, which shared on average three species with donors. Our results support that recently assimilated C transferred belowground is shared among fungi colonizing tree roots but not among trees. In mixed forests with beech and Douglas-fir, the links for C movement might be hampered due to low mycorrhizal overlap with consequences for soil C cycling.

5.
Sci Rep ; 14(1): 15465, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965394

RESUMO

Cliffs contain one of the least known plant communities, which has been overlooked in biodiversity assessments due to the inherent inaccessibility. Our study adopted the unmanned aerial vehicle (UAV) with the telephoto camera to remotely clarify floristic variability across unreachable cliffs. Studied cliffs comprised 17 coastal and 13 inland cliffs in Gageodo of South Korea, among which 9 and 5 cliffs were grazed by the introduced cliff-dwelling goats. The UAV telephotography showed 154 and 166 plant species from coastal and inland cliffs, respectively. Inland cliffs contained more vascular plant species (P < 0.001), increased proportions of fern and woody species (P < 0.05), and decreased proportion of herbaceous species (P < 0.001) than coastal cliffs. It was also found that coastal and inland cliffs differed in the species composition (P < 0.001) rather than taxonomic beta diversity (P = 0.29). Furthermore, grazed coastal cliffs featured the elevated proportions of alien and annual herb species than ungrazed coastal cliffs (P < 0.05). This suggests that coastal cliffs might not be totally immune to grazing if the introduced herbivores are able to access cliff microhabitats; therefore, such anthropogenic introduction of cliff-dwelling herbivores should be excluded to conserve the native cliff plant communities.


Assuntos
Biodiversidade , Plantas , Animais , República da Coreia , Ilhas , Dispositivos Aéreos não Tripulados , Herbivoria , Cabras , Ecossistema
6.
Animals (Basel) ; 14(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891624

RESUMO

We explored the ecological and historical factors that led to formation of the unique guild of native and introduced mammalian herbivores between 5 and 1000 kg in northern Australia. Following the disappearance of large native herbivores about 46 kya, and until the arrival of Europeans and their livestock, the only herbivorous mammals were mid-sized endemic marsupial macropods, which continued to utilise the same vegetation as their much larger former neighbours. Only one species of contemporary native herbivore has an adult bodyweight approaching 100 kg, and for the past 150-200 years, the total biomass of introduced domestic and wild vertebrate herbivores has massively exceeded that of native herbivorous species. We conclude that the current guild of native and introduced mammalian herbivores differentially utilises the landscape ecologically. However, climate- and anthropogenically related changes due to fire, drought, flooding, predation and introduced weeds are likely to have significant impacts on the trajectory of their relative ecological roles and populations. Given their differing ecological and dietary characteristics, against this backdrop, it is unclear what the potential impact of the dispersal of deer species could have in northern Australia. We hence focus on whether sufficient knowledge exists against which the potential impacts of the range expansion of three deer species can be adequately assessed and have found a dearth of supporting evidence to inform appropriate sustainable management. We identify suitable research required to fill the identified knowledge gaps.

7.
Sci Rep ; 14(1): 14076, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890342

RESUMO

Biological invasions threaten global biodiversity, altering landscapes, ecosystems, and mutualistic relationships like pollination. Orchids are one of the most threatened plant families, yet the impact of invasive bees on their reproduction remains poorly understood. We conduct a global literature survey on the incidence of invasive honeybees (Apis mellifera) on orchid pollination, followed by a study case on Australian orchids. Our literature survey shows that Apis mellifera is the primary alien bee visiting orchids worldwide. However, in most cases, introduced honeybees do not deposit orchid pollen. We also test the extent to which introduced honeybees affect orchid pollination using Diuris brumalis and D. magnifica. Diuris brumalis shows higher fruit set and pollination in habitats with both native and invasive bees compared to habitats with only introduced bees. Male and female reproductive success in D. magnifica increases with native bee abundance, while conversely pollinator efficiency decreases with honeybee abundance and rises with habitat size. Our results suggest that introduced honeybees are likely involved in pollen removal but do not effectively deposit orchid pollen, acting as pollen wasters. However, Apis mellifera may still contribute to pollination of Diuris where native bees no longer exist. Given the global occurrence of introduced honeybees, we warn that certain orchids may suffer from pollen depletion by these invaders, especially in altered habitats with compromised pollination communities.


Assuntos
Espécies Introduzidas , Orchidaceae , Pólen , Polinização , Animais , Abelhas/fisiologia , Polinização/fisiologia , Orchidaceae/fisiologia , Pólen/fisiologia , Ecossistema , Masculino , Reprodução/fisiologia , Austrália , Feminino
8.
Mol Ecol ; 33(13): e17420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837546

RESUMO

In this study, we investigated the invasiveness of Gekko japonicus, a prevalent gecko species in Japan and an ancient non-native species, focusing on its competition with both the undescribed endemic Gekko species (referred to as Nishiyamori in Japanese) and G. hokouensis. These species are co-distributed with G. japonicus, leading us to hypothesize that G. japonicus was invasive upon its initial introduction. We employed niche analysis and population genetics through ddRAD-seq to assess the historical invasiveness of G. japonicus by comparing regions with and without interspecies competition. Our niche analysis across the Goto Islands, Hiradojima Island (colonized by G. japonicus) and the Koshikishima Islands (not colonized by G. japonicus) indicated that endemic Gekko sp. alter their microhabitat usage in response to invasions by other gecko species, despite having similar suitable habitats and microhabitat preferences. Population genetic analysis revealed significant population declines in Gekko sp. within areas of introduced competition, in contrast to stable populations in areas without such competition. These findings suggest a tripartite competitive relationship among the gecko species, with G. japonicus and G. hokouensis invasions restricting the distribution of the endemic Gekko sp. Consequently, G. japonicus may have historically acted as an invasive species. Acknowledging the historical dynamics of current biodiversity is crucial for addressing complex ecological issues and making informed conservation decisions.


Assuntos
Ecossistema , Genética Populacional , Espécies Introduzidas , Lagartos , Animais , Lagartos/genética , Japão , Ilhas
9.
Int J Parasitol Parasites Wildl ; 24: 100953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38938270

RESUMO

Feral deer are widespread throughout Australia with the capacity to impact livestock production via transmission of parasites. Samples of Dama dama (fallow deer), Rusa unicolor (sambar deer), Cervus elaphus (red deer) and an unidentified deer were sourced from various locations in south-eastern Australia for examination for parasites. Adult nematodes were collected from the lungs of all deer species across four separate geographical locations. The nematodes were identified as species of Dictyocaulus through both morphological and molecular means. Species identification based on morphological features was difficult, with many measurements from described species overlapping. Molecular analyses targeting three markers, namely 18S rRNA, ITS2, and cox1 revealed the presence of two distinct species: Dictyocaulus cervi and Dictyocaulus skrjabini. These are the first genetically confirmed reports of species of Dictyocaulus in feral deer in Australia, and although cross-transmission of species of Dictyocaulus with livestock has not yet been reported, it cannot be completely discounted without further research.

10.
Ecol Evol ; 14(6): e11535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919645

RESUMO

Human-induced environmental change has caused widespread loss of species that support important functions for ecosystems and society. For example, vertebrate scavengers contribute to the functional health of ecosystems and provide services to agricultural landscapes by removing carcasses and associated pests. Widespread extirpation of native Australian mammals since the arrival of Europeans in Australia has removed many scavenging species from landscapes, while scavenging mammals such as European red foxes (Vulpes vulpes) have been introduced. In much of Australia, squamate reptiles are the largest native terrestrial scavengers remaining, where large native mammals are extinct and conservation management is being undertaken to remove invasive mammals. The contribution of reptiles to scavenging functions is not well understood. In this study, we investigated the ecosystem functions provided by large reptiles as scavengers to better understand how populations can be managed to support ecosystem services. We investigated the ecosystem services provided by vertebrate scavengers in Australian coastal mallee ecosystems, focusing on the heath goanna (Varanus rosenbergi), the only extant native terrestrial scavenger in the region. We carried out exclosure experiments, isolating the scavenging activity of different taxonomic groups to quantify the contribution of different taxa to scavenging services, specifically the removal of rat carcasses, and its impact on the occurrence of agriculturally damaging blowflies. We compared areas with different native and invasive scavenger communities to investigate the impact of invasive species removal and native species abundance on scavenging services. Our results indicated that vertebrate scavenging significantly contributes to carcass removal and limitation of necrophagous fly breeding in carcasses and that levels of removal are higher in areas associated with high densities of heath goannas and low densities of invasive mammals. Therefore, augmentation of heath goanna populations represents a promising management strategy to restore and maximize scavenging ecosystem services.

11.
Ecol Evol ; 14(6): e11523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932974

RESUMO

Emerging infectious diseases threaten wildlife globally. While the effects of infectious diseases on hosts with severe infections and high mortality rates often receive considerable attention, effects on hosts that persist despite infection are less frequently studied. To understand how persisting host populations change in the face of disease, we quantified changes to the capture rates of Eptesicus fuscus (big brown bats), a persisting species susceptible to infection by the invasive fungal pathogen Pseudogymnoascus destructans (Pd; causative agent for white-nose syndrome), across the eastern US using a 30-year dataset. Capture rates of male and female E. fuscus increased from preinvasion to pathogen establishment years, with greater increases to the capture rates of females than males. Among females, capture rates of pregnant and post-lactating females increased by pathogen establishment. We outline potential mechanisms for these broad demographic changes in E. fuscus capture rates (i.e., increases to foraging from energy deficits created by Pd infection, increases to relative abundance, or changes to reproductive cycles), and suggest future research for identifying mechanisms for increasing capture rates across the eastern US. These data highlight the importance of understanding how populations of persisting host species change following pathogen invasion across a broad spatial scale. Understanding changes to population composition following pathogen invasion can identify broad ecological patterns across space and time, and open new avenues for research to identify drivers of those patterns.

12.
Parasitol Res ; 123(6): 247, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898308

RESUMO

Introduced species have a major impact on freshwater ecosystems, particularly on islands. Numerous fish species have been introduced in Corsica (Mediterranean island, southern France) as part of planned programs or clandestinely. The introduction of non-native freshwater fish species can have a range of impacts on the recipient ecosystem, including through the co-introduction of its pathogens. A sample of introduced perch Perca fluviatilis Linnaeus, 1758 from the artificial reservoir of Padula was examined following a report of parasites by an angler. The analyses revealed the occurrence of Eustrongylides sp. (Nematoda) and Clinostomum complanatum (Digenea), two zoonotic parasites in P. fluviatilis. Both parasites are reported for the first time in France. Eustrongylides sp. and C. complanatum may have been introduced with their fish intermediate hosts or through their final bird hosts. The occurrence of the two parasites raises concerns from both a veterinary and human health perspective as they can use a wide range of amphibians as intermediate hosts and can be acquired in humans through the consumption of raw or undercooked fish.


Assuntos
Doenças dos Peixes , Espécies Introduzidas , Percas , Animais , França , Doenças dos Peixes/parasitologia , Percas/parasitologia , Trematódeos/isolamento & purificação , Trematódeos/classificação , Zoonoses/parasitologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia , Ilhas , Humanos
13.
Glob Chang Biol ; 30(6): e17375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895806

RESUMO

Islands are biodiversity hotspots that host unique assemblages. However, a substantial proportion of island species are threatened and their long-term survival is uncertain. Identifying and preserving vulnerable species has become a priority, but it is also essential to combine this information with other facets of biodiversity like functional diversity, to understand how future extinctions might affect ecosystem stability and functioning. Focusing on mammals, we (i) assessed how much functional space would be lost if threatened species go extinct, (ii) determined the minimum number of extinctions that would cause a significant functional loss, (iii) identified the characteristics (e.g., biotic, climatic, geographic, or orographic) of the islands most vulnerable to future changes in the functional space, and (iv) quantified how much of that potential functional loss would be offset by introduced species. Using trait information for 1474 mammal species occurring in 318 islands worldwide, we built trait probability density functions to quantify changes in functional richness and functional redundancy in each island if the mammals categorized by IUCN as threatened disappeared. We found that the extinction of threatened mammals would reduce the functional space in 63% of the assessed islands, although these extinctions in general would cause a reduction of less than 15% of their overall functional space. Also, on most islands, the extinction of just a few species would be sufficient to cause a significant loss of functional diversity. The potential functional loss would be higher on small, isolated, and/or species-rich islands, and, in general, the functional space lost would not be offset by introduced species. Our results show that the preservation of native species and their ecological roles remains crucial for maintaining the current functioning of island ecosystems. Therefore, conservation measures considering functional diversity are imperative to safeguard the unique functional roles of threatened mammal species on islands.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Extinção Biológica , Ilhas , Mamíferos , Animais , Mamíferos/fisiologia , Espécies Introduzidas
14.
Glob Chang Biol ; 30(5): e17319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38804095

RESUMO

Current ecological communities are in a constant state of flux from climate change and from species introductions. Recent discussion has focused on the positive roles introduced species can play in ecological communities and on the importance of conserving resilient ecosystems, but not how these two ideas intersect. There has been insufficient work to define the attributes needed to support ecosystem resilience to climate change in modern communities. Here, I argue that non-invasive, introduced plant species could play an important role in supporting the resilience of terrestrial ecosystems to climate change. Using examples from multiple taxonomic groups and ecosystems, I discuss how introduced plants can contribute to ecosystem resilience via their roles in plant and insect communities, as well as their associated ecosystem functions. I highlight the current and potential contributions of introduced plants and where there are critical knowledge gaps. Determining when and how introduced plants are contributing to the resilience of ecosystems to climate change will contribute to effective conservation strategies.


Assuntos
Mudança Climática , Ecossistema , Espécies Introduzidas , Plantas , Animais , Conservação dos Recursos Naturais , Insetos/fisiologia , Fenômenos Fisiológicos Vegetais
15.
J Invertebr Pathol ; 204: 108105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614293

RESUMO

Myxozoans are obligate parasites with complex life cycles, typically infecting fish and annelids. Here, we examined annelids from fish farm pond sediments in the Beit Shean Valley, in the Syrian-African Rift Valley, Israel, for myxozoan infections. We examined 1486 oligochaetes, and found 74 (5 %) were infected with actinospore stages. We used mitochondrial 16S sequencing to infer identity of 25 infected annelids as species of Potamothrix, Psammoryctides, Tubifex and Dero. We identified 7 myxozoan types from collective groups Neoactinomyxum and Sphaeractinomyxon, and characterized them by small subunit ribosomal DNA sequencing. The Neoactinomyxum type was genetically most similar (∼93 %) to cyprinid fish-infecting Myxobolus spp. The six Sphaeractinomyxon types were genetically similar (93-100 %) to Mugilid-infecting Myxobolus spp.; with one being the previously unknown actinospore stage of a myxospore that infects mullet from aquaculture from the Israeli coast of the Mediterranean Sea. As the farm pond system is artificial and geographically isolated from the Mediterranean, the presence of at least seven myxozoans in their annelid hosts demonstrates introduction and establishment of these parasites in a novel, brackish environment.


Assuntos
Aquicultura , Myxozoa , Lagoas , Animais , Myxozoa/genética , Myxozoa/fisiologia , Lagoas/parasitologia , Estágios do Ciclo de Vida , Doenças Parasitárias em Animais/parasitologia , Israel , Doenças dos Peixes/parasitologia
16.
Biodivers Data J ; 12: e115464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586529

RESUMO

Background: With this publication, we contribute to the knowledge of the arachnofauna of Cabo Verde, focusing specifically on the Islands of Santo Antão and São Vicente. Data were obtained from samples collected as part of the project "Macaronesian Islands as a testing ground to assess biodiversity drivers at multiple scales" (FCT - MACDIV, 2015-2018). This project aimed to identify the factors influencing community assembly in Macaronesian islands. For the Cabo Verde Islands, we focused on dry habitats with the additional aim to revise the aracnofauna of this poorly-known fauna. We applied the COBRA (Conservation Oriented Biodiversity Rapid Assessment) sampling protocol in ten 50 m x 50 m dry shrub plots, with five on each of the two islands, using pitfall traps, sweep-netting and active search. Additional ad-hoc samples were also collected and reported. New information: Our sampling of spiders from Cabo Verde (Santo Antão and São Vicente) yielded a total of 3,368 specimens, of which 1300 (39%) were adults. The samples include 21 families, 87 species, 18 of which are morphospecies awaiting formal identification or description at species level. Species in the families Oxyopidae (2 spp.) and Araneidae (8 spp.) were the most abundant, making up 49% of the specimens. From the 68 named species, 14 are endemic to Cabo Verde, 40 are native non-endemic and 14 are introduced. The colonisation status of Cithaeronreimoseri Platnick, 1991 is unknown. Endemic species accounted for 24% (n = 818) of the specimens and native non-endemic for 63% (n = 2122). A total of 29 species were new records for Cabo Verde, with 15 for Santo Antão, seven for São Vicente and seven for both Islands.

17.
PeerJ ; 12: e17214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646489

RESUMO

Many native insects have evolved defenses against native predators. However, their defenses may not protect them from non-native predators due to a limited shared history. The American bullfrog, Aquarana catesbeiana (Anura: Ranidae), which has been intentionally introduced to many countries, is believed to impact native aquatic animals through direct predation. Adults of whirligig beetles (Coleoptera: Gyrinidae), known for swimming and foraging on the water surface of ponds and streams, reportedly possess chemical defenses against aquatic predators, such as fish. Although whirligig beetles potentially encounter both bullfrogs and other frogs in ponds and lakes, the effectiveness of their defenses against frogs has been rarely studied. To assess whether whirligig beetles can defend against native and non-native frogs, we observed the behavioral responses of the native pond frog, Pelophylax nigromaculatus (Anura: Ranidae), and the invasive non-native bullfrog, A. catesbeiana, to native whirligig beetles, Gyrinus japonicus and Dineutus orientalis, in Japan. Adults of whirligig beetles were provided to frogs under laboratory conditions. Forty percent of G. japonicus and D.orientalis were rejected by P. nigromaculatus, while all whirligig beetles were easily consumed by A. catesbeiana. Chemical and other secondary defenses of G. japonicus and D. orientalis were effective for some individuals of P. nigromaculatus but not for any individuals of A. catesbeiana. These results suggest that native whirligig beetles suffer predation by invasive non-native bullfrogs in local ponds and lakes in Japan.


Assuntos
Besouros , Espécies Introduzidas , Comportamento Predatório , Animais , Besouros/fisiologia , Comportamento Predatório/fisiologia , Japão , Ranidae , Rana catesbeiana
18.
Biodivers Data J ; 12: e121884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628453

RESUMO

Background: This manuscript is the first contribution of the project, "Matela - uma ilha de biodiversidade" ("Matela - an island of biodiversity"), that aims to restore the native vegetation within the Azorean Protected Area of the Terceira Island Nature Park known as the "Protected Area for the Management of Habitats or Species of Matela" (TER08), situated on Terceira Island, the Azores Archipelago, Portugal. This small fragment of native forest, positioned at a low-medium altitude (300-400 m a.s.l.), is facing some conservation impacts as a consequence of the spread of different invasive exotic plant species, mainly Pittosporumundulatum, Rubusulmifolius and Hedychiumgardnerianum. The database we present encompasses diverse taxonomic groups, including bryophytes, vascular plants, arthropods, birds and mammals. It is derived from intensive sampling campaigns conducted in 2022, but some data from a previous vascular plant survey in 2015 were also included. The objective of this study was to provide an updated inventory of bryophytes, vascular plants, arthropods, birds and mammals within this protected area. In this way we are providing the reference conditions necessary for the monitoring of the impacts of the current ongoing restoration efforts within the project "Matela - an island of biodiversity". Whenever feasible, the present inventory is juxtaposed with historical data from previous surveys conducted in Matela. New information: In the realm of bryophytes, our analysis revealed the presence of 75 taxa, comprising 44 mosses and 32 liverworts. Amongst these, 71 were indigenous, while three remained indeterminate and one, Campylopusintroflexus, was identified as invasive. A comparison with previous historical data revealed a decrease in species richness, which was partially counterbalanced by the discovery of 23 new recorded species in the area.Regarding vascular plants, we distinguished 54 species, comprising 28 indigenous and 26 introduced taxa. Almost 80% of the inventoried species (n = 43) were newly documented in Matela.The study of arthropods encompassed a total of 103 taxa. Within the realm of soil arthropods, we documented eight indigenous and 25 introduced taxa, witnessing the disappearance of endemic species alongside a substantial increase in introduced ones between 2002 and 2022. Canopy arthropods, totalling 36 indigenous and 18 introduced taxa, exhibited few changes when compared with data from 2002. SLAM traps captured 24 indigenous and 15 introduced arthropod taxa and no historical data are available for comparison.As for avian species, we noted 12 indigenous birds and one introduced species, confirming the presence of most of the historical recorded native species.The mammalian census revealed eight introduced species, setting new precedents for Matela, alongside the identification of one endemic species: the Azorean endemic bat Nyctalusazoreum.

19.
Front Plant Sci ; 15: 1374498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645393

RESUMO

Information about the resistance and adaptive potential of tree species and provenances is needed to select suitable planting material in times of rapidly changing climate conditions. In this study, we evaluate growth responses to climatic fluctuations and extreme events for 12 provenances of northern red oak (Quercus rubra L.) that were tested across three trial sites with distinct environmental conditions in Germany. Six provenances each were sourced from the natural distribution in North America and from introduced stands in Germany. We collected increment cores of 16 trees per provenance and site. Dendroecological methods were used to compare provenance performance and establish climate-growth relationships to identify the main growth limiting factors. To evaluate the provenance response to extreme drought and frost events, three site-specific drought years were selected according to the Standardized Precipitation Evapotranspiration Index (SPEI) and 2010 as a year with an extreme late frost event. Resistance indices for these years were calculated and assessed in relation to overall growth performance. We observed a high variation in growth and in the climate sensitivity between sites depending on the prevailing climatic conditions, as well as a high intra-specific variation. Overall, summer drought and low temperatures in the early growing season appear to constrain the growth of red oak. The resistance of provenances within sites and extreme years showed considerable rank changes and interaction effects. We did not find a trade-off between growth and resistance to late frost, namely, fast growing provenances had a high frost hardiness. Further, there was no evidence for a trade-off between growth and drought hardiness. Still, responses to drought or late frost differ between provenances, pointing to dissimilar adaptive strategies. Provenances from introduced (i.e. German) stands represent suitable seed sources, as they combine a higher growth and frost hardiness compared to their North American counterparts. Drought hardiness was slightly higher in the slow-growing provenances. The results provide a better understanding of the variable adaptive strategies between provenances and help to select suitable planting material for adaptive forest management.

20.
Conserv Biol ; : e14270, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628146

RESUMO

International and national conservation policies almost exclusively focus on conserving species in their historic native ranges, thus excluding species that have been introduced by people and some of those that have extended their ranges on their own accord. Given that many of such migrants are threatened in their native ranges, conservation goals that explicitly exclude these populations may overlook opportunities to prevent extinctions and respond dynamically to rapidly changing environmental and climatic conditions. Focusing on terrestrial mammals, we quantified the number of threatened mammals that have established new populations through assisted migration (i.e., introduction). We devised 4 alternative scenarios for the inclusion of assisted-migrant populations in mainstream conservation policy with the aim of preventing global species extinctions. We then used spatial prioritization algorithms to simulate how these scenarios could change global spatial conservation priorities. We found that 22% (70 species out of 265) of all identified assisted-migrant mammals were threatened in their native ranges, mirroring the 25% of all mammals that are threatened. Reassessing global threat statuses by combining native and migrant ranges reduced the threat status of 23 species (∼33% of threatened assisted migrants). Thus, including migrant populations in threat assessments provides a more accurate assessment of actual global extinction risk among species. Spatial prioritization simulations showed that reimagining the role of assisted-migrant populations in preventing species extinction could increase the importance of overlooked landscapes, particularly in central Australia, Europe, and the southwestern United States. Our results indicated that these various and nonexhaustive ways to consider assisted-migrant populations, with due consideration of potential conservation conflicts with resident taxa, may provide unprecedented opportunities to prevent species extinctions.


Prevención de la extinción en una época de migración de especies y cambios planetarios Resumen Las políticas de conservación nacionales e internacionales casi siempre se enfocan en la conservación de las especies dentro de su distribución histórica y nativa, por lo que se excluyen especies que han sido introducidas por el humano y algunas que se han extendido por cuenta propia más allá de su distribución. Ya que muchas de estas especies migrantes están amenazadas dentro de su distribución nativa, los objetivos de conservación que excluyen explícitamente a estas poblaciones pueden ignorar las oportunidades para prevenir extinciones y responder de forma dinámica a las condiciones ambientales y climáticas que cambian con rapidez. Nos enfocamos en los mamíferos terrestres para cuantificar el número de especies amenazadas que han establecido poblaciones nuevas mediante la migración asistida (introducción). Diseñamos cuatro escenarios alternativos para la inclusión de las poblaciones con migración asistida dentro de las políticas de conservación generales con el objetivo de prevenir extinciones globales de especies. Después usamos algoritmos de priorización espacial para simular cómo estos escenarios podrían cambiar las prioridades de conservación espacial en todo el mundo. Descubrimos que el 22% (70 de 765 especies) de todos los mamíferos con migración asistida están amenazados dentro de su distribución nativa, lo que es similar al 25% de especies amenazadas de todas las especies de mamíferos. La reevaluación de los estados mundiales de amenaza mediante la combinación de la distribución nativa y migrante redujo el estado de amenaza de 23 especies (∼33% de los migrantes asistidos amenazados). Por esto, incluir a las poblaciones migrantes en la evaluación de amenazas proporciona una evaluación más certera del riesgo de extinción que existe entre las especies a nivel mundial. Las simulaciones de priorización espacial mostraron que reinventar el papel que tienen las poblaciones con migración asistida en la prevención de la extinción de especies podría incrementar la importancia de los paisajes ignorados, particularmente en Australia central, Europa y el suroeste de los Estados Unidos. Nuestros resultados indican que estas maneras diversas y no exhaustivas de considerar a las poblaciones con migración asistida, con la debida consideración de los potenciales conflictos de conservación con los taxones residentes, puede proporcionar oportunidades sin precedentes para prevenir la extinción de las especies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...