Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987388

RESUMO

Liver X receptors (LXRs) which link lipid metabolism and inflammation, were overexpressed in experimental rheumatoid arthritis (RA) rats as observed in our previous studies, while suppression of LXRα by silybin ameliorates arthritis and abnormal lipid metabolism. However, the role of LXRs in RA remains undefined. In this study, we investigated the inhibition role of LXRs in the polarization and activation of M1 macrophage by using a special LXRs inverse agonist SR9243, which led to ameliorating the progression of adjuvant-induced arthritis (AIA) in rats. Mechanistically, SR9243 disrupted the LPS/IFN-γ-induced Warburg effect in M1 macrophages, while glycolysis inhibitor 2-DG attenuated the inhibition effect of SR9243 on M1 polarization and the cytokines expression of M1 macrophages including iNOS, TNF-α, and IL-6 in vitro. Furthermore, SR9243 downregulated key glycolytic enzymes, including LDH-A, HK2, G6PD, GLUT1, and HIF-1α in M1 macrophages, which is mediated by increased phosphorylation of AMPK (Thr172) and reduced downstream phosphorylation of mTOR (Ser2448). Importantly, gene silencing of LXRs compromises the inhibition effect of SR9243 on M1 macrophage polarization and activation. Collectively, for the first time, our findings suggest that the LXR inverse agonist SR9243 mitigates adjuvant-induced rheumatoid arthritis and protects against bone erosion by inhibiting M1 macrophage polarization and activation through modulation of glycolytic metabolism via the AMPK/mTOR/HIF-1α pathway.

2.
Front Pharmacol ; 15: 1393702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933682

RESUMO

Background: Fexofenadine (FEX) is an antihistamine that acts as an inverse agonist against histamine (HIS) receptor 1 (H1R), which mediates the allergic reaction. Inverse agonists may be more potent than neutral antagonists, as they bind the same receptor as the agonist (HIS) but stabilize the inactive form and induce an opposite pharmacological response, suppressing the basal activity of H1R and preventing HIS from binding. This study aims to establish and validate a model of HIS-induced inflammation based on fully reconstituted human nasal epithelial tissue to assess the activity of FEX as an inverse agonist in this model and explore its link to clinical benefit. Methods: The model was developed using nasal MucilAir™ (Epithelix) in vitro epithelium challenged by HIS. Two conditions were assessed in a side-by-side comparison: tissue was exposed to HIS + FEX with or without FEX pre-treatment (one-hour prior to HIS challenge). Tissue functionality, cytotoxicity, H1R gene expression, and inflammatory cytokines were assessed. Results: HIS at 100 µM induced significant 3.1-fold and 2.2-fold increases for inflammatory biomarkers interleukin (IL)-8 and IL-6, respectively (p < 0.0001), as well as rapid upregulation of H1R mRNA. Inflammatory biomarkers were inhibited by FEX and H1R expression was significantly reduced (p < 0.0001). FEX alone decreased H1R expression at all doses tested. With one-hour FEX pre-treatment, there was significantly higher downregulation of IL-8 (p < 0.05) and further downregulation of H1R expression and IL-6 versus without FEX pre-treatment; the effects of FEX were improved from 22% to 40%. Conclusion: A model of HIS-induced airway inflammation was established based on IL-8, IL-6 and H1R gene expression and was validated with FEX. FEX works as an inverse agonist, with a higher effect when used before+during versus only during the HIS challenge. Taking FEX before+during allergen exposure, or when symptoms first occur, may reduce basal activity and H1R gene expression, providing stronger protection against the worsening of symptoms upon allergen exposure.

3.
Diabetologia ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864887

RESUMO

AIMS/HYPOTHESIS: Insulitis, a hallmark of inflammation preceding autoimmune type 1 diabetes, leads to the eventual loss of functional beta cells. However, functional beta cells can persist even in the face of continuous insulitis. Despite advances in immunosuppressive treatments, maintaining functional beta cells to prevent insulitis progression and hyperglycaemia remains a challenge. The cannabinoid type 1 receptor (CB1R), present in immune cells and beta cells, regulates inflammation and beta cell function. Here, we pioneer an ex vivo model mirroring human insulitis to investigate the role of CB1R in this process. METHODS: CD4+ T lymphocytes were isolated from peripheral blood mononuclear cells (PBMCs) from male and female individuals at the onset of type 1 diabetes and from non-diabetic individuals, RNA was extracted and mRNA expression was analysed by real-time PCR. Single beta cell expression from donors with type 1 diabetes was obtained from data mining. Patient-derived human islets from male and female cadaveric donors were 3D-cultured in solubilised extracellular matrix gel in co-culture with the same donor PBMCs, and incubated with cytokines (IL-1ß, TNF-α, IFN-γ) for 24-48 h in the presence of vehicle or increasing concentrations of the CB1R blocker JD-5037. Expression of CNR1 (encoding for CB1R) was ablated using CRISPR/Cas9 technology. Viability, intracellular stress and signalling were assayed by live-cell probing and real-time PCR. The islet function measured as glucose-stimulated insulin secretion was determined in a perifusion system. Infiltration of immune cells into the islets was monitored by microscopy. Non-obese diabetic mice aged 7 weeks were treated for 1 week with JD-5037, then euthanised. Profiling of immune cells infiltrated in the islets was performed by flow cytometry. RESULTS: CNR1 expression was upregulated in circulating CD4+ T cells from individuals at type 1 diabetes onset (6.9-fold higher vs healthy individuals) and in sorted islet beta cells from donors with type 1 diabetes (3.6-fold higher vs healthy counterparts). The peripherally restricted CB1R inverse agonist JD-5037 arrested the initiation of insulitis in humans and mice. Mechanistically, CB1R blockade prevented islet NO production and ameliorated the ATF6 arm of the unfolded protein response. Consequently, cyto/chemokine expression decreased in human islets, leading to sustained islet cell viability and function. CONCLUSIONS/INTERPRETATION: These results suggest that CB1R could be an interesting target for type 1 diabetes while highlighting the regulatory mechanisms of insulitis. Moreover, these findings may apply to type 2 diabetes where islet inflammation is also a pathophysiological factor. DATA AVAILABILITY: Transcriptomic analysis of sorted human beta cells are from Gene Expression Omnibus database, accession no. GSE121863, available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3448161 .

4.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931459

RESUMO

BACKGROUND: Periodontitis preceded by gingivitis is the most common form of periodontal disease and occurs due to the interaction of microorganisms present in the complex bacterial aggregates of dental plaque biofilm and their metabolism products with periodontal tissues. Histamine is a heterocyclic biogenic amine acting via four types of receptors. Histamine H3 receptors act as presynaptic auto/heteroreceptors to regulate the release of histamine and other neurotransmitters. AIM: Since the nervous system is able to regulate the progression of the inflammatory process and bone metabolism, the aim of this study was to investigate the effects of DL76, which acts as an antagonist/inverse agonist of H3 receptors, on the course of experimental periodontitis. MATERIALS AND METHODS: This study was conducted in 24 mature male Wistar rats weighing 245-360 g, aged 6-8 weeks. A silk ligature was placed on the second maxillary molar of the right maxilla under general anesthesia. From the day of ligating, DL76 and 0.9% NaCl solutions were administered subcutaneously for 28 days in the experimental and control groups, respectively. After the experiment, histopathological, immunohistochemical and radiological examinations were performed. RESULTS: Ligation led to the development of the inflammatory process with lymphocytic infiltration, increased epithelial RANKL and OPG expression as well as bone resorption. DL76 evoked a reduction in (1) lymphocytic infiltration, (2) RANKL and OPG expression as well as (3) bone resorption since the medians of the mesial and distal interdental spaces in the molars with induced periodontitis were 3.56-fold and 10-fold lower compared to the corresponding values in saline-treated animals with periodontitis. CONCLUSION: DL76 is able to inhibit the progression of experimental periodontitis in rats, as demonstrated by a reduction in the inflammatory cell infiltration, a decrease in the RANKL/RANK OPG pathway expression and a reduction in the alveolar bone resorption.

5.
Br J Pharmacol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886096

RESUMO

BACKGROUND AND PURPOSE: The cannabinoid CB1 receptor has a well-established role in appetite regulation. Drugs antagonizing central CB1 receptors, most notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals but were discontinued due to psychiatric side effects. However, metabolic benefits were only partially attributable to weight loss, implying a role for peripheral receptors, and peripherally restricted CB1 receptor antagonists have since been of interest. Herein, we describe the evaluation of the peripherally restricted potent CB1 receptor inverse agonists TM38837 and TM39875, with acidic functionality, which were administered daily to diet-induced obese (DIO) mice for 5 weeks at doses for which CNS-mediated effects were minimal. EXPERIMENTAL APPROACH: Compounds were tested in dose-response in acute studies to compare efficacy (gastric transport) and extent of CNS exposure (hypothermia and satiety sequence) to demonstrate peripheral restriction and select doses for the subsequent chronic DIO study. KEY RESULTS: TM38837 but not TM39875 produced considerable (26%) weight loss, linked to a sustained reduction in food intake, together with improvements in plasma markers of inflammation and glucose homeostasis. Pharmacokinetic analysis indicated high plasma and low brain levels for both compounds with high liver levels for TM38837 (but not TM39875) due to hepatic uptake. CONCLUSION AND IMPLICATIONS: Weight loss and metabolic benefits of TM38837 are likely not CNS-mediated but could be linked to enhanced liver exposure, which implicates intracellular CB1 receptors in hepatocytes as a possible driver of obesity and co-morbidities.

6.
Alcohol ; 118: 45-55, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38705312

RESUMO

Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.


Assuntos
Potenciação de Longa Duração , Efeitos Tardios da Exposição Pré-Natal , Receptores Histamínicos H3 , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Feminino , Masculino , Ratos , Gravidez , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Ratos Sprague-Dawley , Etanol/farmacologia , Agonismo Inverso de Drogas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
7.
Diabetes Obes Metab ; 26(2): 642-649, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37941317

RESUMO

AIMS: To evaluate the clinical safety, tolerability, and pharmacokinetic and pharmacodynamic profile of the novel cannabinoid receptor-1 (CB1R) inverse agonist, INV-202, in adults with features of metabolic syndrome. MATERIALS AND METHODS: This was a multicentre, randomized, double-blind, placebo-controlled, 28-day repeat-dose (INV-202 [25 mg] or placebo, once-daily oral tablet), parallel-group study in 37 participants aged 18 to 65 years (46% female, mean age 55 years, glycated haemoglobin 5.7% [39 mmol/mol], body mass index [BMI] 38.1 kg/m2 ) with features of metabolic syndrome and glucose intolerance. An oral glucose tolerance test (OGTT) was performed at baseline and at the end of the study. Lipid profiles, weight, waist circumference and biomarkers were assessed weekly. Statistical comparisons were performed post hoc. RESULTS: INV-202 was well tolerated with no serious or severe treatment-emergent adverse events; the most common events related to known effects of CB1R blockade in the gastrointestinal tract. INV-202 produced a significant mean weight loss of 3.5 kg (3.3% compared with placebo participants who gained a mean 0.6 kg [0.5%]). INV-202 also exhibited significant reductions in waist circumference and BMI (P ≤ 0.03). There was no significant difference in OGTT 0- to 3-hour area under the curve for INV-202 versus placebo: least squares mean 29.38 versus 30.25 h*mmol/L, with an INV-202: placebo ratio of 97.1% (95% confidence interval 90.2, 105.6; P = 0.43). CONCLUSIONS: INV-202 was well tolerated, producing a signal for rapid weight loss with improvements in other metabolic syndrome markers in this population. These findings support further exploration and long-term assessment of cardiometabolic effects.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Síndrome Metabólica/tratamento farmacológico , Agonismo Inverso de Drogas , Hemoglobinas Glicadas , Teste de Tolerância a Glucose , Método Duplo-Cego , Redução de Peso , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resultado do Tratamento
8.
Am J Hypertens ; 37(4): 248-260, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150382

RESUMO

BACKGROUND: Many hypertension therapeutics were developed prior to major advances in drug receptor theory. Moreover, newer drugs may take advantage of some of the newly understood modalities of receptor function. GOAL: The goal of this review is to provide an up-to-date summary of drug receptor theory. This is followed by a discussion of the drug classes recognized for treating hypertension to which new concepts in receptor theory apply. RESULTS: We raise ideas for mechanisms of potential new antihypertensive drugs and whether they may take advantage of new theories in drug-receptor interaction.


Assuntos
Hipertensão , Humanos , Hipertensão/tratamento farmacológico , Anti-Hipertensivos/uso terapêutico , Interações Medicamentosas , Receptores de Droga/uso terapêutico
9.
Spine J ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38092193

RESUMO

BACKGROUND CONTEXT: Bone morphogenetic proteins (BMPs) have potent osteoinductivity and have been applied clinically for challenging musculoskeletal conditions. However, the supraphysiological doses of BMPs used in clinical settings cause various side effects that prevent widespread use, and therefore the BMP dosage needs to be reduced. PURPOSE: To address this problem, we synthesized 7C, a retinoic acid receptor γ antagonist-loaded nanoparticle (NP), and investigated its potential application in BMP-based bone regeneration therapy using a rat spinal fusion model. STUDY DESIGN: An experimental animal study. METHODS: Fifty-three male 8-week-old Sprague-Dawley rats underwent posterolateral spinal fusion and were divided into the following five treatment groups: (1) no recombinant human (rh)BMP-2 and blank-NP (Control), (2) no rhBMP-2 and 1 µg 7C-NP (7C group), (3) low-dose rhBMP-2 (0.5 µg) and 1 µg blank-NP (L-BMP group), (4) low-dose rhBMP-2 (0.5 µg) and 1 µg 7C-NP (L-BMP + 7C group), and (5) high-dose rhBMP-2 (5.0 µg) and 1 µg blank-NP (H-BMP group). Micro-computed tomography and histologic analysis were performed 2 and 6 weeks after the surgery. RESULTS: The spinal fusion rates of the Control and 7C groups were both 0%, and those of the L-BMP, L-BMP + 7C, and H-BMP groups were 55.6%, 94.4%, and 100%, respectively. The L-BMP + 7C group markedly promoted cartilaginous tissue formation during BMP-induced endochondral bone formation that resulted in a significantly better spinal fusion rate and bone formation than in the L-BMP group. Although spinal fusion was slower in the L-BMP + 7C group, the L-BMP + 7C group formed a spinal fusion mass with better bone quality than the spinal fusion mass in the H-BMP group. CONCLUSIONS: The combined use of 7C-NP with rhBMP-2 in a rat posterolateral lumbar fusion model increased spinal fusion rate and new bone volume without deteriorating the quality of newly formed bone. CLINICAL SIGNIFICANCE: 7C-NP potentiates BMP-2-induced bone regeneration and has the potential for efficient bone regeneration with low-dose BMP-2, which can reduce the dose-dependent side effects of BMP-2 in clinical settings.

10.
Protein Sci ; 32(11): e4801, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805830

RESUMO

G protein-coupled receptors (GPCRs) are medically important membrane proteins that sample inactive, intermediate, and active conformational states characterized by relatively slow interconversions (~µs-ms). On a faster timescale (~ps-ns), the conformational landscape of GPCRs is governed by the rapid dynamics of amino acid side chains. Such dynamics are essential for protein functions such as ligand recognition and allostery. Unfortunately, technical challenges have almost entirely precluded the study of side-chain dynamics for GPCRs. Here, we investigate the rapid side-chain dynamics of a thermostabilized α1B -adrenergic receptor (α1B -AR) as probed by methyl relaxation. We determined order parameters for Ile, Leu, and Val methyl groups in the presence of inverse agonists that bind orthosterically (prazosin, tamsulosin) or allosterically (conopeptide ρ-TIA). Despite the differences in the ligands, the receptor's overall side-chain dynamics are very similar, including those of the apo form. However, ρ-TIA increases the flexibility of Ile1764×56 and possibly of Ile2145×49 , adjacent to Pro2155×50 of the highly conserved P5×50 I3×40 F6×44 motif crucial for receptor activation, suggesting differences in the mechanisms for orthosteric and allosteric receptor inactivation. Overall, increased Ile side-chain rigidity was found for residues closer to the center of the membrane bilayer, correlating with denser packing and lower protein surface exposure. In contrast to two microbial membrane proteins, in α1B -AR Leu exhibited higher flexibility than Ile side chains on average, correlating with the presence of Leu in less densely packed areas and with higher protein-surface exposure than Ile. Our findings demonstrate the feasibility of studying receptor-wide side-chain dynamics in GPCRs to gain functional insights.


Assuntos
Agonismo Inverso de Drogas , Receptores Acoplados a Proteínas G , Espectroscopia de Ressonância Magnética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Membrana/química , Ligantes
11.
Future Med Chem ; 15(15): 1427-1442, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37706220

RESUMO

Tamoxifen, a triphenylethylene-based selective estrogen-receptor modulator, is a landmark drug for the treatment of breast cancer and is also used for treating liver cancer and osteoporosis. Structural studies of tamoxifen have led to the synthesis of more than 20 novel tamoxifen analogs as receptor modulators, including 16 ERα modulators 2-17, an ERRß inverse agonist 19 and six ERRγ inverse agonists 20-25. This paper summarizes the research progress and structure-activity relationships of tamoxifen analogs modulating these three nuclear receptors reported in the literature, and introduces the relationship between these three nuclear receptor-mediated diseases and tamoxifen analogs to guide the research of novel tamoxifen analogs.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Agonismo Inverso de Drogas , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Receptor alfa de Estrogênio , Receptores de Estrogênio/química , Receptores de Estrogênio/uso terapêutico , Neoplasias da Mama/tratamento farmacológico
12.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687205

RESUMO

G-protein-coupled receptors (GPCRs) are ubiquitous sensors and regulators of cellular functions. Each GPCR exists in complex aggregates with multiple resting and active conformations. Designed to detect weak stimuli, GPCRs can also activate spontaneously, resulting in basal ligand-free signaling. Agonists trigger a cascade of events leading to an activated agonist-receptor G-protein complex with high agonist affinity. However, the ensuing signaling process can further remodel the receptor complex to reduce agonist affinity, causing rapid ligand dissociation. The acutely activated ligand-free receptor can continue signaling, as proposed for rhodopsin and µ opioid receptors, resulting in robust receptor activation at low agonist occupancy with enhanced agonist potency. Continued receptor stimulation can further modify the receptor complex, regulating sustained ligand-free signaling-proposed to play a role in opioid dependence. Basal, acutely agonist-triggered, and sustained elevated ligand-free signaling could each have distinct functions, reflecting multi-state conformations of GPCRs. This review addresses basal and stimulus-activated ligand-free signaling, its regulation, genetic factors, and pharmacological implications, focusing on opioid and serotonin receptors, and the growth hormone secretagogue receptor (GHSR). The hypothesis is proposed that ligand-free signaling of 5-HT2A receptors mediate therapeutic effects of psychedelic drugs. Research avenues are suggested to close the gaps in our knowledge of ligand-free GPCR signaling.


Assuntos
Rodopsina , Transdução de Sinais , Membrana Celular , Receptores de Grelina , Analgésicos Opioides , Ligantes
13.
Front Bioeng Biotechnol ; 11: 1226649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744249

RESUMO

The constant release of human bone morphogenetic protein 2 (rhBMP-2) in the picomolar range (Pico-Stat) from PDLLA-biohybrids led to the detection of intrinsic novel pro- and anti-angiogenic functions of this cytokine. As integrant part in this perspective of previous work, first evidence for the binding of rhBMP-2, as an inverse agonist, to allosteric angiogenic receptors in cocultures of human endothelial cells is reported.

14.
Eur J Pharmacol ; 954: 175893, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37392830

RESUMO

GPR82 is an orphan G protein-coupled receptor (GPCR) that has been implicated in lipid storage in mouse adipocytes. However, the intracellular signaling as well as the specific ligands of GPR82 remain unknown. GPR82 is closely related to GPR34, a GPCR for the bioactive lipid molecule lysophosphatidylserine. In this study, we screened a lipid library using GPR82-transfected cells to search for ligands that act on GPR82. By measuring cyclic adenosine monophosphate levels, we found that GPR82 is an apparently constitutively active GPCR that leads to Gi protein activation. In addition, edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine), an artificial lysophospholipid with a cationic head group that exerts antitumor activity, inhibited the Gi protein activation by GPR82. Two endogenous lysophospholipids with cationic head groups, lysophosphatidylcholine (1-oleoyl-sn-glycero-3-phosphocholine) and lysophosphatidylethanolamine (1-oleoyl-sn-glycero-3-phosphoethanolamine), also exhibited GPR82 inhibitory activity, albeit weaker than edelfosine. Förster resonance energy transfer imaging analysis consistently demonstrated that Gi protein-coupled GPR82 has an apparent constitutive activity that is edelfosine-sensitive. Consistent data were obtained from GPR82-mediated binding analysis of guanosine-5'-O-(3-thiotriphosphate) to cell membranes. Furthermore, in GPR82-transfected cells, edelfosine inhibited insulin-induced extracellular signal-regulated kinase activation, like compounds that function as inverse agonists at other GPCRs. Therefore, edelfosine is likely to act as an inverse agonist of GPR82. Finally, GPR82 expression inhibited adipocyte lipolysis, which was abrogated by edelfosine. Our findings suggested that the cationic lysophospholipids edelfosine, lysophosphatidylcholine and lysophosphatidylethanolamine are novel inverse agonists for Gi-coupled GPR82, which is apparently constitutively active, and has the potential to exert lipolytic effects through GPR82.


Assuntos
Agonismo Inverso de Drogas , Lisofosfatidilcolinas , Animais , Camundongos , Ligantes , Fosforilcolina , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo
15.
Curr Biol ; 33(11): 2235-2245.e4, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220745

RESUMO

The olfactory system uses hundreds of odorant receptors (ORs), the largest group of the G-protein-coupled receptor (GPCR) superfamily, to detect a vast array of odorants. Each OR is activated by specific odorous ligands, and like other GPCRs, antagonism can block activation of ORs. Recent studies suggest that odorant antagonisms in mixtures influence olfactory neuron activities, but it is unclear how this affects perception of odor mixtures. In this study, we identified a set of human ORs activated by methanethiol and hydrogen sulfide, two potent volatile sulfur malodors, through large-scale heterologous expression. Screening odorants that block OR activation in heterologous cells identified a set of antagonists, including ß-ionone. Sensory evaluation in humans revealed that ß-ionone reduced the odor intensity and unpleasantness of methanethiol. Additionally, suppression was not observed when methanethiol and ß-ionone were introduced simultaneously to different nostrils. Our study supports the hypothesis that odor sensation is altered through antagonistic interactions at the OR level.


Assuntos
Percepção Olfatória , Neurônios Receptores Olfatórios , Receptores Odorantes , Humanos , Odorantes , Receptores Odorantes/metabolismo , Olfato/fisiologia , Percepção , Neurônios Receptores Olfatórios/fisiologia , Percepção Olfatória/fisiologia
16.
Eur J Med Chem ; 256: 115424, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167779

RESUMO

Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) has been exploited as a promising target for the new small molecule therapeutics to treat inflammatory and autoimmune diseases via modulating the interleukin-17 (IL-17) production by T helper 17 (Th17) cells. Herein, we reported a series of triazine-based derivatives as novel RORγt inverse agonists. By screening of our in-house compound library, the hit compound 1 was identified with weak RORγt inhibitory activity. Subsequently, we engineered detailed structural modifications to explore the structure-activity relationships (SARs) of triazines derivatives, which led to discovery of a number of potent RORγt inverse agonists with IC50 values in the range of 7 nM-50 nM in RORγt dual FRET assay. Among them, compound 14g displayed potent RORγt inverse agonistic activity with an IC50 value of 22.9 nM in dual FRET assay. In a cell-based reporter gene assay, compound 14g showed an IC50 value of 0.428 µM and maximum inhibition rate of 108.9%. Compound 14g also exhibited good metabolic stability and a decent pharmacokinetic profile with a low clearance (CL = 0.229 L/h/kg) and a reasonable oral exposure (AUC0-Last = 5058 ng/mL*h). Most importantly, 14g alleviated the severity of imiquimod-induced psoriasis in mice. Taken together, triazine-based derivatives represent a new chemical class of RORγt inverse agonists as potential therapeutic agents against autoimmune diseases.


Assuntos
Doenças Autoimunes , Receptores do Ácido Retinoico , Camundongos , Animais , Receptores do Ácido Retinoico/agonistas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Agonismo Inverso de Drogas , Relação Estrutura-Atividade , Doenças Autoimunes/tratamento farmacológico , Triazinas/farmacologia , Triazinas/uso terapêutico
17.
J Pharmacol Sci ; 152(3): 193-199, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257947

RESUMO

The adenosine A2A receptor antagonist/inverse agonist, KW-6356 has been shown to be effective in Parkinson's disease (PD) patients as monotherapy and as an adjunct therapy to L-3,4-dihydroxyphenylalanine (L-DOPA)/decarboxylase inhibitor. However, the effects of KW-6356 combined with L-DOPA on anti-parkinsonian activity and established dyskinesia has not been investigated in preclinical experiments. We examined the effects of combination of KW-6356 with L-DOPA in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets. Oral administration of KW-6356 (1 mg/kg) enhanced the anti-parkinsonian activities of various doses of L-DOPA (2.5-10 mg/kg). In MPTP-treated common marmosets primed with L-DOPA to show dyskinesia, KW-6356 (1 mg/kg) also enhanced the anti-parkinsonian activities of various doses of L-DOPA (1.25-10 mg/kg) but not dyskinesia. Chronic co-administration of KW-6356 (1 mg/kg) with a low dose of L-DOPA (2.5 mg/kg) for 21 days increased the degree of dyskinesia induced by the low dose of L-DOPA, but the amplitude of dyskinesia induced by combined administration of KW-6356 (1 mg/kg) with L-DOPA (2.5 mg/kg) was lower than that induced by an optimal dose of L-DOPA (10 mg/kg). These results suggest that KW-6356 can be used to potentiate the effects of a wide range of L-DOPA doses with a low risk of dyskinesia for the treatment of PD.


Assuntos
Levodopa , Doença de Parkinson , Animais , Levodopa/efeitos adversos , Antiparkinsonianos/efeitos adversos , Callithrix , Receptor A2A de Adenosina , Agonismo Inverso de Drogas , Atividade Motora , Doença de Parkinson/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
18.
Asian Pac J Cancer Prev ; 24(2): 375-387, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853284

RESUMO

Thyroid cancer's incidence has increased by leaps and bounds over the last years and accounts for 2.8% of new cases of cancers. This increasing bar is partially assisted by enormous screening to understand the sub-clinical status. Advanced tumor growth is the leading cause of thyroid cancer-associated death. However, the complete understanding of the underlying cause is still to be disclosed. The updated clinical assessment evidenced a few major oncogenes viz. RAS, BRAF, and RET as key drivers in the development and progression of thyroid cancer. The BRAF mutation, a major cause of aggressive tumor type in papillary thyroid carcinoma, is frequently reported. The characteristic oncogenic changes imply thyroid cancer to be clinically an ideal model for targeted therapy against RET, RAS, and BRAF mutation. Though the sensitive biochemical marker assay has been improvised, the diagnosis of thyroid follicular neoplasms is still a big challenge as the biopsy aspiration cannot define the nature of the tumor in 30% of the cases. The main hurdle is assisted distinction between follicular thyroid lesions. The discrimination between follicular thyroid adenomas and carcinomas is histologically accomplished. This strictly necessitates the identification of sensitive diagnostic/prognostic markers to mitigate the risk of thyroid cancer and to avoid the unnecessary hurdles of biopsy and surgery. An array of prognostic biomarkers is being used for the diagnosis of thyroid cancer. However, Estrogen Related Receptor Gamma (ERRγ) is setting a new benchmark among the clinical biomarkers. The dramatic expression of ERRγ in thyroid cancer enables itself not only to serve as a characteristic diagnostic marker but also as a therapeutic target. Recently, we have reported that ERRγ is upregulated in 96 papillary thyroid cancer (PTC) and 26 poorly differentiated/ anaplastic thyroid cancer (ATC) samples. Various synthetic ERRγ inverse agonists viz. GSK5182, DN200434, and 24e are fully proved to modulate ERRγ expression in ATC to attain partial cure. If this finding can be assayed on a larger scale the evaluation of this marker may be warranted and informative. This review article highlights the ascending sheds of clinical biomarkers of thyroid cancer. This also reveals the clinical importance of ERRγ as an evolving diagnostic and therapeutic target in thyroid cancer.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Biomarcadores , Biópsia por Agulha Fina , Agonismo Inverso de Drogas , Estrogênios , Prognóstico , Proteínas Proto-Oncogênicas B-raf , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/genética , Dobramento de Proteína
19.
Eur J Pharmacol ; 944: 175589, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36773683

RESUMO

The cannabinoid receptor CB1R is expressed in pancreatic ß-cells; CB1R increased activity is associated with diabetes, obesity, cardiovascular disorders as well as decreased insulin secretion and insulin resistance. CB1R was shown to signal through G-protein coupling as well as ß-arrestins in ß-cells. Peripherally restricted CB1R inverse agonists purportedly have beneficial effects on insulin secretion in ß-cells, without the unwanted effects in the central nervous system. Here we show that a peripherally restricted CB1R inverse agonist, MRI-1891, augments glucose stimulated insulin secretion in isolated human pancreatic islets and mouse islets. The insulin secretion enhancing effect of MRI-1891 is comparable to exendin-4, an analogue of the glucagon like peptide-1 (GLP1). Moreover, MRI-1891 treatment protects isolated human islet cells against cytokine-induced apoptosis, similar to exendin-4. Thus, MRI-1891, a new class of CB1R inverse agonist, may be considered a potential therapeutic for both type 1 and type 2 diabetes because of its ability to protect pancreatic ß-cells from cytokine toxicity and to promote insulin secretion.


Assuntos
Canabinoides , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Secreção de Insulina , Agonismo Inverso de Drogas , Insulina/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia
20.
Acta Pharmacol Sin ; 44(6): 1217-1226, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36650291

RESUMO

Retinoic-acid-receptor-related orphan receptor γ (RORγ) is a major transcription factor for proinflammatory IL-17A production. Here, we revealed that the RORγ deficiency protects mice from STZ-induced Type 1 diabetes (T1D) through inhibiting IL-17A production, leading to improved pancreatic islet ß cell function, thereby uncovering a potential novel therapeutic target for treating T1D. We further identified a novel RORγ inverse agonist, ginseng-derived panaxadiol, which selectively inhibits RORγ transcriptional activity with a distinct cofactor recruitment profile from known RORγ ligands. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for panaxadiol in the RORγ ligand-binding pocket. Despite its inverse agonist activity, panaxadiol induced the C-terminal AF-2 helix of RORγ to adopt a canonical active conformation. Interestingly, panaxadiol ameliorates mice from STZ-induced T1D through inhibiting IL-17A production in a RORγ-dependent manner. This study demonstrates a novel regulatory function of RORγ with linkage of the IL-17A pathway in pancreatic ß cells, and provides a valuable molecule for further investigating RORγ functions in treating T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Panax , Animais , Camundongos , Interleucina-17/metabolismo , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ligantes , Agonismo Inverso de Drogas , Panax/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...