Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1432819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301315

RESUMO

Maintaining a well-functioning mitochondrial network through the mitochondria quality control (MQC) mechanisms, including biogenesis, dynamics and mitophagy, is crucial for overall health. Mitochondrial dysfunction caused by oxidative stress and further exacerbated by impaired quality control can trigger inflammation through the release of the damage-associated molecular patterns (mtDAMPs). mtDAMPs act by stimulating the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway. Recently, aberrant signalling of the cGAS-STING axis has been recognised to be closely associated with several sterile inflammatory diseases (e.g. non-alcoholic fatty liver disease, obesity). This may fit the pathophysiology of hypothyroidism, an endocrine disorder characterised by the reduction of thyroid hormone production associated with impaired metabolic fluxes, oxidative balance and inflammatory status. Both 3,5,3'-triiodo-L-tyronine (T3) and its derivative 3,5-diiodo-L-thyronine (3,5-T2), are known to mitigate processes targeting mitochondria, albeit the underlying mechanisms are not yet fully understood. Therefore, we used a chemically induced hypothyroidism rat model to investigate the effect of 3,5-T2 or T3 administration on inflammation-related factors (inflammatory cytokines, hepatic cGAS-STING pathway), oxidative stress, antioxidant defence enzymes, mitochondrial DNA (mtDNA) damage, release and repair, and the MQC system in the liver. Hypothyroid rats showed: i) increased oxidative stress, ii) accumulation of mtDNA damage, iii) high levels of circulating cytokines, iv) hepatic activation of cGAS-STING pathways and v) impairment of MQC mechanisms and autophagy. Both iodothyronines restored oxidative balance by enhancing antioxidant defence, preventing mtDNA damage through the activation of mtDNA repair mechanisms (OGG1, APE1, and POLγ) and promoting autophagy progression. Concerning MQC, both iodothyronines stimulated mitophagy and dynamics, with 3,5-T2 activating fusion and T3 modulating both fusion and fission processes. Moreover, only T3 enhanced mitochondrial biogenesis. Notably, 3,5-T2, but not T3, reversed the hypothyroidism-induced activation of the cGAS-STING inflammatory cascade. In addition, it is noteworthy that 3,5-T2 seems more effective than T3 in reducing circulating pro-inflammatory cytokines IL-6 and IL-1B and in stimulating the release of IL-10, a known anti-inflammatory cytokine. These findings reveal novel molecular mechanisms of hepatic signalling pathways involved in hypothyroidism, which could be targeted by natural iodothyronines, particularly 3,5-T2, paving the way for the development of new treatment strategies for inflammatory diseases.


Assuntos
Di-Iodotironinas , Hipotireoidismo , Inflamação , Fígado , Proteínas de Membrana , Nucleotidiltransferases , Estresse Oxidativo , Animais , Ratos , Hipotireoidismo/metabolismo , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Nucleotidiltransferases/metabolismo , Masculino , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Di-Iodotironinas/farmacologia , Proteínas de Membrana/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tri-Iodotironina , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ratos Wistar , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Thyroid ; 34(7): 931-941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661522

RESUMO

Background: Monocarboxylate transporter 8 (MCT8) is the most specific thyroid hormone transporter identified to date, deficiency of which has been associated with severe intellectual and motor disability and abnormal serum thyroid function tests. However, it is presently unknown if MCT8, similar to other thyroid hormone transporters, also accepts additional substrates, and if disruption of their transport may contribute to the observed phenotype. Methods: In this study, we aimed to identify such substrates by applying liquid chromatography-mass spectrometry-based metabolome analysis in lysates of control and MCT8-overexpressing Xenopus oocytes. A subset of identified candidate substrates were validated by direct transport studies in transiently transfected COS-1 cells and human fibroblasts, which endogenously express MCT8. Moreover, transport characteristics were determined, including transport saturation and cis-inhibition potency of thyroid hormone transport. Results: Metabolome analysis identified 21 m/z ratios, corresponding to 87 candidate metabolites, with a 2.0-times differential abundance in MCT8-injected oocytes compared with controls. These metabolites included 3,5-diiodotyrosine (DIT) and several amino acids, including glutamate and glutamine. In accordance, MCT8-expressing COS-1 cells had 2.2-times lower intracellular accumulation of [125I]-DIT compared with control cells. This effect was largely blocked in the presence of 3,3',5-triiodothyronine (T3) (IC50: 2.5 ± 1.5 µM) or thyroxine (T4) (IC50: 5.8 ± 1.3 µM). Conversely, increasing concentrations of DIT enhanced the accumulation of T3 and T4. The MCT8-specific inhibitor silychristin increased the intracellular accumulation of DIT in human fibroblasts. COS-1 cells expressing MCT8 also exhibited a 50% reduction in intracellular accumulation of [125I]-3-monoiodotyrosine (MIT). In contrast, COS-1 cells expressing MCT8 did not alter the intracellular accumulation of [3H]-glutamate or [3H]-glutamine. However, studies in human fibroblasts showed a 1.5-1.9 times higher glutamate uptake in control fibroblasts compared with fibroblasts derived from patients with MCT8 deficiency, which was not affected in the presence of silychristin. Conclusions: Taken together, our results suggest that the iodotyrosines DIT and MIT can be exported by MCT8. MIT and DIT interfere with MCT8-mediated transport of thyroid hormone in vitro and vice versa. Future studies should elucidate if MCT8, being highly expressed in thyroidal follicular cells, also transports iodotyrosines in vivo.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Humanos , Animais , Simportadores/metabolismo , Células COS , Chlorocebus aethiops , Fibroblastos/metabolismo , Oócitos/metabolismo , Xenopus laevis , Hormônios Tireóideos/metabolismo , Transporte Biológico , Hipotonia Muscular/metabolismo , Tri-Iodotironina/metabolismo , Metaboloma
3.
Bull Exp Biol Med ; 175(2): 179-186, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37462805

RESUMO

The review considers the fundamental bases of the structural organization and mechanisms of the regulatory functions of the adrenothyroid system. Impairment of adaptation mechanisms caused by activation of uncontrolled processes of a stress reaction or weakening of controlled stress reaction is primarily associated with disorders in the adrenothyroid relationship and the development of adrenothyroid dysfunction syndrome.

4.
Cells ; 11(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326451

RESUMO

Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.


Assuntos
Mitocôndrias , Hormônios Tireóideos , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Hormônios Tireóideos/metabolismo
5.
Vet World ; 13(5): 847-859, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32636578

RESUMO

The review discusses the hormonal changes during exercise stress. The exercise generally produces a rise of adrenaline (A), noradrenaline (NA), adrenocorticotropic hormone (ACTH), cortisol, glucagon, growth hormone, arginine vasopressine, etc., and a drop of insulin. The hormonal events during reestablishment of homeostasis due to exercise stress can be divided into a catabolic phase, with decreased tolerance of effort, and reversible biochemical, hormonal and immunological changes, and an anabolic phase, with a higher adaptive capacity, and enhanced performance. The two main hormonal axes activated in the catabolic phase are sympathetic-adrenal-medullary system and hypothalamic-pituitary-adrenal (HPA) axis, while in the anabolic phase, growth hormone-insulin-like factor I axis, and gonadal axes. The hormonal responses during exercise and recovery can be regarded as regulatory and integrated endocrine responses. The increase of catecholamines and ACTH is dependent on the intensity of exercise; a marked increase in plasma A occurs during exercises with high emotional content. The response of cortisol is correlated with the duration of exercise, while the effect of exercise duration on b-endorphin changes is highly dependent on the type of exercise performed. Cortisol and b-endorphin changes usually occur in phase, but not during exercises with high emotional content. Glucocorticoids and iodothyronines are involved in meeting immediate energy demands, and a model of functional interactions between HPA axis and hypothalamic-pituitary-thyroid axis during exercise stress is proposed. A modulation of coping responses to different energy demanding physical activities required for sport activities could be hypothesized. This review supports the proposed regulation of hypophysiotropic TRHergic neurons as metabolic integrators during exercise stress. Many hormonal systems (ghrelin, leptin, glucose, insulin, and cortisol) are activated to control substrate mobilizations and utilization. The cardiovascular homeostasis, the fluid and electrolyte balance during exercise are highly dependent on vasoactive hormones (antidiuretic hormone, atrial natriuretic peptide, renin-angiotensin-aldosterone, and prostaglandins) control.

6.
AIMS Neurosci ; 7(1): 17-29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32455163

RESUMO

Hönes et al. have recently shown that in vivo interference with the apparatus of the nuclear receptor-mediated, gene-driven mechanism of triiodothyronine (T3) actions fails to eliminate all actions of T3. However, the investigators conducting that study provided little information regarding the mechanisms that might be responsible for conferring those implied gene-independent effects. Dratman has long ago suggested a system wherein such gene-free mechanisms might operate. Therefore, since news of that discovery was originally published in 1974, it seems appropriate to describe the progress made since then. We propose that thyroxine and triiodothyronine have many different structural properties that may confer a series of different capabilities on their functions. These conform with our proposal that a series of catecholamine analogs and their conversion to iodothyronamines, allows them to perform many of the functions that previously were attributed to nuclear receptors regulating gene expression. The actions of deiodinases and the differential distribution of iodine substituents are among the critical factors that allow catecholamine analogs to change their effects into ones that either activate their targets or block them. They do this by using two different deiodinases to vary the position of an iodide ion on the diphenylether backbones of thyroxine metabolites. A panoply of these structural features imparts major unique functional properties on the behavior of vertebrates in general and possibly on Homo sapiens in particular.

7.
Clin Chem ; 66(4): 556-566, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125368

RESUMO

BACKGROUND: While thyroxine (T4), 3,3',5-triiodothyronine (T3), and 3,3',5'-triiodothyronine (rT3) have routine methods available for evaluating patients with suspected thyroid disease, appropriate methods for the measurement of other thyroid hormone metabolites (THMs) are lacking. The effects of other iodothyronines or iodothyroacetic acids are therefore less explored. To better understand the (patho)physiological role of THMs, a robust method to measure iodothyronines and iodothyroacetic acids in serum in a single analysis is needed, including associated reference intervals. METHODS: Clinical and Laboratory Standards Institute guidelines, European Medicines Agency guidelines, and the National Institute of Standards and Technology protocol were used for the method validation and reference intervals. Reference intervals were determined in 132 healthy males and 121 healthy females. Serum samples were deproteinized with acetonitrile, followed by anion-exchange solid phase extraction and analysis with LC-MS/MS, using eight 13C6-internal standards. RESULTS: The analytical method validation was performed for all nine THMs. Reference intervals (2.5th to 97.5th percentile) were determined for L-thyronine (4.9-11.3 ng/dL), 3-monoiodothyronine (0.06 --0.41 ng/dL), 3,5-diiodothyronine (<0.13 ng/dL), 3,3'-diiodothyronine (0.25--0.77 ng/dL), T3 (66.4--129.9 ng/dL), rT3 (15.0--64.1 ng/dL), T4 (4.3--10.0 µg/dL), triac/3,3',5-triiodothyroacetic acid (not detected), and tetrac/3,3',5,5'-tetraiodothyroacetic acid (2.2--27.2 ng/dL). CONCLUSIONS: A broad dynamic concentration range exists among the nine THMs. This method should help to develop a better understanding of the clinical relevance of other THMs, as well as an understanding of thyroid hormone metabolism in health and disease.


Assuntos
Espectrometria de Massas em Tandem/métodos , Hormônios Tireóideos/sangue , Hormônios Tireóideos/metabolismo , Adulto , Idoso , Calibragem , Cromatografia Líquida , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Reprodutibilidade dos Testes , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-31024454

RESUMO

This study evaluated the effect of 3,5-diiodo-L-thyronine (T2) and 3,5,3'-triiodo-L-thyronine (T3) on rat liver mitochondrial DNA (mtDNA) oxidative damage and repair and to investigate their ability to induce protective effects against oxidative stress. Control rats, rats receiving a daily injection of T2 (N+T2) for 1 week and rats receiving a daily injection of T3 (N+T3) for 1 week, were used throughout the study. In the liver, mtDNA oxidative damage [by measuring mtDNA lesion frequency and expression of DNA polymerase γ (POLG)], mtDNA copy number, mitochondrial biogenesis [by measuring amplification of mtDNA/nDNA and expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)], and oxidative stress [by measuring serum levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were detected. T2 reduces mtDNA lesion frequency and increases the expression of POLG, and it does not change the mtDNA copy number, the expression of PGC-1α, or the serum levels of 8-OHdG. Therefore, T2, by stimulating the major mtDNA repair enzyme, maintains genomic integrity. Similar to T2, T3 decreases mtDNA lesion frequency but increases the serum levels of 8-OHdG, and it decreases the expression of POLG. Moreover, as expected, T3 increases the mtDNA copy number and the expression of PGC-1α. Thus, in T3-treated rats, the increase of 8-OHdG and the decrease of POLG indicate that there is increased oxidative damage and that the decreased mtDNA lesion frequency might be a consequence of increased mitochondrial biogenesis. These data demonstrate that both T2 and T3 are able to decrease in the liver mtDNA oxidative damage, but they act via different mechanisms.

9.
Res Vet Sci ; 118: 134-143, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29428703

RESUMO

In order to acquire a pattern of thyroid involvement in welfare maintenance in Ruminants and Equines, this review summarizes data concerning the reference values of total and free iodothyronines and their modifications in physiological conditions and in different management conditions (pregnancy, lactation, weaning, growth, isolation, restraint, shearing, confinement and transportation). Thyroidal and extrathyroidal tissues efficiently respond to management practices, giving a differentiated contribution to circulating iodothyronine changes. The hormonal response could be mainly attributed to the intracellular deiodination of T4 to T3. Triiodothyronine (T3) and free iodothyronines (fT3 and fT4) result more responsive to management stress, showing different pattern with species and to various conditions, as to environmental conditions in which activities are performed. Intrinsic seasonal changes of iodothyronines and a significant pregnancy effect for T3 were recorded in mares. Higher, although not significant, T3 and T4 concentrations in barren than pregnant mares were observed in donkeys. A positive significant correlation between T3 and T4 was described only in pregnant donkeys. Moreover, a significant effect of season on T3 and fT3 changes was observed both in pregnant and barren donkeys. A significant lactating effect compared with nonlactating stage for T3 and T4 was recorded in mares. In growing foals, body weight (BW) and age were positively correlated with T3 and negatively correlated with T4, fT4 and fT3. Weaning effects were shown for T3 and fT4 concentrations, indicating that weaning represents a severe stress and the presence of conspecific does not reduce psychological stress in this phase. Lambs showed significant decreased T3 and elevated T4 concentrations two weeks after weaning, with higher concentrations in both males and females compared to 24 h. Significant positive correlations were observed between BW and T4, fT3 and fT4 concentrations in lambs. A T3 decrease was detected after isolation, such as induced by confinement and weaning in lambs. Higher T3 concentration after restraint and shearing than after isolation and significant increases in T4, fT3 and fT4 values after restraint and shearing were recorded. The basal concentrations of fT3 in both the inexperienced and experienced transported horses were significantly higher than in untransported experienced horses. Moreover, increases of T3, T4 and fT4 after short road transportation, and significant correlations between T3 and rectal temperature (RT), body weight (BW) and heart rate (HR), confirmed their important role in coping strategy. Thyroid responsiveness to short transport is similar in domestic donkeys and horses, with a preferential release of T3 in horses. A greatest and constant release of T3 and T4, although differentiated, after simulated transportation and after conventional transport of horses confirmed that the degree of stress induced by confinement and additional stressful stimuli associated to road transportation could differently influence the iodothyronine release. Temperamental Limousin young beef bulls showed lower T4 and fT4 concentrations after prolonged transportation than calm subjects, and a concomitant decrease of circulating ACTH, cortisol, T3 and fT3 concentrations, probably induced by down regulation of HPA axis and cortisol negative feedback. These data reinforce the importance of taking into account the evaluation of iodothyronines, and notably of T3, as markers of welfare and stress and their role in ensuring energy homeostasis and productive and reproductive performances in Ruminants and Equines.


Assuntos
Bem-Estar do Animal , Cavalos/sangue , Ruminantes/sangue , Estresse Fisiológico , Hormônios Tireóideos/sangue , Animais , Bovinos , Feminino , Sistema Hipotálamo-Hipofisário , Lactação , Masculino , Sistema Hipófise-Suprarrenal , Gravidez , Valores de Referência , Ovinos , Tiroxina , Tri-Iodotironina
10.
Mol Cell Endocrinol ; 458: 39-43, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167127

RESUMO

The gut microbiota is composed of over 1200 species of anaerobes and aerobes bacteria along with bacteriophages, viruses and fungal species. Increasing evidence indicates that the intestinal microbiota, beside digestive equilibrium, is also crucial for immunologic, hormonal and metabolic homeostasis. The intestinal microbiota interacts with distant organs by signals which may be part of the bacteria themselves or their metabolites. Dysbiosis has been observed in inflammatory or autoimmune disorders such as multiple sclerosis or type 1 diabetes as well as in obesity and type 2 diabetes. Functional thyroid disorders were associated with bacterial overgrowth and a different microbial composition. Although thyroid metabolism was apparently disregarded, the interference of microbiota on peripheral iodothyronine homeostasis is an intriguing issue. In this review we focused on the interactions of intestinal microbiota with thyroid-related micronutrients and with the metabolic steps of endogenous and exogenous iodothyronines.


Assuntos
Microbioma Gastrointestinal , Fígado/metabolismo , Hormônios Tireóideos/metabolismo , Metabolismo Energético , Homeostase , Humanos , Estado Nutricional , Tironinas/metabolismo
11.
Front Physiol ; 7: 545, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909409

RESUMO

3,5,3'-triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (T2), when administered to a model of familial hypercholesterolemia, i.e., low density lipoprotein receptor (LDLr)-knockout (Ldlr-/-) mice fed with a Western type diet (WTD), dramatically reduce circulating total and very low-density lipoprotein/LDL cholesterol with decreased liver apolipoprotein B (ApoB) production. The aim of the study was to highlight putative molecular mechanisms to manage cholesterol levels in the absence of LDLr. A comprehensive comparative profiling of changes in expression of soluble proteins in livers from Ldlr-/- mice treated with either T3 or T2 was performed. From a total proteome of 450 liver proteins, 25 identified proteins were affected by both T2 and T3, 18 only by T3 and 9 only by T2. Using in silico analyses, an overlap was observed with 11/14 pathways common to both iodothyronines, with T2 and T3 preferentially altering sub-networks centered around hepatocyte nuclear factor 4 α (HNF4α) and peroxisome proliferator-activated receptor α (PPARα), respectively. Both T2 and T3 administration significantly reduced nuclear HNF4α protein content, while T2, but not T3, decreased the expression levels of the HNFα transcriptional coactivator PGC-1α. Lower PPARα levels were found only following T3 treatment while both T3 and T2 lowered liver X receptor α (LXRα) nuclear content. Overall, this study, although it was not meant to investigate the use of T2 and T3 as a therapeutic agent, provides novel insights into the regulation of hepatic metabolic pathways involved in T3- and T2-driven cholesterol reduction in Ldlr-/- mice.

12.
Vet Q ; 35(1): 16-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25506760

RESUMO

BACKGROUND: Weaning is a crucial period in the management of lambs, resulting in physiological and mental challenges, that may have prolonged effects on lamb's health and welfare. HYPOTHESIS/OBJECTIVES: To evaluate the effect of weaning on total and free triiodothyronine (T3, fT3) and thyroxine (T4, fT4) concentrations in serum of lambs by enzyme immunoassay. Animal and methods: The study was performed on two groups of 17 clinically healthy Comisana cross-bred lambs (7 males and 10 females) with or without weaning at 10 weeks of age. Serum samples were collected at the age of 8 weeks, 24 h and 2 weeks after weaning in the experimental group and at similar times in the non-weaned control group. Enzyme immunoassay was performed. Statistical analysis was done by one-way analysis of variance. RESULTS: Compared to control animals, weaned animals showed significantly decreased T3 and elevated T4 concentrations two weeks after weaning with higher concentrations in both males and females in contrast to 24 h after weaning. Body weight (BW) was significantly restored in both females (11% increase) and males (6%) two weeks after weaning as compared to 24 h after weaning. No gender effects were shown for total and free iodothyronine changes. Significant positive correlations were observed between BW and T4 concentrations in both females (r = 0.692) and males (r = 0.856), fT3 concentrations in males (r = 0.968) and fT4 concentrations in females (r = 0.862). CONCLUSION AND CLINICAL IMPORTANCE: Total iodothyronines could represent an indicator of their different metabolic activity with their magnitude altered two weeks following weaning.


Assuntos
Ovinos/metabolismo , Tiroxina/metabolismo , Desmame , Animais , Peso Corporal/fisiologia , Feminino , Imunoensaio/veterinária , Itália , Masculino , Ovinos/sangue , Estresse Fisiológico , Tiroxina/sangue , Tri-Iodotironina/sangue
13.
Front Physiol ; 6: 418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793120

RESUMO

Adipose tissue, dietary lipids and de novo lipogenesis are sources of hepatic free fatty acids (FFAs) that are stored in lipid droplets (LDs) as triacylglycerols (TAGs). Destiny of TAGs stored in LDs is determined by LD proteomic equipment. When adipose triglyceride lipase (ATGL) localizes at LD surface the lipid mobilization is stimulated. In this work, an in vitro model of cultured rat hepatocytes mimicking a mild steatosis condition was used to investigate the direct lipid-lowering action of iodothyronines, by focusing, in particular, on LD-associated proteins, FFA oxidation and lipid secretion. Our results demonstrate that in "steatotic" hepatocytes iodothyronines reduced the lipid excess through the recruitment of ATGL on LD surface, and the modulation of the LD-associated proteins Rab18 and TIP47. As an effect of ATGL recruitment, iodothyronines stimulated the lipid mobilization from LDs then followed by the up-regulation of carnitine-palmitoyl-transferase (CPT1) expression and the stimulation of cytochrome-c oxidase (COX) activity that seems to indicate a stimulation of mitochondrial function. The lipid lowering action of iodothyronines did not depend on increased TAG secretion. On the basis of our data, ATGL could be indicated as an early mediator of the lipid-lowering action of iodothyronines able to channel hydrolyzed FFAs toward mitochondrial beta-oxidation rather than secretion.

14.
World J Hepatol ; 6(4): 169-77, 2014 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-24799985

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common liver diseases, leading to the increasing interest for new therapeutic approaches for its treatment. NAFLD primarily depends on a hypercaloric and/or unbalanced diet leading to overweight and obesity. The liver, in fact, plays a central role in lipid metabolism by importing free fatty acids from the blood and synthesizing, storing, oxidizing and exporting lipids. Furthermore, the liver is the target for the thyroid hormones, thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3), that stimulate the basal metabolic rate and lead to body weight loss. In the last decade, other iodothyronines have been shown to possess biological relevance and play some thyromimetic activities; in particular, 3,5-diiodo-L-thyronine (T2) gained large interest. The global effect of iodothyronines on liver lipid metabolism results from the balance between direct and indirect actions on the hepatocyte, leading to stimulation of lipid synthesis, oxidation and autophagy. In this review, the results so far obtained on both in vivo and in vitro models of hepatosteatosis are summarized in order to obtain an updated picture of the lipid-lowering effects of iodothyronines on mammalian liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA