Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.917
Filtrar
1.
Sci Rep ; 14(1): 15026, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951606

RESUMO

The objective of this study was to assess the potential for recovering precious metals from technological solutions using an ion-exchange dynamic method. Precious metals like platinum, palladium, rhodium, and gold are essential materials in various industries such as: automotive, electronics, pharmaceuticals, and jewellery. Due to their limited occurrence in primary sources, there is a growing trend in the market to extract these metals from secondary sources. The research involved conducting sorption and elution tests under different parameters to investigate their impact on the process in dynamic conditions. Additionally, an attempt was made to calculate the operational and total capacity of the resins, which has not been done previously for industrial solutions. The results showed that using Puromet MTS9200, Puromet MTS9850, and Lewatit MonoPlus MP600 resins, the sorption process could be effectively carried out in dynamic conditions with a contact time of 5 min between the technological solution and the resin bed. For optimal elution, the contact time between the eluent solution and the bed should range between 10 and 30 min. To improve rhodium sorption efficiency, it was found that neutralizing the technological solution to a pH of approximately 7 and using Lewatit MonoPlus MP600 resin could be beneficial.

2.
Se Pu ; 42(7): 601-612, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966969

RESUMO

Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massa com Cromatografia Líquida
3.
J Hematol ; 13(3): 99-103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38993739

RESUMO

Hemoglobin A1c (HbA1c) refers to non-enzymatically glycated hemoglobin and reflects the patient's glycemic status over approximately 3 months. An elevated HbA1c over 6.5% National Glycohemoglobin Standardization Program (NGSP) (48 mmol/mol the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)) can be used to diagnose diabetes mellitus. In our laboratory, HbA1c is determined by ion-exchange chromatography which has the advantage of detecting common Hb variants such as Hb S, C, E and D without adversely affecting the HbA1c determination. Certain homozygous or compound heterozygous hemoglobinopathies such as homozygous sickle disease and Hb SC disease can significantly lower the HbA1c by reducing red cell lifespan. Occasionally however, rare and mostly benign hemoglobinopathies can interfere with this technique resulting in an apparent elevation of HbA1c in an otherwise non-diabetic patient. In this report, we describe such a hemoglobinopathy termed Hb Wayne that resulted in a significant HbA1c elevation in a normoglycemic individual. HbA1c was determined by multiple methods including immunoassay, a modified capillary electrophoresis and an alternative ion-exchange system. These techniques yielded significantly lower A1c results, more in keeping with the patient's clinical background. The alternative ion-exchange system resulted in a low A1c that was qualified by warning flags on the chromatogram that indicated the result was not reportable. The hemoglobinopathy in question, Hb Wayne, is a frameshift mutation in the alpha globin gene that results in an extended alpha globin polypeptide that can form two variants Hb Wayne I and Wayne II. Hb Wayne is a clinically silent asymptomatic disorder with no hematologic consequences. The artifactual elevation of HbA1c is, in contrast, very significant because it may result in a misdiagnosis of diabetes mellitus leading to unnecessary treatment. In this report, we compare our findings with other descriptions of Hb Wayne in the literature and corroborate a number of previous observations and conclusions.

4.
J Pharm Biomed Anal ; 248: 116331, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968868

RESUMO

Antibody-drug conjugates (ADCs) represent the forefront of the next generation of biopharmaceuticals. An ADC typically comprises an antibody covalently linked to a cytotoxic drug via a linker, resulting in a highly heterogeneous product. This study focuses on the analysis of a custom-made cysteine-linked ADC. Initially, we developed a LC-MS-based characterization workflow using brentuximab vedotin (Adcetris®), encompassing native intact MS, analysis of reduced chains and subunits under denaturing condition, peptide mapping and online strong cation exchange chromatography coupled with UV and mass spectrometry detection (SCX-UV-MS) applied for brentuximab vedotin first time reported. Subsequently, we applied this in-depth characterization workflow to a custom-made cysteine-linked ADC. The measured drug-to-antibody ratio(DAR) of this ADC is 6.9, further analysis shown that there is a small amount of unexpected over-conjugation. Over-conjugation sites were successfully identified using multiple UHPLC-MS based characterization techniques. Also, one competitively cysteine-conjugated impurity was observed in native intact MS results, by combing native intact MS, reduced chains, subunit analysis and peptide mapping results, the impurity conjugation sites were also identified. Since this molecule is at early development stage, this provides important information for conjugation process improvement and link-drug material purification. SCX-UV-MS approach can separate the custom-made cysteine-linked ADC carrying different payloads and reduce the complexity of the spectra. The integrated approach underscores the significance of combining the SCX-UV-MS online coupling technique with other characterization methods to elucidate the heterogeneity of cysteine-linked ADCs.

5.
Food Chem ; 458: 140247, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38970955

RESUMO

Several food regulatory bodies regard olive oil as highly susceptible to food fraud, largely due to its substantial economic worth. Precise analytical tools are being developed to uncover these types of fraud. This study examines an innovative approach to extract strontium (Sr) from the olive oil matrix (via EDTA complexation and ion-exchange chromatography) and to determine its isotope composition by MC-ICP-MS. This technique was compared to a commonly used technique (i.e. acid extraction and extraction chromatography), and then validated. Three olive oils that are sold in France were prepared and analyzed by two methods: 1) acid extraction prior to Sr purification by Sr-spec resin and 2) complexation by EDTA prior to Sr purification by AG50W-X8. These methods were applied for the determination of the 87Sr/86Sr isotope ratio of 23 olive oils from various countries. We also demonstrated the feasibility of the method for the detection of olive oil mixtures.

6.
Sci Rep ; 14(1): 15357, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965313

RESUMO

Halide perovskite (HPs) nanostructures have recently gained extensive worldwide attentions because of their remarkable optoelectronic properties and fast developments. However, intrinsic instability against environmental factors-i.e., temperature, humidity, illumination, and oxygen-restricted their real-life applications. HPs are typically synthesized as colloids by employing organic solvents and ligands. Consequently, the precise control and tuning of complex 3D perovskite morphologies are challenging and have hardly been achieved by conventional fabrication methods. Here, we combine the benefits of self-assembly of biomolecules and an ion exchange reaction (IER) approach to customize HPs spatial shapes and composition. Initially, we apply a biomineralization approach, using biological templates (such as biopolymers, proteins, or protein assemblies), modulating the morphology of MCO3 (M = Ca2+, Ba2+) nano/microstructures. We then show that the morphology of the materials can be maintained throughout an IER process to form surface HPs with a wide variety of morphologies. The fabricated core-shell structures of metal carbonates and HPs introduce nano/microcomposites that can be sculpted into a wide diversity of 3D architectures suitable for various potential applications such as sensors, detectors, catalysis, etc. As a prototype, we fabricate disposable humidity sensors with an 11-95% detection range by casting the formed bio-templated nano/micro-composites on paper substrate.

7.
Angew Chem Int Ed Engl ; : e202407372, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895749

RESUMO

Ion exchange membranes (IEMs) play a critical role in aqueous organic redox flow batteries (AORFBs). Traditional IEMs that feature microphase-separated microstructures are well developed and easily available but suffer from the conductivity/selectivity tradeoff. The emerging charged microporous polymer membranes show the potential to overcome this tradeoff, yet their commercialization is still hindered by tedious syntheses and demanding conditions. We herein combine the advantages of these two types of membrane materials via simple in-situ hypercrosslinking of conventional IEMs into microporous ones. Such a concept is exemplified by the very cheap commercial quaternized polyphenylene oxide membrane. The hypercrosslinking treatment turns poor-performance membranes into high-performance ones, as demonstrated by the above 10-fold selectivity enhancement and much-improved conductivities that more than doubled. This turn is also confirmed by the effective and stable pH-neutral AORFB with decreased membrane resistance and at least an order of magnitude lower capacity loss rate. This battery shows advantages over other reported AORFBs in terms of a low capacity loss rate (0.0017% per cycle) at high current density. This work provides an economically feasible method for designing AORFB-oriented membranes with microporosity.

8.
Bio Protoc ; 14(6): e4958, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38841286

RESUMO

Candida glabrata is an opportunistic pathogen that may cause serious infections in an immunocompromised host. C. glabrata cell wall proteases directly interact with host cells and affect yeast virulence and host immune responses. This protocol describes methods to purify ß-1,3-glucan-bonded cell wall proteases from C. glabrata. These cell wall proteases are detached from the cell wall glucan network by lyticase treatment, which hydrolyzes ß-1,3-glucan bonds specifically without rupturing cells. The cell wall supernatant is further fractioned by centrifugal devices with cut-offs of 10 and 50 kDa, ion-exchange filtration (charge), and gel filtration (size exclusion). The enzymatic activity of C. glabrata proteases is verified with MDPF-gelatin zymography and the degradation of gelatin is visualized by loss of gelatin fluorescence. With this procedure, the enzymatic activities of the fractions are kept intact, differing from methods used in previous studies with trypsin digestion of the yeast cell wall. The protein bands may be eventually located from a parallel silver-stained gel and identified with LC-MS/MS spectrometry. The advantage of this methodology is that it allows further host protein degradation assays; the protocol is also suitable for studying other Candida yeast species. Key features • Uses basic materials and laboratory equipment, enabling low-cost studies. • Facilitates the selection and identification of proteases with certain molecular weights. • Enables further functional studies with host proteins, such as structural or immune response-related, or enzymes and candidate protease inhibitors (e.g., from natural substances). • This protocol has been optimized for C. glabrata but may be applied with modifications to other Candida species.

9.
Methods ; 229: 63-70, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917960

RESUMO

Studying the molecular and immunological basis of allergic diseases often requires purified native allergens. The methodologies for protein purification are usually difficult and may not be completely successful. The objective of this work was to describe a methodology to purify allergens from their natural source, while maintaining their native form. The purification strategy consists of a three-step protocol and was used for purifying five specific allergens, Ole e 1, Amb a 1, Alt a 1, Bet v 1 and Cup a 1. Total proteins were extracted in PBS (pH 7.2). Then, the target allergens were pre-purified and enriched by salting-out using increasing concentrations of ammonium sulfate. The allergens were further purified by anion exchange chromatography. Purification of Amb a 1 required an extra step of cation exchange chromatography. The detection of the allergens in the fractions obtained were screened by SDS-PAGE, and Western blot when needed. Further characterization of purified Amb a 1 was performed by mass spectrometry. Ole e 1, Alt a 1, Bet v 1 and Cup a 1 were obtained at > 90 % purity. Amb a 1 was obtained at > 85 % purity. Overall, we propose an easy-to-perform purification approach that allows obtaining highly pure allergens. Since it does not involve neither chaotropic nor organic reagents, we anticipate that the structural and biological functions of the purified molecule remain intact. This method provides a basis for native allergen purification that can be tailored according to specific needs.

10.
Sci Total Environ ; 946: 174103, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908603

RESUMO

To fulfill the industrial requirements of salt fractionation and recovery from saline wastewater, a two-chamber selective electrodialysis (SED) stack incorporating commercial monovalent selective anion exchange membranes was employed and investigated in this study. Three different initial concentration ratios of NaCl/Na2SO4, namely 1:1 (10 g/L:10 g/L), 3:1 (30 g/L:10 g/L), and 5:1 (50 g/L:10 g/L) were examined to simulate various scenarios of saline wastewater. The influence of applied current density on membrane selectivity and overall system efficiency was further evaluated. The results indicated that an increase in the NaCl fraction within the feed solution directly correlates with enhanced concentration and purity of Na2SO4 in the product, achieving purities exceeding 92 %. A lower current density contributed to improved concentration and purity of Na2SO4, whereas higher current densities were conducive to augmenting the concentration and purity of NaCl. Additionally, a linear correlation was observed between the volumetric water transport and NaCl migration. Through numerical simulations, the concentrations of Na2SO4 and NaCl in the effluent were predicted, facilitating a comparative analysis with the salt fractionation efficiency of commercial nanofiltration membranes. Subsequent assessments of energy consumption and current efficiency revealed that the SED system ensured high product concentration and purity at reasonably low energy consumption (0.22-0.28 kWh per kg NaCl) alongside a high current efficiency (83-89 %). These findings offer critical insights into the optimization of salt fractionation process and highlight its economic and technical feasibility for the sustainable management of industrial saline wastewater.

11.
ACS Appl Mater Interfaces ; 16(23): 30097-30106, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38831429

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a low-cost and water-processable hole transport material has been widely used in various optoelectronic devices. Although the incorporation of anionic polyelectrolyte PSS in PEDOT contributes to superior water solubility, the trade-off between efficiency and stability remains a challenging issue, limiting its reliable application in perovskite solar cells (PSCs). Herein, we proposed an ion-exchange (IE) strategy to effectively control the doping degree, interfacial charge dynamics, and reliability of PEDOT:PSS in PSCs. This IE approach based on hard cation-soft anion rules enabled effective anion exchange between PEDOT:PSS and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), which favored enhancing the film conductivity, regulating the perovskite crystallization, and reducing the carrier losses at the interfaces. Consequently, a notable increase of the open-circuit voltage from 0.88 to 1.02 V was realized, resulting in a champion efficiency of 18.7% compared to the control (15.4%) in inverted PSCs. More encouragingly, this IE strategy significantly promoted the thermal and environmental stability of unsealed devices by maintaining over 80% of initial efficiencies after 2000 h. This work provides an effective way to regulate the doping state of the PEDOT-based hole transport material and guides the development of robust polymeric conducting materials for efficient perovskite photovoltaics.

12.
Adv Mater ; : e2402924, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857474

RESUMO

Layered perovskites consist of stacks of inorganic semiconducting metal-halide octahedra lattices sandwiched between organic layers with typically dielectric behavior. The in-plane confinement of electrical carriers in such two-dimensional metal halide perovskites drives a large range of appealing electronic properties, such as strong exciton binding, anisotropic charge diffusion, and polarization-directionality. Heterostructures provide additional control on carrier diffusion and localization, and in-plane heterojunctions are interesting because of the associated high charge mobility. Here, this work demonstrates a versatile solution-based approach to fabricate in-plane heterostructures with different halide composition in two-dimensional lead-halide perovskite microcrystals. This leads to spatially separated halide phases with different band gap and light emission. Interestingly, the composition of the exchanged phase and the morphology of the phase boundary depends on the exchange route, which can be related to the preferred localization of the halides at the equatorial or axial octahedra positions that either leads to dissolution and recrystallization of the octahedra lattice (for bromide to iodide), or allows for ion diffusion within the lattice (for iodide to bromide). These detailed insights on the ion exchange processes in layered perovskites will stimulate the development of heterostructures that can be tailored for different applications such as photocatalysis, energy storage, and light emission.

13.
J Hazard Mater ; 475: 134881, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878433

RESUMO

With the gradual depletion of natural gold ore, waste printed circuit boards (WPCBs) have become one of the most attractive alternatives to gold ore. Here, a series of quaternary phosphonium adsorbents with a large size were successfully synthesized by adjusting the number of functional groups and carbon chain length of functional monomers, which can be used for selective recovery of gold(III) from WPCBs leaching solution. The quaternary phosphonium adsorbent (PS-TEP) prepared by the nucleophilic substitution reaction between triethyl phosphine with the smallest volume and chloromethylated polystyrene (PS-Cl) exhibited the best gold loading capacity (617.90 mg g-1). The adsorption mechanism of gold(III) on PS-TEP surface mainly involves anion exchange between AuCl4- and Cl- in the adsorbent. The charge level of the H atom closest to -CH2-P+ group directly determines the strength of the interaction between the adsorbent and the gold ion. Multiwfn and VMD programs visually confirm the weak interaction between PS-TEP+ and AuCl4-. After 5 adsorption-stripping cycles, the adsorption rate of gold(III) in solution remained at about 99 %. In addition, PS-TEP exhibited good gold(III) selectivity in both simulated and actual WPCBs gold leaching solutions. These results indicate that the large-particle PS-TEP with high capacity is suitable for selective gold recovery from WPCBs leaching solution.

14.
J Proteome Res ; 23(7): 2315-2322, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38913967

RESUMO

Native top-down mass spectrometry (nTDMS) allows characterization of protein structure and noncovalent interactions with simultaneous sequence mapping and proteoform characterization. The majority of nTDMS studies utilize purified recombinant proteins, with significant challenges hindering application to endogenous systems. To perform native top-down proteomics (nTDP), where endogenous proteins from complex biological systems are analyzed by nTDMS, it is essential to separate proteins under nondenaturing conditions. However, it remains difficult to achieve high resolution with MS-compatible online chromatography while preserving protein tertiary structure and noncovalent interactions. Herein, we report the use of online mixed-bed ion exchange chromatography (IEC) to enable separation of endogenous proteins from complex mixtures under nondenaturing conditions, preserving noncovalent interactions for nTDP analysis. We have successfully detected large proteins (>146 kDa) and identified endogenous metal-binding and oligomeric protein complexes in human heart tissue lysate. The use of a mixed-bed stationary phase allowed retention and elution of proteins over a wide range of isoelectric points without altering the sample or mobile phase pH. Overall, our method provides a simple online IEC-MS platform that can effectively separate proteins from complex mixtures under nondenaturing conditions and preserve higher-order structure for nTDP applications.


Assuntos
Proteômica , Cromatografia por Troca Iônica/métodos , Humanos , Proteômica/métodos , Miocárdio/química , Espectrometria de Massas/métodos , Misturas Complexas/química , Proteínas/química , Proteínas/análise , Proteínas/isolamento & purificação
15.
ACS Appl Mater Interfaces ; 16(27): 35576-35587, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940328

RESUMO

Inspired by the charge-governed protein channels located in the cell membrane, a series of polyether ether ketone-based polymers with side chains containing ionically cross-linkable quaternary ammonium groups and acidic groups have been designed and synthesized to prepare monovalent cation-selective membranes (MCEMs). Three acidic groups (sulfonic acid, carboxylic acid, and phenolic hydroxyl) with different acid dissociation constant (pKa) were selected to form the ionic cross-linking structure with quaternary ammonium groups in the membranes. The ionic cross-linking induced the nanophase separation and constructed ionic channels, which resulted in excellent mechanical performance and high cation fluxes. Interesting, the cation flux of membranes increased as the ionization of acidic groups increase, but the selectivity of MCEMs did not follow the same trend, which was mainly dependent on the affinity between the functional groups and the cations. Carboxyl group-containing MCEMs exhibited the best selectivity (9.01 for Li+/Mg2+), which was higher than that of the commercial monovalent cation-selective CIMS membrane. Therefore, it is possible to prepare stable MCEMs through a simple process using ionically cross-linkable polymers, and tuning acidic groups in the membranes provided an attractive approach to improving the cation flux and selectivity of MCEMs.

16.
J Colloid Interface Sci ; 673: 971-984, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38935981

RESUMO

At the interface between an ion-exchange membrane and a multi-electrolyte solution, charged species redistribute themselves to minimize the free energy of the system. In this paper, we explore the Donnan equilibrium of membranes with quaternary electrolyte (Na+/Mg2+/K+/Ca2+/Cl-) solutions, experimentally. The data was used to calculate the ion activity coefficients for six commercial cation-exchange membranes (CEMs). After setting one of the activity coefficients to an arbitrary value, we used the remaining (N-1) activity coefficients as fitting parameters to describe the equilibrium concentrations of (N) ionic species with a mean relative error of 3 %. At increasing solution ionic strengths, the equivalent ion fractions of monovalent counter-ions inside the membrane increased at the expense of the multivalent ones in alignment with the Donnan equilibrium theory. The fitted activity coefficients were employed in a transport model that simulated a Donnan dialysis experiment involving all four cations simultaneously. The arbitrary value assigned to one activity coefficient affects the calculated Donnan potential at the membrane interface. Nevertheless, this arbitrary value does not affect the prediction of the ion concentrations inside the membrane and consequently does not affect the modeled ion fluxes.

17.
Talanta ; 278: 126464, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38936106

RESUMO

Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.

18.
Methods Mol Biol ; 2810: 329-353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926289

RESUMO

In the recent years, there has been a rapid development of new technologies and strategies when it comes to protein purification and quality control (QC), but the basic technologies for these processes go back a long way, with many improvements over the past few decades. The purpose of this chapter is to review these approaches, as well as some other topics such as the advantages and disadvantages of various purification methods for intracellular or extracellular proteins, the most effective and widely used genetically engineered affinity tags, solubility-enhancing tags, and specific proteases for removal of nontarget sequences. Affinity chromatography (AC), like Protein A or G resins for the recovery of antibodies or Fc fusion proteins or immobilized metals for the recovery of histidine-tagged proteins, will be discussed along with other conventional chromatography techniques: ion exchange (IEC), hydrophobic exchange (HEC), mixed mode (MMC), size exclusion (SEC), and ultrafiltration (UF) systems. How to select and combine these different technologies for the purification of any given protein and the minimal criteria for QC characterization of the purity, homogeneity, identity, and integrity of the final product will be presented.


Assuntos
Cromatografia de Afinidade , Controle de Qualidade , Proteínas Recombinantes , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Animais , Humanos , Cromatografia de Afinidade/métodos , Cromatografia por Troca Iônica/métodos , Ultrafiltração/métodos , Cromatografia em Gel/métodos
19.
Gels ; 10(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38920938

RESUMO

Fly ash was used as raw material to prepare zeolites through silicate gels, assisted by the hydrothermal method. The silicate gels could be effectively formed in a few minutes in a molten alkali environment. The zeolites could be prepared by using these silicate gels through the hydrothermal method, which realizes the transformation from useless materials to highly valuable materials. The obtained zeolites were applied to the removal of ammonium in water, achieving the highvalue utilization of fly ash. The synthesized zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), thermogravimetric (TG), and Fourier transform infrared (FTIR) spectroscopy. The study on the adsorption and removal of ammonium in water shows that the adsorption of ammonium is more in line with pseudo first-order kinetics, and the adsorption mainly occurs in the first 20 min. The adsorption can reach equilibrium in 30 min, and the maximum adsorption capacity can reach 49.1 mg/g. The adsorption capacity of ammonium has the best performance at pH = 5. Furthermore, within a certain range, an increase in temperature is beneficial for the removal of ammonium.

20.
Membranes (Basel) ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921491

RESUMO

Addressing the characterization of Natural Organic Matter (NOM) removal by functionalized membranes in water treatment, this study evaluates the effectiveness of two commercial ion-exchange membrane adsorbers: Sartobind® Q (with quaternary amines) and D (with tertiary amines). Using Suwannee River NOM (SRNOM) as a surrogate, Langmuir adsorption isotherms revealed maximum capacities (Qmax) of 2966 ± 153 mg C/m2 and 2888 ± 112 mg C/m2, respectively. Variations in flux from 50 to 500 LMH had a minimal impact on breakthrough times, proving low diffusion limitations. The macroporous (3-5 µm) functionalized cellulose-based membranes exhibited high permeabilities of 10,800 L/(h m2 bar). Q maintained positive zeta potential vs. pH, while D's zeta potential decreased above pH 7 due to amine deprotonation and turning negative above an isoelectric point of 9.1. Regeneration with 0.01 M NaOH achieved over 95% DOC regeneration for Sartobind® D, characterizing reversibility through a pH-swing. Cyclic adsorption showed that Q maintained its capacity with over 99% DOC regeneration, while D required acidic conditioning after the first regeneration cycle to mitigate capacity reduction and re-deprotonate the adsorber. These results have demonstrated the potential suitability of adsorber membranes, designed originally for biotechnological purposes, for the possible removal of disinfection byproduct precursors in drinking water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...