Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Miner Depos ; 58(6): 1023-1049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426339

RESUMO

The Montecristo district, northern Chile, is one of the few places worldwide where there is a direct relationship between magnetite-(apatite) (MtAp) mineralization and iron oxide-copper-gold (IOCG) mineralization. The MtAp mineralization includes Ti-poor magnetite, fluorapatite, and actinolite and is crosscut and partially replaced by a younger IOCG mineralization that includes a second generation of actinolite and magnetite with quartz, chalcopyrite, pyrite, and molybdenite. The MtAp stage at Montecristo is interpreted as the crystallized iron-rich melts that used the pre-existing structures of the Atacama Fault System as conduits. These rocks later acted as a trap for hydrothermal IOCG mineralization. Geochronology data at Montecristo indicate that the host diorite (U-Pb zircon 153.3 ± 1.8 Ma, 2-sigma), MtAp mineralization (40Ar-39Ar in actinolite, 154 ± 2 Ma and 153 ± 4 Ma, 2-sigma), and the IOCG event (Re-Os on molybdenite, 151.8 ± 0.6 Ma, 2-sigma) are coeval within error and took place in a time span of less than 3.4 Ma. The εHfi and εNdi values of the host diorite are + 8.0 to + 9.8 and + 4.3 to + 5.4, respectively. The whole-rock 87Sr/86Sri values of the IOCG mineralization (0.70425 to 0.70442) are in the lower end of those of the MtAp mineralization (0.70426-0.70629). In contrast, εNdi values for the IOCG mineralization (+ 5.4 and + 5.7) fall between those of the MtAp rocks (+ 6.6 to + 7.2) and the host diorite, which suggests that the IOCG event was related to fluids having a more crustal Nd (εNdi < + 5.7) composition than the MtAp mineralization. This likely reflects the mixing of Nd from the MtAp protolith and a deep magmatic-hydrothermal source, very likely an unexposed intrusion equivalent to the host diorite. Sulfur isotope compositions (δ34S, + 0.3 to + 3.4‰) are consistent with a magmatic source. Supplementary Information: The online version contains supplementary material available at 10.1007/s00126-023-01172-0.

2.
Isotopes Environ Health Stud ; 59(2): 127-141, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812294

RESUMO

Stable isotope ratios of nitrogen and oxygen (15N/14N and 18O/16O) of nitrate (NO3-) are excellent tracers for developing systematic understanding of sources, conversions, and deposition of reactive atmospheric nitrogen (Nr) in the environment. Despite recent analytical advances, standardized sampling of NO3-) isotopes in precipitation is still lacking. To advance atmospheric studies on Nr species, we propose best-practice guidelines for accurate and precise sampling and analysis of NO3- isotopes in precipitation based on the experience obtained from an international research project coordinated by the International Atomic Energy Agency (IAEA). The precipitation sampling and preservation strategies yielded a good agreement between the NO3- concentrations measured at the laboratories of 16 countries and at the IAEA. Compared to conventional methods (e.g., bacterial denitrification), we confirmed the accurate performance of the lower cost Ti(III) reduction method for isotope analyses (15N and 18O) of NO3- in precipitation samples. These isotopic data depict different origins and oxidation pathways of inorganic nitrogen. This work emphasized the capability of NO3- isotopes to assess the origin and atmospheric oxidation of Nr and outlined a pathway to improve laboratory capability and expertise at a global scale. The incorporation of other isotopes like 17O in Nr is recommended in future studies.


Assuntos
Nitratos , Poluentes Químicos da Água , Nitratos/análise , Isótopos de Nitrogênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Nitrogênio/análise , China , Isótopos de Oxigênio/análise
3.
Isotopes Environ Health Stud ; 58(1): 1-17, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34719297

RESUMO

Sodium nitrate ores from the Atacama Desert in South America were economically important as they represented huge natural resources for the fertilizer and explosives industries during the early nineteenth to early twentieth centuries. Nitrogen and oxygen isotope ratios (δ15N and δ18O) of these desert nitrates generally show unique compositions (from close to 0 and up to ca. +50 ‰, respectively). The nitrates indicate the provenance as atmospheric in origin due to the mass-independent photochemical reaction of nitric oxide (NO) with ozone (O3) in the atmosphere to produce nitrate (NO3-). This paper examines the previously existing isotope data for specimens acquired from the Atacama Desert. It then reports new data from dual isotope analysis of historic nitrate specimens archived in museums in the UK. In the stable isotope signatures for nitrates from two areas of the Atacama Desert, Tarapacá in the north and Antofagasta in the south, were examined, and this analysis enabled a more detailed definition of their isotopic compositional ranges. This improved database is useful for tracing the provenance of the historic nitrates used in gunpowder and saltpetre, and also the cause of nitrate pollution in natural environments for which routine chemistry alone cannot provide the definite evidence for the origin.


Assuntos
Nitratos , Poluentes Químicos da Água , Chile , Monitoramento Ambiental , Museus , Nitratos/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA