Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907946

RESUMO

Fermented plant-based products are rapidly gaining popularity. Jerusalem artichoke is a medicinal plant that can be used to make fermented beverages. Samples were subjected to pretreatment (ultrasound at 35 kHz for 2, 4, and 6 min, freezing at -80 °C and -17 °C) while an untreated sample was used as control. It was shown that all types of pretreatments did not lead to an increase in protein, solids, polyphenols, and carbohydrates compared to the control sample. The greatest decrease in the values of these indicators occurs when pre-freezing tubers are used for Jerusalem artichoke dispersion production. It was also found that samples frozen at -80 °C had a significantly higher concentration of Ca, Si, Mg, and P whereas untreated samples frozen at -17 °C had more Al, K, Cu, Sr, and Cr. The processing method can affect the sensory descriptors of Jerusalem artichoke tuber dispersions to different extents, but the preference was for the control sample without pre-treatment. The fermentation of Jerusalem artichoke tuber dispersions demonstrated that S. thermophilus induced the most rapid fermentation (pH 4.75 in 5 h). The highest antioxidant activity after fermentation (55.39% FRSA) was shown for L. acidophilus H9, while the highest % FRSA value during the storage period was for L. bulgaricus (67.5%) on day 5 after fermentation. The highest viability among all selected microorganisms was detected for L. bulgaricus, L. acidophilus AT-41, and B. coagulans MTCC 5856 with the increase in biomass content by 2.3, 2.27, and 2.12 log10CFU/ml after fermentation. According to the results of sensory evaluation using hybrid hedonic scale the best results were shown for samples fermented with L. bulgaricus.

2.
Front Microbiol ; 15: 1297220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348187

RESUMO

Jerusalem Artichoke (Helianthus tuberosus L.), an emerging "food and fodder" economic crop on the Qinghai-Tibet Plateau. To tackle problems such as incomplete fermentation and nutrient loss occurring during the low-temperature ensilage of Jerusalem Artichokes in the plateau's winter, this study inoculated two strains of low-temperature resistant lactic acid bacteria, Lactobacillus plantarum (GN02) and Lactobacillus brevis (XN25), along with their mixed components, into Jerusalem Artichoke silage material. We investigated how low-temperature resistant lactic acid bacteria enhance the quality of low-temperature silage fermentation for Jerusalem Artichokes and clarify its mutual feedback effect with microorganisms. Results indicated that inoculating low-temperature resistant lactic acid bacteria significantly reduces the potential of hydrogen and water-soluble carbohydrates content of silage, while increasing lactic acid and acetic acid levels, reducing propionic acid, and preserving additional dry matter. Inoculating the L. plantarum group during fermentation lowers pH and propionic acid levels, increases lactic acid content, and maintains a dry matter content similar to the original material. Bacterial community diversity exhibited more pronounced changes than fungal diversity, with inoculation having a minor effect on fungal community diversity. Within the bacteria, Lactobacillus remains consistently abundant (>85%) in the inoculated L. plantarum group. At the fungal phylum and genus levels, no significant changes were observed following fermentation, and dominant fungal genera in all groups did not differ significantly from those in the raw material. L. plantarum exhibited a positive correlation with lactic acid and negative correlations with pH and propionic acid. In summary, the inoculation of L. plantarum GN02 facilitated the fermentation process, preserved an acidic silage environment, and ensured high fermentation quality; it is a suitable inoculant for low-temperature silage in the Qinghai-Tibet Plateau.

3.
Gene ; 893: 147912, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863300

RESUMO

Heat shock proteins (HSPs) are essential for plant growth, development, and stress adaptation. However, their roles in Jerusalem artichoke are largely unexplored. Using bioinformatics, we classified 143 HSP genes into distinct families: HSP40 (82 genes), HSP60 (22 genes), HSP70 (29 genes), HSP90 (6 genes), and HSP100 (4 genes). Our analysis covered their traits, evolution, and structures. Using RNA-seq data, we uncovered unique expression patterns of these HSP genes across growth stages and tissues. Notably, HSP40, HSP60, HSP70, HSP90, and HSP100 families each had specific roles. We also studied how these gene families responded to various stresses, from extreme temperatures to drought and salinity, revealing intricate expression dynamics. Remarkably, HSP40 showed remarkable flexibility, while HSP60, HSP70, HSP90, and HSP100 responded specifically to stress types. Moreover, our analysis unveiled significant correlations between gene pairs under stress, implying cooperative interactions. qRT-PCR validation underscored the significance of particular genes such as HtHSP60-7, HtHSP90-5, HtHSP100-2, and HtHSP100-3 in responding to stress. In summary, our study advances the understanding of how HSP gene families collectively manage stresses in Jerusalem artichoke. This provides insights into specific gene functions and broader plant stress responses.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Proteínas de Choque Térmico/metabolismo , Estresse Fisiológico/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética
4.
Nat Prod Res ; : 1-6, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967018

RESUMO

In this study, biochemical analyses were performed for the first time on 22 different Jerusalem artichokes clones collected from different regions of Türkiye and samples from three different organs of each clone, considering the interaction effects. As a result of the study, the interaction effect of clones and sampled organs was found significant for total flavonoids, ascorbic acid, total chlorophyll, pH, H2O2 removal capacity, total dry matter, water soluble dry matter and antioxidant capacity via FRAP. According to the correlation analysis, the highest coefficient among the parameters in the tuber was between titratable acidity and total phenolic matter (0,576). Principal component analysis was used to assess the degree to which the parameters explained the variation in the gene pool. Factors directly and indirectly affecting the amount of water-soluble dry matter in the tuber were examined by path analysis.

5.
Foods ; 12(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107485

RESUMO

The main purpose of this experiment was to develop a multifunctional nutraceutical composition based on ingredients of different origins (Spirulina powder (SP), bovine colostrum (BC), Jerusalem artichoke powder (JAP), and apple cider vinegar (ACV)) which possess different health benefits through their different mechanisms of action. In order to improve the functional properties of Spirulina and bovine colostrum, fermentation with the Pediococcus acidilactici No. 29 and Lacticaseibacillus paracasei LUHS244 strains, respectively, was carried out. These LAB strains were chosen due to their good antimicrobial properties. The following parameters were analysed: for Spirulina (non-treated and fermented)-pH, colour coordinates, fatty acid profile, and contents of L-glutamic and GABA acids; for bovine colostrum (non-treated and fermented)-pH, colour coordinates, dry matter, and microbiological parameters (total LAB, total bacteria, total enterobacteria, Escherichia coli, and mould/yeast counts); for the produced nutraceuticals-hardness, colour coordinates, and overall acceptability. It was established that fermentation reduced the pH of the SP and BC and affected their colour coordinates. Fermented SP contained a greater concentration of gamma-aminobutyric and L-glutamic acids (by 5.2 times and 31.4% more, respectively), compared to the non-treated SP and BC. In addition, the presence of gamma-linolenic and omega-3 fatty acids was observed in fermented SP. Fermentation of BC reduces Escherichia coli, total bacteria, total enterobacteria, and total mould/yeast counts in samples. The obtained three-layer nutraceutical (I layer-fermented SP; II-fermented BC and JAP; III-ACV) demonstrated a high overall acceptability. Finally, our finding suggest that the selected nutraceutical combination has immense potential in the production of a multifunctional product with improved functionality and a high acceptability.

6.
Ultrason Sonochem ; 95: 106413, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37088026

RESUMO

Lactic acid bacteria (LAB) are being used for probiotic and starter cultures to prevent global damage to microbial cells. To retain the benefits of LAB in the commercially used powdered form, highly efficient cryoprotective agents are required during the manufacturing process. This study suggests a novel cryoprotective agent derived from Jerusalem artichoke (JA; Helianthus tuberous L.) and describes the mechanism of cryoprotective effect improvement by sonication treatment. The cryoprotective effect of JA extract was verified by examining the viability of Leuconostoc mesenteroides WiKim33 after freeze-drying (FD). Sonication of JA extract improved the cryoprotective effect. Sonication reduced fructose and glucose contents, which increased the induction of critical damage during FD by 15.84% and 46.81%, respectively. The cryoprotective effects of JA and sonication-treated JA extracts were determined using the viable cell count of Leu. mesenteroides WiKim33. Immediately after FD and storage for 24 weeks, the viability of Leu. mesenteroides WiKim33 with JA extract was 82.8% and 76.3%, respectively, while that of the sonication-treated JA extract was 95.2% and 88.8%, respectively. Our results show that reduction in specific monosaccharides was correlated with improved cryoprotective effect. This study adopted sonication as a novel treatment for improving the cryoprotective effect and verified its efficiency.


Assuntos
Helianthus , Lactobacillales , Leuconostoc mesenteroides , Crioprotetores , Helianthus/química , Monossacarídeos , Extratos Vegetais/farmacologia
7.
Heliyon ; 9(3): e14107, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915559

RESUMO

Even though Jerusalem artichoke (Helianthus tuberosus L.) has strong resistance to abiotic stresses, salinity can still reduce the biomass of Jerusalem artichoke. The purpose of this study was to elucidate the differences in the development of Jerusalem artichoke and the dynamics of sugar throughout the growth period under high (7.23-8.15 g/kg) and low (3.20-4.32 g/kg) salinity stress in the field in Jiangsu Province, China. This study confirmed that high salinity promoted the conversion of reducing sugars to non-reducing sugars (fructans) in Jerusalem artichoke tubers, but significantly reduced the biomass of Jerusalem artichoke and advanced the peak time of the dry matter accumulation of aerial parts. In addition, in the early and late stages of tuberization, the total sugar content of tubers under low salinity conditions (786 ± 8 mg/g and 491 ± 8 mg/g) was 93.3% and 1.15 times than those under high salinity conditions, respectively. Moreover, the total sugar content in stems was consistently greater under high than low salinity conditions in the same period. The accumulation rate and the amount of dry matter were significantly higher in stems than in other tissues. Therefore, the aerial parts of "Nanyu No. 1" could be harvested before mid-to-early October, and the tubers after mid-November. This study revealed the internal reasons for the decreased yield of Jerusalem artichoke under salt stress, and provided theoretical basis and guidance for the cultivation and utilization of Jerusalem artichoke in saline-alkali soil.

8.
Prep Biochem Biotechnol ; 53(1): 101-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264232

RESUMO

Jerusalem artichoke (JA) is a nutritional vegetable for human diet depending on its natural structure, especially high inulin content and it is the second inulin source for commercial production in the world, after chicory. It was aimed to investigate the inulinase production capability of Galactomyces geotrichum TS61 (GenBank accession: MN749818) using JA as an economical and effective substrate comparing with the pure chicory inulin and to optimize the fermentation using Taguchi design of experiment (DOE) in this study. Besides, the effects of sucrose on inulinase production either combined with JA or in its absence were also studied. Taguchi L16 orthogonal array was employed for optimization. Both of inulinase activities obtained from JA and pure inulin gave the maximum result at the 10th experimental run as 40.21 U/mL and 57.35 U/mL, respectively. The optimum levels were detected for each factor as, 30 g/L JA, 30 g/L sucrose, pH 5.5, and four days for time. The predicted value was found as 41.63 U/mL that was similar to the obtained result as 41.17 U/mL. Finally, inulinase activity was increased approximately 8-folds after optimization. The sucrose-free medium had similar effects with higher concentrations of JA at long incubation time. This is the first investigation about inulinase production by G. geotrichum.


Low-cost inulinase production was achieved using an economical substrateSucrose effects were investigated in detail on inulinase productionUse of Taguchi DOE supported effective enzyme production.


Assuntos
Cichorium intybus , Helianthus , Humanos , Inulina , Glicosídeo Hidrolases , Sacarose
9.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 920-927, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36245301

RESUMO

This study aimed to examine the impact of the Jerusalem Artichoke extract (JAEx) as a feed additive on the performance, blood biochemistry, antioxidant indices, immunity, and intestinal microbiota in growing Japanese quails. In total, 270 birds were randomly divided into three groups, with six replicates of 15 birds each. The first group was fed a control diet without JAEx. The second and third groups received the control diet plus 200 and 400 ppm JAEx, respectively. The groups fed the diet containing 200 and 400 ppm JAEx had the best body weight, body weight gain and feed conversion ratio, and faster growth rate with the best performance index, compared with the control group (p < 0.05). The control quails had a lower feed intake than the JAEx-treated quails. The groups fed JAEx 200 and 400 ppm had the lowest lipid profile, blood glucose, liver enzymes, Salmonella and Escherichia coli population and the highest antioxidant indices, immune responses and Lactobacilli population number compared to the control group (p < 0.05). In conclusion, the addition of JAEx at 400 ppm followed by 200 ppm improved the productive performance, antioxidant capacity, blood biochemical and immunological indices, and intestinal microbiota in growing Japanese quails.


Assuntos
Coturnix , Helianthus , Animais , Coturnix/fisiologia , Antioxidantes , Suplementos Nutricionais , Codorniz , Dieta/veterinária , Peso Corporal , Imunidade , Ração Animal/análise
10.
Plants (Basel) ; 11(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432815

RESUMO

Jerusalem artichoke (Helianthus tuberosus L.), also called wild sunflower, belongs to the Asteraceae family and is cultivated widely across the temperate zone for its nutritious tuber, which is used as a root vegetable. In this study, the Jerusalem artichoke (JA) was used as a supplementary additive for producing a functional yogurt, with enhanced health benefits and improving the microbiological, rheological, and sensorial quality characteristics of the product. The effects of the three different concentrations (1%, 2%, and 3%, w/w) of JA on the physicochemical properties, bacterial counts, sensorial properties, and organic acid profiles of yogurts were determined after 1, 7, 14, and 21 days of storage at ±4 °C. The results obtained revealed that with the addition of different concentrations of JA the overall parameters were statistically significant (p < 0.01 and p < 0.05) except for apparent viscosity, Streptococcus thermophilus, yeast and mold count, pyruvic ratios, and scores of flavor. Similarly, some parameters (fat ratio, yeast and mold count, concentrations of propionic, acetic, pyruvic, orotic, and lactic acids, and scores of appearance, consistency, and odor) changed depending on the storage time, while some did not show any changes regarding storage time. There was a relationship found between the concentration of JA and organic acid ratio (except for pyruvic acid) concentration in the yogurt samples. In conclusion, the research revealed the effect of JA in yogurt production as a thickener, flavor enhancer, prebiotic agent, and source of organic acids and bioactive compounds. The results indicate that JA has a good potential for enhancing the nutritional and physicochemical properties of the studied yogurt.

11.
Front Plant Sci ; 13: 1022319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388606

RESUMO

Due to different functions of phosphate solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF), their potential synergistic effects on enhancing plant growth and yield are worth investigating, especially under adverse conditions. This work focused on the isolation of PSB and characterization for their plant growth promoting properties under drought. The most efficient P solubilizing bacterium was isolated and identified as Burkholderia vietnamiensis strain KKUT8-1. Then, a factorial experiment on the performance of sunchoke (Helianthus tuberosus) was set up with four factors, viz., PSB (presence or absence of KKUT8-1), AMF (presence or absence of Rhizophagus aggregatus), rock phosphate (RP; added or not) and moisture (well-watered (WW) or drought (DS) conditions). Sunchoke performance was enhanced by the presence of AMF, whereas addition of PSB had a positive effect on SPAD values and inulin concentration. Drought reduced plant performance, while addition of RP reduced photosynthetic rate. There was little evidence for synergistic effects between PSB and AMF, except for SPAD values and inulin concentration. Plants that were co-inoculated with AMF and PSB had highest SPAD value, shoot diameter, leaf area, leaf number, chlorophyll concentration, plant biomass, tuber production, root growth and total soluble sugar concentration. Co-inoculated plants also had increased plant water status, reduced electrolyte leakage, and reduced malondialdehyde and proline concentration. Strain KKUT8-1 is the first strain of B. vietnamiensis capable of promoting growth and yield of sunchoke. Enhanced production of sunchoke by a combination of AMF and PSB was much better than the application of RP. Our finding offers an opportunity to develop combinations of biological inoculants for increasing the growth and production of sunchoke under drought in the future.

12.
Front Microbiol ; 13: 986659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187957

RESUMO

Jerusalem artichoke (JA) is a fructan-accumulating crop that has gained popularity in recent years. The objective of the present study was to determine the dynamics of the JA-microbiome during storage. The microbial population on the surface of the JA tuber was determined by next-generation sequencing of 16S rRNA amplicons. Subsequently, the changes in carbohydrate and degree of polymerization of fructan in tubers during storage were measured. Among different genotypes of JA varieties, intergeneric differences were observed in the diversity and abundance of bacterial communities distributed on the surface of tubers. Additionally, bacterial diversity was significantly higher in storage-tolerant varieties relative to the storage-intolerant varieties. Redundancy analysis (RDA) and the correlation matrix indicated a relationship between changes in the carbohydrates and microbial community succession during tuber storage. The tuber decay rate correlated positively with the degree of polymerization of fructan. Moreover, Dysgonomonas and Acinetobacter in perishable varieties correlated significantly with the decay rate. Therefore, the bacteria associated with the decay rate may be involved in the degradation of the degree of polymerization of fructan. Furthermore, Serratia showed a significant positive correlation with inulin during storage but a negative correlation with the decay rate, suggesting its antagonistic role against pathogenic bacteria on the surface of JA tubers. However, the above correlation was not observed in the storage-tolerant varieties. Functional annotation analysis revealed that storage-tolerant JA varieties maintain tuber quality through enrichment of biocontrol bacteria, including Flavobacterium, Sphingobacterium, and Staphylococcus to resist pathogens. These results suggested that crop genotype and the structural composition of carbohydrates may result in differential selective enrichment effects of microbial communities on the surface of JA varieties. In this study, the relationship between microbial community succession and changes in tuber carbohydrates during JA storage was revealed for the first time through the combination of high-throughput sequencing, high-performance liquid chromatography (HPLC), and high-performance ion-exchange chromatography (HPIC). Overall, the findings of this study are expected to provide new insights into the dynamics of microbial-crop interactions during storage.

13.
Animals (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290267

RESUMO

The aim of the present study was to evaluate the effects of a Jerusalem artichoke-supplemented diet on the blood chemistry, growth performance, intestinal morphology, expression of antioxidant-related genes, and disease resistance against Aeromonas veronii challenge in juvenile red tilapia. A completely randomized design (CRD) was followed to feed red tilapias with three experimental diets: control, 5.0 g/kg JA-supplemented (JA5), or 10.0 g/kg JA-supplemented (JA10) diets in triplicates for 4 weeks. The results revealed that the growth performance, weight gain (WG), specific growth rate (SGR), and average daily gain (ADG) of fish fed diets JA5 and JA10 were significantly higher (p < 0.05) than those of fish fed the control diet. Fish fed the control diet had significantly higher T-bilirubin, D-bilirubin, and ALT in blood serum than fish fed JA5 and JA10, as well as higher BUN than fish fed JA5. The number of goblet cells in the proximal and distal parts of the intestine revealed that the number of acid, neutral, and double-staining mucous cells of fish fed diets JA5 and JA10 was significantly higher (p < 0.05) than in fish fed the control diet. The diets including the prebiotic (JA5 and JA10) were associated with a significant increase in the expression of gpx1 and gst antioxidant-related genes and disease resistance against A. veronii in juvenile red tilapia. Therefore, JA5 and JA10 can be employed as promising prebiotics for sustainable red tilapia farming.

14.
Food Res Int ; 160: 111755, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076427

RESUMO

Production of fructooligosaccharides (FOS) is a trending topic due to their prebiotic effect becoming increasingly important for the modern human diet. The most suitable process for FOS production is the one using fungal inulinases. Introduction of new fungal inulinase producers and their implementation in production of inulinase enzymes is therefore gaining interest. This study provides a new approach to FOS synthesis by fungal enzyme complex without prior separation of any specific enzyme. Inulinase enzyme complexes could be used for the synthesis of FOS in two possible ways - hydrolysis of inulin (FOSh) and transfructosylation process of sucrose (FOSs), as demonstrated here. Depending on the fungal growth inducing substrate, a variety of inulinase enzyme complexes was obtained - one of which was most successful in production of FOSh and another one of FOSs. Substrates derived from crops: triticale, wheat bran, Jerusalem artichoke and Aspergillus welwitschiae isolate, previously proven as safe for use in food, were utilized for production of inulinase enzyme cocktails. The highest FOSs production was obtained by enzyme complex rich in ß-fructofuranosidase, while the highest FOSh production was obtained by enzyme complex rich in endoinulinase. Both FOSh and FOSs showed antioxidant potential according to ABTS and ORAC, which classifies them as a suitable additive in functional food. Simultaneous zymographic detection of inulinase enzymes, which could contribute to expansion of the knowledge on fungal enzymes, was developed and applied here. It demonstrated the presence of different inulinase isoforms depending on fungal growth substrate. These findings, which rely on the innate ability of fungi to co-produce all inulinases from a cocktail, could be useful as a new, easy approach to FOS production by fungal enzymes without their separation and purification, contributing to cheaper and faster production processes.


Assuntos
Helianthus , Aspergillus , Glicosídeo Hidrolases , Humanos , Oligossacarídeos
15.
Bioresour Technol ; 362: 127878, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055542

RESUMO

Ergosterol is an important precursor in the pharmaceutical industry for the production of numerous drugs. In this study, Kluyveromyces marxianus that showed more potential for ergosterol production than some other yeasts was reported. The effects of transcription factors UPC2, MOT3, and ROX1 of K. marxianus on ergosterol synthesis were explored, and a Upc2-overexpressing strain produced 1.78 times more ergosterol (167.33 mg/L) than the wild-type strain (60.04 mg/L). A total of 239.98 mg/L ergosterol was produced when glucose was replaced with fructose to limit ethanol production. Enhanced aeration increased ergosterol titer from 63.09 mg/L to 128.46 mg/L at 42 °C. The ergosterol titer reached 304.37 mg/L in a shake flask at 37 °C, or 1124.38 and 948.32 mg/L at 37 °C and 42 °C, respectively, in a 5 L bioreactor, using Jerusalem artichoke tubers as the sole carbon source. This study establishes a platform for ergosterol biosynthesis using inexpensive materials.


Assuntos
Helianthus , Kluyveromyces , Ergosterol , Fermentação , Helianthus/genética , Kluyveromyces/genética , Temperatura
16.
Appl Microbiol Biotechnol ; 106(17): 5525-5538, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35896838

RESUMO

The rhizosphere context of inulin-accumulating plants, such as Jerusalem artichoke (Helianthus tuberosus), is an ideal starting basis for the discovery of inulolytic enzymes with potential for bio fructose production. We isolated a Glutamicibacter mishrai NJAU-1 strain from this context, showing exo-inulinase activity, releasing fructose from fructans. The growth conditions (pH 9.0; 15 °C) were adjusted, and the production of inulinase by Glutamicibacter mishrai NJAU-1 increased by 90% (0.32 U/mL). Intriguingly, both levan and inulin, but not fructose and sucrose, induced the production of exo-inulinase activity. Two exo-inulinase genes (inu1 and inu2) were cloned and heterologously expressed in Pichia pastoris. While INU2 preferentially hydrolyzed longer inulins, the smallest fructan 1-kestose appeared as the preferred substrate for INU1, also efficiently degrading nystose and sucrose. Active site docking studies with GFn- and Fn-type small inulins (G is glucose, F is fructose, and n is the number of ß (2-1) bound fructose moieties) revealed subtle substrate differences between INU1 and INU2. A possible explanation about substrate specificity and INU's protein structure is then suggested. KEY POINTS: • A Glutamicibacter mishrai strain harbored exo-inulinase activity. • Fructans induced the inulolytic activity in G. mishrai while the inulolytic activity was optimized at pH 9.0 and 15 °C. • Two exo-inulinases with differential substrate specificity were characterized.


Assuntos
Helianthus , Frutanos , Frutose , Glicosídeo Hidrolases , Inulina , Sacarose
17.
Food Sci Nutr ; 10(6): 1994-2008, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702306

RESUMO

Commercial vegetable and fruit juices with probiotics are new functional type of beverages; however, limitations including persistence and impact of probiotic bacteria on palatability and shelf life may prevent their industrial development. This study evaluated the effect of antioxidant compounds (ascorbic acid, astaxanthin, and ginseng) on viability and persistence of Bifidobacterium spp. in Jerusalem Artichoke (JA) juice; and determine the impact of these antioxidants on the sensory (color, texture, flavor, acidity) properties, free reducing sugar (inulin and fructose), and shelf life in the fortified JA juice. Overall, the JA juice fortified with ascorbic acid showed a significant impact on the rate of persistence of two targeted bifidobacterial strains from 1 to 28 days at 5°C. Both strains produced slight acidity in ascorbic acid fortified JA juice as compared to other tested samples. Similarly, the JA juice fortified with ascorbic acid showed a significantly high increase in the total number of bifidobacterial cells of both species, enhanced palatability, and shelf life as compared to astaxanthin and ginseng extract. The quadratic model indicated a strong association between ascorbic acid, ginseng extract, and astaxanthin with a bifidobacterial cell concentration in the fortified JA juices. The Box-Behnken design was considered a feasible analysis for describing fortified JA juice and the rate of viability and persistence of bifidobacteria during 28 days of storage at 5°C in all trials. In conclusion, JA juice fortified with ascorbic acid showed a significant impact on improving the cell viability and persistence of probiotic bacteria, enhanced palatability, and shelf life as compared to other compounds tested.

18.
Vet World ; 15(4): 1080-1086, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35698529

RESUMO

Background and Aim: The use of antibiotics in animals for disease prevention and productivity has been banned in the European Union since 2006. Possible alternatives can be used prebiotics, probiotics, and synbiotics. These compounds can improve feed digestion and absorption in the gastrointestinal tract with identical nutrient uptake, while imparting the feeling of satiety, which reduces the activity of ghrelin-immunoreactive (IR) cells. The number of studies performed on the activity of ghrelin-IR cells in ruminants is insufficient. In particular, there are few such studies in calves during the transition period from being a relatively monogastric animal to a ruminant. The present study aimed to evaluate the effect of Jerusalem artichoke flour (containing ~50% prebiotic inulin) and a new, commercially unavailable synbiotic (combination of Jerusalem artichoke flour and Saccharomyces cerevisiae strain 1026) on the amount of ghrelin-IR cells in the abomasum and intestines of 13-14-week-old calves. Materials and Methods: Fifteen crossbreed, Holstein Friesian and Red Holstein calves (Bos taurus) (32±4 days, 72.1±11.34 kg) were used. Calves were allocated into three groups: Control group (CoG, n=5) received the standard diet, prebiotic group (PreG, n=5) received 12 g of flour of Jerusalem artichoke (Helianthus tuberosus) per head containing 6 g of prebiotic inulin in addition to the standard diet, and synbiotic group (SynG, n=5) received a synbiotic in addition to the standard diet which consisted of two different products: 12 g of flour of Jerusalem artichoke per head containing 6 g of prebiotic inulin and probiotic 5 g of a yeast S. cerevisiae strain 1026. Feed additives were added to the concentrate once a day for 56 days. On days 1, 28, and 56, the live weight of the calves was determined. On day 56 of the experiment, three calves from each group were slaughtered. Histological samples were collected from the two parts of each calf abomasum: Pars pylorica and pars fundalis and the middle part of the duodenum and jejunum. Immunohistochemical tissue staining methods were used to detect ghrelin-IR cells. Results: The live weight of the slaughtered calves on day 56 was 115.3±21.73 kg in CoG, 130.0±17.32 kg in PreG, and 119.0±7.94 kg in SynG. Ghrelin-IR cells were more abundantly localized in the cytoplasm of the abomasum muscle gland cells in pars fundalis and pars pylorica, and to a lesser extent in the duodenum and jejunum. The number of ghrelin-IR cells in the abomasal fundic gland area was significantly higher in the CoG, than in the PreG and SynG (p=0.0001), while the difference between the PreG and SynG was not significant (p=0.700). Conclusion: The addition of Jerusalem artichoke flour and its combination with the yeast S.cerevisiae stain 1026 in calves resulted in a lower number of ghrelin-IR cells in the abomasum, duodenum, and jejunum and, although insignificantly, increased live weight (p=0.491), suggesting that calves in these groups with the same feed intake as the CoG had a better breakdown of nutrients, thus having a longer feeling of satiety.

19.
Bioresour Technol ; 354: 127219, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35470003

RESUMO

Pretreatment of lignocellulose is a vital step for biological production of bio-chemicals and bio-fuels. In this work, the pretreatment of Jerusalem artichoke stalk (JAS) by hydroxylammonium ionic liquids was evaluated based on pretreatment efficiency including polysaccharide recovery and enzymatic digestibility, and influence of ionic liquids on 2,3-butanediol fermentation using Bacillus subtilis. The results showed ethanolammonium acetate (EOAA) was efficient in JAS pretreatment, and maximum cell density was increased 25% when EOAA concentration was not greater than 0.3 mol/L in medium, while the total concentration of acetoin and 2,3-butanediol was 15% greater than the control at 0.1 mol/L EOAA. After the pretreatment under optimized conditions of 170 °C for 5-h and liquid-solid ratio of 18, about 87% cellulose and 75% hemicellulose were recovered, and glucose yield of 64% and xylose of 66% were obtained after 24-h hydrolysis of JAS residue by cellulase (15 FPU/g) with solid loading of 10 wt%.


Assuntos
Helianthus , Líquidos Iônicos , Bacillus subtilis , Butileno Glicóis , Fermentação , Helianthus/química , Hidrólise , Líquidos Iônicos/farmacologia
20.
Foods ; 11(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454652

RESUMO

The utilization of industrial by-products is becoming more and more important for resource utilization. In this study, soluble dietary fiber (SDF) was extracted from Jerusalem artichoke residue, and a series of characterizations of SDF were carried out. The results showed that SDF had good properties. SDF (0%, 0.1%, 0.2%, 0.3%, and 0.4%) and chitosan (2%) were further used to prepare the coating that was used for the preservation of blueberry. The chemical structure of the film was obtained by FT-IR and XRD analysis. The microstructure of the film was analyzed by SEM, and the properties of the film were tested. The blueberry fresh-keeping test proved that the SDF-added film could effectively prolong the quality of blueberries in storage for 16 days. After 16 days of storage, compared with the control group, the decay rate of the coating group with 0.2% SDF decreased by 16.3%, the consumption of organic acids decreased by 43.7%, and the content of anthocyanin increased by 29.3%. SDF has a potential application in food preservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...