Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.650
Filtrar
1.
Asian J Pharm Sci ; 19(4): 100926, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39253610

RESUMO

Intracellular bacteria can multiply inside host cells and manipulate their biology, and the efficacy of traditional antibiotic drug therapy for intracellular bacteria is limited by inadequate drug accumulation. Fighting against these stealthy bacteria has been a long-standing challenge. Here, a system of stimuli-responsive lactoferrin (Lf) nanoparticles is prepared using protein self-assembly technology to deliver broad-spectrum antibiotic rifampicin (Rif) (Rif@Lf NPs) for enhanced infection therapy through targeted elimination of intracellular bacteria. Compared to Rif@BSA NPs, the Rif@Lf NPs can specifically target macrophages infected by bacteria, thus increasing the accumulation of Rif within macrophages. Subsequently, Rif@Lf NPs with positive surface charge further displayed targeted adherence to the bacteria within macrophages and released Rif rapidly in a redox-responsive manner. Combined with the antibacterial activities of Lf and Rif, the Rif@Lf NPs showed broad-spectrum antibiotic abilities to intracellular bacteria and biofilms. As a result, the Rif@Lf NPs with high safety exhibited excellent therapeutic efficacy in the disease models of subcutaneous infection, sepsis, and bacterial keratitis. Taken together, the antibiotic-loaded Lf nanoparticles present a promising platform to combat pathogen infections through targeted elimination of intracellular bacteria.

2.
J Nutr Biochem ; : 109760, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251146

RESUMO

It is known that human milk (HM)1 antimicrobial protein composition varies during lactation. However, the impact of maternal diet on these antimicrobial proteins, particularly lactoferrin and lysozyme remains unknown. In addition, it is unclear whether daily, circadian, and between breast variations exist for lactoferrin and lysozyme concentrations. We investigated the impact of a low sugar, low fat, high fibre dietary intervention on HM lysozyme and lactoferrin concentrations. HM was sampled across a 3-week period; daily, at different times of day, and from both breasts to measure the level of intraindividual variation. The intervention significantly reduced maternal sugar, total fat, and saturated fat intake. HM lactoferrin concentration declined significantly over the course of the intervention however the effect size was relatively small. In addition, lactoferrin and lysozyme concentrations were variable over time, and differed significantly within and across the day but not between breasts.

3.
Sci Rep ; 14(1): 21066, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256408

RESUMO

This study aimed to estimate the hepatic and immune ameliorating potential of extracted bovine lactoferrin (LF), Selenium nanoparticles (SeNPs) or their combination (LF/SeNPs) against bleomycin (BLM) induced hepatic injury. Fifty adult male rats (160-200 g) were equally divided into five groups: (1) the saline control group, (2) BLM-injected (15 mg/kg twice a week, ip), and (3-5) groups treated orally with LF (200 mg/kg/day), SeNPs (0.0486 mg/kg/day) or LF/SeNPs combination (200.0486 mg/kg/day) for 6 weeks post BLM-intoxication. Blood and liver samples were subjected to biochemical, histopathological, and immunohistochemical analyses. The results revealed that BLM caused a significant increase in hepatic lipid peroxidation and nitric oxide, as well as serum markers of liver functions (AST, ALT and GGT activities), and levels of GM-CSF, CD4, TNF-α, IL-1ß, TGF-ß1, fibronectin, triglycerides, cholesterol and LDL-C. Additionally, hepatic glutathione, Na+/K+-ATPase, and glutathione peroxidase, as well as serum HDL-C, total protein and albumin levels were significantly reduced. Moreover, BLM injection resulted in marked histopathological alterations and severe expression of caspase 3. Post-treatment of BLM-intoxicated rats with LF, SeNPs or LF/SeNPs combination obviously improved the BLM-induced hepatic damages; this was achieved from the marked modulations in the mentioned parameters, besides improving the histopathological hepatic architecture. It is worth mentioning that LF/SeNPs exerted the greatest potency. In conclusion, the obtained results demonstrated that LF, SeNPs and LF/SeNPs succeeded in attenuating the BLM-induced hepatic dysfunction. Therefore, these supplements might be used to protect against drug-associated side effects.


Assuntos
Bleomicina , Doença Hepática Induzida por Substâncias e Drogas , Lactoferrina , Fígado , Nanopartículas , Selênio , Lactoferrina/farmacologia , Lactoferrina/administração & dosagem , Animais , Selênio/farmacologia , Selênio/administração & dosagem , Selênio/química , Masculino , Ratos , Bleomicina/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Nanopartículas/química , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
4.
J Agric Food Chem ; 72(32): 17771-17781, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087686

RESUMO

As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions in vivo. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.


Assuntos
Ferro , Lactoferrina , Ferro/metabolismo , Ferro/química , Animais , Humanos , Lactoferrina/metabolismo , Lactoferrina/química , Ligação Proteica , Transferrinas/metabolismo , Transferrinas/química , Conalbumina/química , Conalbumina/metabolismo
5.
Indian J Nephrol ; 34(3): 222-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114392

RESUMO

Background: Anemia occurs in majority of patients with chronic kidney disease despite adequate dialysis and iron replete status. This study was done to evaluate the effects of lactoferrin with or without iron supplementation for the treatment of anemia in patients with chronic kidney disease (CKD). Materials and Methods: In this prospective, observational, single-center, single-arm pilot study, adult patients aged >18 years, having stage 5 CKD (estimated glomerular filtration rate [eGFR] <15 ml/min/1.73 m2), and who had anemia (hemoglobin [Hb] <10 g/dl; transferrin saturation [Tsat] >20%) were included. Patients were treated with 100 mg of oral lactoferrin twice a day for one month with or without iron supplementation. Patients had been on stable erythropoietin doses for ≥1 month prior to inclusion in the study. We report on the improvement in Hb levels and effect on inflammatory markers from baseline at four weeks. Results: A total of 46 CKD patients having anemia were included. Patients had a mean age of 39.3 years, and a majority were men (69.6%). Improvement in the mean (SD) Hb level (g/dl) was observed from baseline (8.18 [1.19]) to Week 2 (8.54 [1.57]), which attained significance at Week 4 (8.96 [1.93]; P < 0.001; mean difference: -0.76; 95% confidence interval [CI]: -1.291 to - 0.2383). The improvement in Hb was higher in women than in men (P = 0.48) and in patients receiving lactoferrin with iron supplementation than in those receiving lactoferrin alone (P = 0.14). There was a non-significant decrease in the erythrocyte sedimentation rate (P = 0.14) and a non-significant increase in C-reactive protein (P = 0.54) level. Conclusion: Oral lactoferrin therapy was effective in improving hemoglobin levels in patients with advanced CKD and anemia. The effects of lactoferrin therapy on inflammatory markers remain uncertain.

6.
Front Immunol ; 15: 1380028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114650

RESUMO

Introduction: Prior to the introduction of novel food ingredients into the food supply, safety risk assessments are required, and numerous prediction models have been developed and validated to evaluate safety. Methods: The allergenic risk potential of Helaina recombinant human lactoferrin (rhLF, Effera™), produced in Komagataella phaffii (K. phaffii) was assessed by literature search, bioinformatics sequence comparisons to known allergens, glycan allergenicity assessment, and a simulated pepsin digestion model. Results: The literature search identified no allergenic risk for Helaina rhLF, K. phaffii, or its glycans. Bioinformatics search strategies showed no significant risk for cross-reactivity or allergenicity between rhLF or the 36 residual host proteins and known human allergens. Helaina rhLF was also rapidly digested in simulated gastric fluid and its digestibility profile was comparable to human milk lactoferrin (hmLF), further demonstrating a low allergenic risk and similarity to the hmLF protein. Conclusion: Collectively, these results demonstrate a low allergenic risk potential of Helaina rhLF and do not indicate the need for further clinical testing or serum IgE binding to evaluate Helaina rhLF for risk of food allergy prior to introduction into the food supply.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Lactoferrina , Lactoferrina/imunologia , Humanos , Hipersensibilidade Alimentar/imunologia , Alérgenos/imunologia , Proteínas Recombinantes/imunologia , Saccharomycetales/imunologia , Saccharomycetales/metabolismo , Medição de Risco , Biologia Computacional/métodos
7.
Heliyon ; 10(14): e34051, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092264

RESUMO

Lactoferrin (LF), a multifunctional glycoprotein found in mammalian milk and various exocrine secretions, plays a pivotal role in modulating various responses. Lactoferrin plays a significant role in type-2 diabetes by improving hepatic insulin resistance and pancreatic dysfunction however, the exact mechanism for this improvement is not thoroughly elucidated. To this date, there are no evidence that attributes the direct interaction of lactoferrin with components of NF-κB pathway. Considering this precedent, the current study aimed to investigate the interaction of LF with key components of NF-κB pathway using molecular docking and simulation approaches. Results indicated that LF has shown highly stable interactions with IL-1ß, IL-6, IκBα and NF-κB, and relatively weaker interactions with IKK and TNF-α. All four trajectories, including root mean square of deviations (RMSD), root mean square of fluctuation (RMSF), hydrogen bond interactions, and radius of gyration (RoG), confirmed the stable interactions of LF with NF-κB pathway components. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analysis further supports their stable interactions. To the best of our knowledge, this is the first study to provide convincing evidence that LF can interact with all six major components of the NF-κB pathway. This study provides pioneering in-silico evidence that lactoferrin (LF) can interact with all six major components of the NF-κB pathway, demonstrating highly stable interactions with IL-1ß, IL-6, IκBα, and NF-κB, and relatively weaker interactions with IKK and TNF-α. These findings suggest that LF and its peptides have significant potential for both preventive and therapeutic applications by targeting the NF-κB pathway to inhibit inflammation, thereby improving insulin sensitivity and aiding in the management of diabetes.

8.
J Dairy Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098494

RESUMO

The large-scale isolation of bovine lactoferrin (bLF) typically involves using large amounts of concentrated eluents, which might introduce impurities to the final product. Sometimes, protein pre-concentration is required for the greater accuracy of experimental results. In this research, the supplied bLF sample was subjected to additional ultrafiltration (UF) to eliminate possible small impurities, such as salts and peptides of bLF. Beforehand, the basic characterization of native bLF, including surface-charge properties and the structural sensitivity to the various pH conditions, was performed. The study aimed to evaluate the difference in molecular mass, primary structure, surface morphology, and elemental composition of the protein before and after UF. The research was provided by application of spectroscopic, spectrometric, electrophoretic, and microscopic techniques. The evident changes in the surface morphology of bLF were observed after UF, while the molecular masses of both proteins were comparable. According to MALDI-TOF/MS results, UF had a positive impact on the bLF sample representation, improving the identification parameters, such as sequence coverage and intensity coverage.

9.
J Food Sci ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088724

RESUMO

The poor thermal stability of lactoferrin (LF) hinders its bioavailability and use in commercial food products. To preserve LF from thermal denaturation, complexation with other biopolymers has been studied. Here we present the complex formation conditions, structural stability, and functional protection of LF by α-lactalbumin (α-LA). The formation of the LF-α-LA complexes was dependent on pH, mass ratio, and ionic strength. Changing the formation conditions and cross-linking by transglutaminase impacted the turbidity, particle size, and zeta-potential of the resulting complexes. Electrophoresis, Fourier-transform infrared spectroscopy, and circular dichroism measurements suggest that the secondary structure of LF in the LF-α-LA complex was maintained after complexation and subsequent thermal treatments. At pH 7, the LF-α-LA complex protected LF from thermal aggregation and denaturation, and the LF retained its functional and structural properties, including antibacterial capacity of LF after thermal treatments. The improved thermal stability and functional properties of LF in the LF-α-LA complex are of interest to the food industry.

10.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125801

RESUMO

Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.


Assuntos
Lactoferrina , Mannheimia haemolytica , Metaloproteases , Proteólise , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Metaloproteases/metabolismo , Metaloproteases/antagonistas & inibidores , Animais , Apoproteínas/metabolismo , Apoproteínas/química , Simulação de Acoplamento Molecular , Ovinos , Bovinos , Colagenases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Zinco/metabolismo
11.
Antibiotics (Basel) ; 13(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39200089

RESUMO

OBJECTIVE: The increasing resistance of Malassezia yeasts against commonly used antifungal drugs dictates the need for novel antifungal compounds. Human lactoferrin-based peptides show a broad spectrum of antimicrobial activities. Various assays were performed to find the optimal growth conditions of the yeasts and to assess cell viability, using media with low lipid content to avoid peptide binding to medium components. METHODS: In the current study, we tested the antimicrobial susceptibility of 30 strains of M. furfur that cover the known IGS1 genotypic variation. RESULTS: hLF(1-11) inhibited the growth of all species tested, resulting in minimum inhibitory concentrations (MIC) values ranging from 12.5 to 100 µg/mL. In the combinatory tests, the majority of fractional inhibitory concentration indexes (FIC) for the tested strains of M. furfur were up to 1.0, showing that there is a synergistic or additive effect on the efficacy of the antifungal drugs when used in combination with hLF(1-11). CONCLUSION: Results showed that hLF(1-11) could be combined with fluconazole or amphotericin for the antimicrobial treatment of resistant strains, enhancing the potency of these antifungal drugs, resulting in an improved outcome for the patient.

12.
SLAS Technol ; 29(5): 100175, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151751

RESUMO

We present a miniaturized, flow-through model for infantile in vitro digestions, following up on our previously published in vitro digestive system for adults. Microfluidic 'chaotic' mixers were employed as microreactors to help emulate the biochemical processing going on in the infantile stomach and intestine. Simulated digestive fluids were introduced into these micromixers, and the mixtures were incubated for 60 min after both the gastric phase and the intestinal phase. The pH of the infantile stomach was set at 5.3, which is higher than that of adults. This leads to entirely different patterns of digestion for the milk protein, lactoferrin, used in our study as a model compound. It was found that lactoferrin remained undigested as it passed through the gastric phase and reached the intestinal phase intact, unlike in adult digestions. In the intestinal phase, lactoferrin was rapidly digested. Our miniaturized, infantile, in vitro digestive system requires much less labor and chemicals than standard approaches, and shows great potential for future automation.

13.
J Sci Food Agric ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210730

RESUMO

BACKGROUND: Curcumin is widely known for its antioxidant and anti-inflammatory properties, but its mechanism of action in mitigating oxidative stress injury in brain vascular endothelial cells remains unclear. Due to the poor bioavailability of curcumin, it is challenging to achieve effective concentrations at the target sites. Nano-micelles are known for their ability to improve the solubility, stability, and bioavailability of hydrophobic compounds like curcumin. This study investigated the effects and mechanisms of free curcumin and curcumin embedded in nano-micelles (M(Cur)) on oxidative stress-induced injury in bEnd.3 cells. RESULTS: At a protective concentration of 10 µg mL-1, micellar curcumin was better able to recover the morphology of bEnd.3 cells under oxidative stress while increasing cell viability, restoring mitochondrial membrane electrical potential, and effectively inhibiting reactive oxygen species generation with a positive cell rate of 2.21%. These results indicate that curcumin significantly improves H2O2-induced oxidative stress damage in endothelial cells by maintaining the cellular antioxidant balance. CONCLUSION: This study adds to knowledge regarding the role of nano-micelles in curcumin intervention for endothelial cell oxidative damage and provides insights for the development of curcumin-based dietary supplements. © 2024 Society of Chemical Industry.

14.
Nutrients ; 16(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39203744

RESUMO

Lactoferrin, a glycoprotein derived from breastmilk, is recognized for its health benefits in infants and children; however, its protective effects when administered during gestation and lactation against offspring hypertension remain unclear. This study aimed to investigate whether maternal lactoferrin supplementation could prevent hypertension in offspring born to mothers with chronic kidney disease (CKD), with a focus on nitric oxide (NO), renin-angiotensin system (RAS) regulation, and alterations in gut microbiota and short-chain fatty acids (SCFAs). Prior to pregnancy, female rats were subjected to a 0.5% adenine diet for 3 weeks to induce CKD. During pregnancy and lactation, pregnant rats received one of four diets: normal chow, 0.5% adenine diet, 10% lactoferrin diet, or adenine diet supplemented with lactoferrin. Male offspring were euthanized at 12 weeks of age (n = 8 per group). Supplementation with lactoferrin during gestation and lactation prevented hypertension in adult offspring induced by a maternal adenine diet. The maternal adenine diet caused a decrease in the index of NO availability, which was restored by 67% with maternal LF supplementation. Additionally, LF was related to the regulation of the RAS, as evidenced by a reduced renal expression of renin and the angiotensin II type 1 receptor. Combined maternal adenine and LF diets altered beta diversity, shifted the offspring's gut microbiota, decreased propionate levels, and reduced the renal expression of SCFA receptors. The beneficial effects of lactoferrin are likely mediated through enhanced NO availability, rebalancing the RAS, and alterations in gut microbiota composition and SCFAs. Our findings suggest that maternal lactoferrin supplementation improves hypertension in offspring in a model of adenine-induced CKD, bringing us closer to potentially translating lactoferrin supplementation clinically for children born to mothers with CKD.


Assuntos
Adenina , Suplementos Nutricionais , Microbioma Gastrointestinal , Hipertensão , Lactação , Lactoferrina , Fenômenos Fisiológicos da Nutrição Materna , Sistema Renina-Angiotensina , Animais , Lactoferrina/administração & dosagem , Lactoferrina/farmacologia , Feminino , Gravidez , Masculino , Hipertensão/prevenção & controle , Hipertensão/induzido quimicamente , Hipertensão/etiologia , Ratos , Sistema Renina-Angiotensina/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Óxido Nítrico/metabolismo , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/induzido quimicamente , Ácidos Graxos Voláteis/metabolismo , Ratos Sprague-Dawley , Dieta
15.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39204126

RESUMO

Since Coronavirus disease 2019 (COVID-19) still presents a considerable threat, it is beneficial to provide therapeutic supplements against it. In this respect, glycoprotein lactoferrin (LF) and lactoferricin (LFC), a natural bioactive peptide yielded upon digestion from the N-terminus of LF, are of utmost interest, since both have been shown to reduce infections of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, in particular via blockade of the virus priming and binding. Here, we, by means of biochemical and biophysical methods, reveal that LF directly binds to the S-protein of SARS-CoV-2. We determined thermodynamic and kinetic characteristics of the complex formation and mapped the mutual binding sites involved in this interaction, namely the N-terminal region of LF and the receptor-binding domain of the S-protein (RBD). These results may not only explain many of the observed protective effects of LF and LFC in SARS-CoV-2 infection but may also be instrumental in proposing potent and cost-effective supplemental tools in the management of COVID-19.

16.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201246

RESUMO

As a nutraceutical, bovine lactoferrin (bLf), an iron-binding glycoprotein involved in innate immunity, is gaining elevated attention for its ability to exert pleiotropic functions and to be exceptionally tolerated even at high dosages. Some of bLf's activities, including its anti-inflammatory and antioxidant, are tightly linked to its ability to both chelate iron and enter inside the cell nucleus. Here, we present data about Valpalf®, a new formulation containing bLf, sodium citrate, and sodium bicarbonate at a molar ratio of 10-3. In the present study, Valpalf® exhibits superior iron-binding capacity, resistance to tryptic digestion, and a greater capacity to accumulate into the nucleus over time when compared to the native bLf alone. In agreement, Valpalf® effectively reduces interleukin(IL)-6 levels in lipopolysaccharide-stimulated macrophages and modulates the expression of antioxidant enzymes, such as superoxide dismutase 1 and 2, in phorbol-12-myristate-13-acetate-stimulated monocytes. Of note, this potentiated bioactivity was corroborated in a retrospective study on the treatment of anemia of inflammation in hereditary thrombophilic pregnant and non-pregnant women, demonstrating that Valpalf® improves hematological parameters and reduces serum IL-6 levels to a higher extent than bLf alone.


Assuntos
Suplementos Nutricionais , Interleucina-6 , Lactoferrina , Superóxido Dismutase , Lactoferrina/farmacologia , Lactoferrina/química , Animais , Bovinos , Humanos , Feminino , Superóxido Dismutase/metabolismo , Interleucina-6/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Camundongos , Citrato de Sódio/farmacologia , Superóxido Dismutase-1/metabolismo , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/química , Gravidez , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Ferro/metabolismo , Lipopolissacarídeos , Anemia/tratamento farmacológico
17.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201405

RESUMO

Respiratory diseases in ruminants are responsible for enormous economic losses for the dairy and meat industry. The main causative bacterial agent of pneumonia in ovine is Mannheimia haemolytica A2. Due to the impact of this disease, the effect of the antimicrobial protein, bovine lactoferrin (bLf), against virulence factors of this bacterium has been studied. However, its effect on biofilm formation has not been reported. In this work, we evaluated the effect on different stages of the biofilm. Our results reveal a decrease in biofilm formation when bacteria were pre-incubated with bLf. However, when bLf was added at the start of biofilm formation and on mature biofilm, an increase was observed, which was visualized by greater bacterial aggregation and secretion of biofilm matrix components. Additionally, through SDS-PAGE, a remarkable band of ~80 kDa was observed when bLf was added to biofilms. Therefore, the presence of bLf on the biofilm was determined through the Western blot and Microscopy techniques. Finally, by using Live/Dead staining, we observed that most of the bacteria in a biofilm with bLf were not viable. In addition, bLf affects the formation of a new biofilm cycle. In conclusion, bLf binds to the biofilm of M. haemolytica A2 and affects the viability of bacteria and the formation a new biofilm cycle.


Assuntos
Biofilmes , Lactoferrina , Mannheimia haemolytica , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/fisiologia , Lactoferrina/farmacologia , Animais , Viabilidade Microbiana/efeitos dos fármacos , Bovinos , Fatores de Virulência/metabolismo , Ovinos
18.
Clin Oral Investig ; 28(9): 508, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212776

RESUMO

OBJECTIVES: The aim was to assess the associations between the LTF, MMP20, CA6, and TAS1R2 polymorphisms and caries in the Zhuang population and explore the underlying mechanism of the impact of lactoferrin on caries susceptibility. METHODS: A case-control study of 315 adolescents was conducted in Guangxi, China, from May-November 2022. Data were collected through oral examinations and questionnaires. Buccal mucosa cells and DNA samples were collected using the SNPscan technique. Saliva and supragingival plaque samples were taken from 69 subjects with various LTF rs10865941 genotypes. The relationships among the LTF rs10865941 polymorphism, lactoferrin, Streptococcus mutans, and caries were investigated by using the ELISA and qRT-PCR, along with logistic regression analysis. RESULTS: The genotype distribution of the LTF gene were significantly different between the case and control groups (p = 0.018). The case group had lower C allele and greater T allele frequencies than the control group (p = 0.006). The LTF rs10865941 polymorphism was associated with caries in the codominant, dominant, and additive models (p < 0.05). MMP20 rs1784418, CA6 rs2274328, and TAS1R2 rs35874116 were not significantly different between the two groups (p > 0.05). A greater quantity of S. mutans. in the supragingival plaque was found in the case group (p = 0.03). There were significant differences between the two groups in both the codominant model and the dominant model (p < 0.05). CONCLUSIONS: The LTF rs10865941 polymorphism may be associated with caries susceptibility in the Zhuang population of China. The LTF rs10865941 T allele may be a potential risk factor for dental caries.


Assuntos
Cárie Dentária , Predisposição Genética para Doença , Metaloproteinase 20 da Matriz , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Humanos , Masculino , Feminino , Estudos de Casos e Controles , Cárie Dentária/genética , China , Adolescente , Receptores Acoplados a Proteínas G/genética , Metaloproteinase 20 da Matriz/genética , Suscetibilidade à Cárie Dentária/genética , Streptococcus mutans/genética , Genótipo , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase em Tempo Real , Criança , Anidrases Carbônicas , Lactoferrina
19.
Chem Biodivers ; : e202401610, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39195350

RESUMO

Nitro musks are highly bioaccumulative and potentially carcinogenic, commonly used as additives in fabric softeners, detergents, and other household products. Furthermore, these substances have been detected in breast milk and human adipose tissue, posing a risk of direct exposure to pregnant women and infants. Human lactoferrin (HLF) is abundant in colostrum, and plays an important role in the non-specific immune system of the human body. In this study, the mechanisms of action of two nitro musk compounds, typical examples of synthetic musks, with HLF were investigated using molecular docking, dynamics simulation and multispectral methods. The fluorescence findings demonstrated that nitro musks quenched the intrinsic fluorescence of human lactoferrin through static quenching. Thermodynamic analysis of the binding parameters suggested that hydrophobic interactions acted synergistically in the formation of the complex. Moreover, analyses utilizing multispectral techniques, such as Fourier transform infrared (FTIR) spectroscopy, validated that the microenvironment and structure of HLF were altered in the presence of nitro musks. Finally, molecular docking and molecular dynamics simulations were employed to explore the specific binding mode of nitro musks with HLF and to assess the stability of the complex. These findings may provide a reference for assessing health risks to pregnant women and infants.

20.
Front Vet Sci ; 11: 1428156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176399

RESUMO

Antibiotics, often hailed as 'miracle drugs' in the 20th century, have revolutionised medicine by saving millions of lives in human and veterinary medicine, effectively combatting bacterial infections. However, the escalating global challenge of antimicrobial resistance and the appearance and spread of multidrug-resistant pathogens necessitates research into alternatives. One such alternative could be lactoferrin. Lactoferrin, an iron-binding multifunctional protein, is abundantly present in mammalian secretions and exhibits antimicrobial and immunomodulatory activities. An often overlooked aspect of lactoferrin is its proteolytic activity, which could contribute to its antibacterial activity. The proteolytic activity of lactoferrin has been linked to the degradation of virulence factors from several bacterial pathogens, impeding their colonisation and potentially limiting their pathogenicity. Despite numerous studies, the exact proteolytically active site of lactoferrin, the specific bacterial virulence factors it degrades and the underlying mechanism remain incompletely understood. This review gives an overview of the current knowledge concerning the proteolytic activity of lactoferrins and summarises the bacterial virulence factors degraded by lactoferrins. We further detail how a deeper understanding of the proteolytic activity of lactoferrin might position it as a viable alternative for antibiotics, being crucial to halt the spread of multi-drug resistant bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA