Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39065759

RESUMO

The reproductive system of males is adversely impacted by lead (Pb), a toxic heavy metal. The present study examined arbutin, a promising hydroquinone glycoside, for its potential ameliorative impact against Pb-induced testicular impairment in rats. The testicular injury was induced by the intraperitoneal administration of Pb acetate (20 mg/kg/day) for 10 consecutive days. Thirty-six rats were divided into six experimental groups (n = 6 per group): control, control treated with oral arbutin (250 mg/kg), control treated with intraperitoneal arbutin (75 mg/kg), untreated Pb, Pb treated with oral arbutin, and Pb treated with intraperitoneal arbutin. The treatments were administered daily for 10 days. Arbutin was administered by the oral and intraperitoneal routes to compare the efficacy of both routes in mitigating Pb acetate-induced testicular dysfunction. The current data revealed that both oral and intraperitoneal administration of arbutin significantly enhanced serum testosterone and sperm count/motility, indicating the amelioration of testicular dysfunction. In tandem, both routes lowered testicular histopathological aberrations and Johnsen's damage scores. These favorable outcomes were driven by dampening testicular oxidative stress, evidenced by lowered lipid peroxidation and increased glutathione and catalase antioxidants. Moreover, arbutin lowered testicular p-JAK2 and p-STAT3 levels, confirming the inhibition of the JAK2/STAT3 pro-inflammatory pathway. In tandem, arbutin suppressed the testicular NLRP3/caspase-1/NF-B axis and augmented the cytoprotective PK2/PKR2 pathway. Notably, intraperitoneal arbutin at a lower dose prompted a more pronounced mitigation of Pb-induced testicular dysfunction compared to oral administration. In conclusion, arbutin ameliorates Pb-evoked testicular damage by stimulating testicular antioxidants and the PK2/PKR2 pathway and inhibiting the JAK2/STAT3 and NLRP3/caspase-1 pro-inflammatory pathways. Hence, arbutin may be used as an adjunct agent for mitigating Pb-induced testicular impairment.

2.
Calcif Tissue Int ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951181

RESUMO

Vascular calcification affects the prognosis of patients with renal failure. Bisphosphonates are regarded as candidate anti-calcifying drugs because of their inhibitory effects on both calcium-phosphate aggregation and bone resorption. However, calcification in well-known rodent models is dependent upon bone resorption accompanied by excessive bone turnover, making it difficult to estimate accurately the anti-calcifying potential of drugs. Therefore, models with low bone resorption are required to extrapolate anti-calcifying effects to humans. Three bisphosphonates (etidronate, alendronate, and FYB-931) were characterised for their inhibitory effects on bone resorption in vivo and calcium-phosphate aggregation estimated by calciprotein particle formation in vitro. Then, their effects were examined using two models inducing ectopic calcification: the site where lead acetate was subcutaneously injected into mice and the transplanted, aorta obtained from a donor rat. The inhibitory effects of bisphosphonates on bone resorption and calcium-phosphate aggregation were alendronate > FYB-931 > etidronate and FYB-931 > alendronate = etidronate, respectively. In the lead acetate-induced model, calcification was most potently suppressed by FYB-931, followed by alendronate and etidronate. In the aorta-transplanted model, only FYB-931 suppressed calcification at a high dose. In both the models, no correlation was observed between calcification and bone resorption marker, tartrate-resistant acid phosphatase (TRACP). Results from the lead acetate-induced model showed that inhibitory potency against calcium-phosphate aggregation contributed to calcification inhibition. The two calcification models, especially the lead acetate-induced model, may be ideal for the extrapolation of calcifying response to humans because of calcium-phosphate aggregation rather than bone resorption as its mechanism.

3.
IBRO Neurosci Rep ; 17: 65-72, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39006923

RESUMO

Lead (Pb) is a ubiquitous, non-biodegradable heavy metal contaminant with a significant impact on both human and animal health. The adverse effect of lead on health and productivity of avian species has received little attention. Alchornea laxiflora (Benth) belongs to Euphorbiaceae family and grows naturally in the Nigerian rain forest. Decoction of the leaves is usually administered traditionally to treat inflammatory and infectious diseases. The ethanol extract of Alchornea laxiflora (EaAL) leaves was used in this study to ameliorate lead-induced neurodegeneration. Seven groups of 5-week-old cockerels (n=5) were treated for 6 weeks thus: Group A - Control (water only), Group B - (100 mg/kg of EaAL daily), Group C - (200 mg/kg of EaAL daily, p.o.), Group D - (1 % lead acetate in drinking water), Group E - (1 % lead acetate in drinking water and 100 mg/kg of EaAL daily), Group F - (1 % lead acetate and 200 mg/kg of EaAL daily), Group G - (1 % lead acetate and 100 mg/kg of Vitamin C). All administrations were per os birds were euthanized on day 43 by quick cervical dislocation. Histological stains (H&E and Nissl) and Black Gold II (BGII) histochemistry were used to assess alterations in the cerebrum and cerebellum. Administration of EaAL at the two concentrations resulted in a drastic reduction in the incidence of neuropathologies observed (e.g. pyknosis and multilayering of Purkinje cells, neuronal degeneration in hippocampus cerebrum and ependymal cells, distortion of meningeal epithelial cells, etc). BGII histochemistry revealed severe demyelination caused by the administration of lead acetate, while the two doses of EaAL showed significant restoration of myelin in the cerebellum. The amelioration of demyelination observed with the use of vitamin C was considerably lower than that recorded with the use of EaAL. The use of EaAL significantly ameliorated morphological alterations and demyelination caused by the administration of lead acetate, however, caution should be exercised in the administration, as individual species idiosyncrasies may arise and the tendency to pro-oxidation at 200 mg/kg when administered alone was observed in one subject.

4.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791600

RESUMO

Lead (Pb) is a common pollutant that is not biodegradable and gravely endangers the environment and human health. Annona squamosa fruit has a wide range of medicinal uses owing to its phytochemical constituents. This study evaluated the effect of treatment with A. squamosa fruit extract (ASFE) on testicular toxicity induced in male rats by lead acetate. The metal-chelating capacity and phytochemical composition of ASFE were determined. The LD50 of ASFE was evaluated by probit analysis. Molecular docking simulations were performed using Auto Dock Vina. Forty male Sprague Dawley rats were equally divided into the following groups: Gp1, a negative control group; Gp2, given ASFE (350 mg/kg body weight (b. wt.)) (1/10 of LD50); Gp3, given lead acetate (PbAc) solution (100 mg/kg b. wt.); and Gp4, given PbAc as in Gp3 and ASFE as in Gp2. All treatments were given by oro-gastric intubation daily for 30 days. Body weight changes, spermatological parameters, reproductive hormone levels, oxidative stress parameters, and inflammatory biomarkers were evaluated, and molecular and histopathological investigations were performed. The results showed that ASFE had promising metal-chelating activity and phytochemical composition. The LD50 of ASFE was 3500 mg/kg b. wt. The docking analysis showed that quercetin demonstrated a high binding affinity for JAK-1 and STAT-3 proteins, and this could make it a more promising candidate for targeting the JAK-1/STAT-3 pathway than others. The rats given lead acetate had defective testicular tissues, with altered molecular, biochemical, and histological features, as well as impaired spermatological characteristics. Treatment with ASFE led to a significant mitigation of these dysfunctions and modulated the JAK-1/STAT-3/SOCS-1 axis in the rats.


Assuntos
Annona , Frutas , Janus Quinase 1 , Simulação de Acoplamento Molecular , Compostos Organometálicos , Extratos Vegetais , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Testículo , Animais , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fator de Transcrição STAT3/metabolismo , Ratos , Annona/química , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Frutas/química , Transdução de Sinais/efeitos dos fármacos , Janus Quinase 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos
5.
IBRO Neurosci Rep ; 16: 395-402, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38444813

RESUMO

Introduction: Post-traumatic stress disorder (PTSD) is a consequence of living in today's stressful society. Patients have difficulty forgetting traumatic events. lead pollution has many effects on the nervous system, one of which is memory and learning disorders. The herbal medicine Eugenol has a beneficial effect on memory. Aim: This study aims to investigate the protective effect of Eugenol on lead-induced memory impairments in stressed rats. Methods: In the first experiment, the animals were divided into three groups: SPS+Saline, SPS+Pb, and naïve. The SPS+Saline, SPS+Pb groups received normal saline and lead through gavage for 21 days, while the sham group remained untreated. Rats were subjected to the modified single prolonged stress model. Memory tests were conducted one week later, evaluating freezing levels in three consecutive tests over three days. In the second experiment, rats were divided into a SPS+Pb+Saline and three treatment groups. The SPS+Pb+Saline group received daily saline injections, while the other groups received different doses of Eugenol (25, 50, and 100 mg/kg). Memory tests similar to the first experiment were conducted. Results: The results showed significantly higher immobility levels in the SPS+Saline and SPS+Pb groups compared to the sham. Additionally, the SPS+Pb group had a significant higher immobility compared to the SPS+Saline group. In the second experiment, the SPS+Pb+EU 25 group showed a significant lower freezing compared to the SPS+Pb+Saline group. Additionally, freezing in the SPS+Pb+EU 50 and SPS+Pb+EU 100 groups was significantly higher than in the SPS+Pb+EU 25 group. The SPS+Pb+EU 50 group showed a significant higher freezing compared to the SPS+Pb+Saline group. Conclusion: lead acetate exacerbated memory impairments in stressed rats and Eugenol, particularly at a dose of 25 mg/kg, improved these impairments. Therefore, Eugenol has the potential to partially reduce the negative effects of lead on memory in individuals with PTSD.

6.
Environ Toxicol ; 39(7): 3820-3832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38530053

RESUMO

Lead acetate (PbAc) is a compound that produces toxicity in many tissues after exposure. Sinapic acid (SNP) possesses many biological and pharmacological properties. This study aimed to investigate the efficacy of SNP on the toxicity of PbAc in lung tissue. PbAc was administered orally at 30 mg/kg and SNP at 5 or 10 mg/kg for 7 days. Biochemical, genetic, and histological methods were used to investigate inflammatory, apoptotic, endoplasmic reticulum stress, and oxidative stress damage levels in lung tissue. SNP administration induced PbAc-reduced antioxidant (GSH, SOD, CAT, and GPx) and expression of HO-1 in lung tissue. It also reduced MDA, induced by PbAc, and thus alleviated oxidative stress. SNP decreased the inflammatory markers NF-κB, TNF-α and IL-1ß levels induced by PbAc in lung tissue and exhibited anti-inflammatory effect. PbAc increased apoptotic Bax, Apaf-1, and Caspase-3 mRNA transcription levels and decreased anti-apoptotic Bcl-2 in lung tissues. SNP decreased apoptotic damage by reversing this situation. On the other hand, SNP regulated these markers and brought them closer to the levels of the control group. PbAc caused prolonged ER stress by increasing the levels of ATF6, PERK, IRE1α, GRP78 and this activity was stopped and tended to retreat with SNP. After evaluating all the data, While PbAc caused toxic damage in lung tissue, SNP showed a protective effect by reducing this damage.


Assuntos
Apoptose , Ácidos Cumáricos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Inflamação , Pulmão , Compostos Organometálicos , Estresse Oxidativo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Pulmão/efeitos dos fármacos , Pulmão/patologia , Compostos Organometálicos/toxicidade , Ácidos Cumáricos/farmacologia , Masculino , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Substâncias Protetoras/farmacologia , Antioxidantes/farmacologia
7.
Int J Environ Health Res ; 34(2): 979-990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36960596

RESUMO

This study investigated the modulatory effect of Ginkgo biloba extract on lead acetate-induced endothelial dysfunction. Animals were administered GBE (50 mg/kg and 100 mg/kg orally) after exposures to lead acetate (25 mg/kg orally) for 14 days. Aorta was harvested after euthanasia, the tissue was homogenised, and supernatants were decanted after centrifuging. Oxidative, nitrergic, inflammatory, and anti-apoptotic markers were assayed using standard biochemical procedure, ELISA, and immunohistochemistry, respectively. GBE reduced lead-induced oxidative stress by increasing SOD, GSH, and CAT as well as reducing MDA levels in endothelium. Pro-inflammatory cytokines (TNF-α and IL-6) were reduced while increasing Bcl-2 protein expression. GBE lowered endothelin-I and raised nitrite levels. Histological changes caused by lead acetate were normalised by GBE. Our findings suggest that Ginkgo biloba extract restored endothelin-I and nitric oxide functions by increasing Bcl-2 protein expression and reducing oxido-inflammatory stress in endothelium.


Assuntos
Extrato de Ginkgo , Ginkgo biloba , Chumbo , Ratos , Animais , Extratos Vegetais/farmacologia , Endotelinas , Proteínas Proto-Oncogênicas c-bcl-2 , Acetatos
8.
Chemosphere ; 349: 140908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072204

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a commonly used phthalate ester compound, while lead is a persistent and bioaccumulative heavy metal. Both can be exposed to the body through a variety of ways, which may have an impact on the blood system. In this study, we examined the impact of co-exposure to DEHP (0, 10, 100 mg/kg) and Pb (0, 5, 50 mg/kg) on the blood system of male SD rats. The study revealed that continuous exposure to DEHP and Pb for 20 days resulted in a decrease in leukocytes and lymphocytes, while an increase in neutrophils and monocytes. Co-exposure led to a significant decrease in the spleen coefficients. Furthermore, the combined exposure could increase the ratio of bone marrow cells in G1 phase, and decrease the ratio of cells in S phase and G2 phase. Cytokine testing showed that combined exposure affects the secretion of hematopoietic factors and may cause bone marrow cell apoptosis. Single or combined exposure to DEHP and Pb can cause oxidative stress in serum and bone marrow. Overall, these results indicate that the co-exposure of DEHP and Pb adversely affected the blood system of rats, mainly due to the induction of oxidative stress and ultimately affects the secretion of cytokines. The combined effect of the two substances is primarily antagonistic. These results have important implications for the risk assessment of combined pollution and provide valuable theoretical guidance.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Ratos , Animais , Masculino , Dietilexilftalato/toxicidade , Ratos Sprague-Dawley , Chumbo/toxicidade
9.
Brain Res Bull ; 206: 110852, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141790

RESUMO

Lead (Pb) is a well-known toxic pollutant that has negative effects on behavioral functions. Sesamin, a phytonutrient of the lignan class, has shown neuroprotective effects in various neurological disorder models. The present study was undertaken to evaluate the putative protective effects of sesamin against Pb-induced behavioral deficits and to identify the role of oxidative stress in male rats. The rats were exposed to 500 ppm of Pb acetate in their drinking water and simultaneously treated orally with sesamin at a dose of 30 mg/kg/day for eight consecutive weeks. Standard behavioral paradigms were used to assess the behavioral functions of the animals during the eighth week of the study. Subsequently, oxidative stress factors were evaluated in both the cerebral cortex and hippocampal regions of the rats. The results of this study showed that Pb exposure triggered anxiety-/depression-like behaviors and impaired object recognition memory, but locomotor activity was indistinguishable from the normal control rats. These behavioral deficiencies were associated with suppressed enzymatic and non-enzymatic antioxidant levels, and enhanced lipid peroxidation in the investigated brain regions. Notably, correlations were detected between behavioral deficits and oxidative stress generation in the Pb-exposed rats. Interestingly, sesamin treatment mitigated anxio-depressive-like behaviors, ameliorated object recognition memory impairment, and modulated oxidative-antioxidative status in the rats exposed to Pb. The results suggest that the anti-oxidative properties of sesamin may be one of the underlying mechanisms behind its beneficial effect in ameliorating behavioral deficits associated with Pb exposure.


Assuntos
Dioxóis , Chumbo , Lignanas , Ratos , Animais , Masculino , Ratos Wistar , Chumbo/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Lignanas/farmacologia , Lignanas/uso terapêutico
10.
Biol Trace Elem Res ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051478

RESUMO

The effect of various flavonoids against oxidative stress and inflammation caused by lead exposure has been investigated. However, the protective effects of myricetin (MYC) and fisetin (FST), which are known to have potent antioxidant properties, against nephrotoxicity caused by exposure to lead acetate (LA), the water-soluble form of lead, have not been investigated. Our study investigated the protective role of these flavonoids against LA intoxication-induced nephrotoxicity. In our study, 42 male rats were used. The rats were randomly selected and divided into 6 groups. These groups were: control, LA (100 g/kg), LA + MYC (100 mg/kg), LA + MYC (200 mg/kg), LA + FST (100 mg/kg) and LA + FST (200 mg/kg). All chemicals were administered daily by gavage for 28 days. According to the experimental protocol, the animals were sacrificed and their kidney tissues were isolated. Serum biochemical parameters, histological examinations, levels of several trace elements, oxidative stress and inflammatory parameters at both biochemical and molecular levels in kidney tissues were examined. After LA administration, tissue lead levels increased and zinc levels decreased. This situation was reversed by MYC and FST treatment. Oxidative stress and inflammatory response were increased in the kidney tissue of LA-treated rats and renal function was impaired. It was observed that both doses of MYC and high dose of FST could prevent nephrotoxicity. Oral administration of both doses of MYC and high dose FST ameliorated the changes in biochemical, oxidative and inflammatory parameters. Restoration of normal renal tissue architecture was also demonstrated by histological studies. MYC and FST were found to have promising biological activity against LA-induced nephrotoxicity, acting by attenuating inflammation and oxidative stress and improving antioxidant status.

11.
J Trace Elem Med Biol ; 80: 127315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801787

RESUMO

BACKGROUND: Heavy metals are one of the environmental pollutants. Lead (Pb) is one of the most common of these heavy metals. In this study, it was aimed at investigating the effects of syringic acid (SA) against testicular toxicity in rats administered lead acetate (PbAc). METHODS: In the present study, a total of 35 Sprague-Dawley rats, 7 in each group, were used. The rats were divided into 5 groups, with 7 male rats in each group. Rats were given PbAc and SA orally for 7 days. The effects of PbAc and SA on epididymal sperm quality and apoptosis, inflammation, oxidative stress and histopathological changes in testicular tissue were determined. RESULTS: While PbAc disrupted the seminiferous tubules and produced atrophic images, SA corrected these histological abnormalities. PbAc adminisration significantly reduced the levels of SOD, GSH, GPx, CAT, NRF-2 and NQO1 and significantly increased the levels of MDA and 8-OHdG in the testicular tissue of rats, while SA improved this situation. NF-κB, TNF-α, IL-1ß, NLRP3, RAGE, ATF6, PERK, IRE1, CHOP, and GRP78 genes expression levels increased with PbAc administration, however these levels decreased with SA administration. In addition, PbAc increased the levels of apoptotic markers Bax, Caspase-3 and APAF-1 and decreased the level of Bcl-2, while SA improved this situation. It was observed that PbAc significantly reduced sperm quality in rats, while SA positively affected sperm quality. CONCLUSION: As a result, SA administered against PbAc-induced testicular dysfunction in rats can provide effective protection at doses of 25 mg/kg/bw and 50 mg/kg/bw.


Assuntos
Chumbo , Sêmen , Ratos , Masculino , Animais , Chumbo/metabolismo , Ratos Sprague-Dawley , Sêmen/metabolismo , Testículo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apoptose , Autofagia , Acetatos/farmacologia , Antioxidantes/metabolismo
12.
Molecules ; 28(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894502

RESUMO

This study investigated the effects of aseptic inflammation and heavy metal exposure on immune responses, as well as the potential immunomodulatory properties of the newly synthesized 1-[1-(2,5-dimethoxyphenyl)-4-(naphthalene-1-yloxy)but-2-ynyl]-4-methylpiperazine complexed with ß-cyclodextrin (ß-CD). Aseptic inflammation was induced by a subcutaneous injection of turpentine in rats, while heavy metal exposure was achieved through a daily administration of cadmium chloride and lead acetate. The levels of immune cell populations, including cytotoxic T lymphocytes (CTL), monocytes, and granulocytes, were assessed in the spleen. The results showed that aseptic inflammation led to decreased levels of CTL, monocytes, and granulocytes on the 14th day, indicating an inflammatory response accompanied by a migration of effector cells to the inflamed tissues. The exposure to cadmium chloride and lead acetate resulted in systemic immunotoxic effects, with reduced levels of B cells, CD4+ Th cells, monocytes, and granulocytes in the spleen. Notably, piperazine complexed with ß-CD (the complex) exhibited significant stimulatory effects on CD4+, CD8+, and myeloid cell populations during aseptic inflammation, even in the presence of heavy metal exposure. These findings suggest the potential immunomodulatory properties of the complex in the context of aseptic inflammation and heavy metal exposure.


Assuntos
Cádmio , Metais Pesados , Ratos , Animais , Cádmio/toxicidade , Cloreto de Cádmio/toxicidade , Inflamação/induzido quimicamente , Piperazinas/farmacologia
13.
Environ Sci Pollut Res Int ; 30(45): 101208-101222, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648919

RESUMO

Lead acetate (PbAc) is one of the top five most dangerous toxic heavy metals, particularly leading to kidney damage and posing serious health risks in both humans and animals. Sinapic acid (SNP) is a naturally occurring flavonoid found in fruits and vegetables that stands out with its antioxidant, anti-inflammatory, and anticancer properties. This is the first study to investigate the effects of SNP on oxidative stress, inflammation, apoptosis, autophagy and endoplasmic reticulum (ER) stress in PbAc-induced nephrotoxicity in rats by biochemical, molecular and histological methods. 35 Spraque dawley rats were randomly divided into five groups of 7 rats each: control, PbAc, SNP (10mg/kg), PbAc + SNP 5, PbAC + SNP 10. PbAc at a dose of 30 mg/kg body weight was administered via oral gavage alone or in combination with SNP (5 and 10 mg/kg body weight) via oral gavage for seven days. While PbAc impaired renal function by increasing serum urea and creatinine levels, SNP decreased these levels and contributed to the improvement in renal function. The administration of SNP reduced oxidative stress by increasing PbAc-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels, decreasing MDA levels, a marker of increased lipid peroxidation. SNP administration reduced NF-κB, TNF-α, IL-1ß, NLRP3, and RAGE mRNA transcription levels, NF-κB, and TNF-α protein levels that are among the PbAc-induced increased inflammation parameters. Decreases in antiapoptotic Bcl-2 and increases in apoptotic Bax, APAF-1, and Caspase-3 due to PbAc exposure, SNP reversed the situation. SNP reduced ER stress caused by PbAc by increasing PERK, IRE1, ATF-6, CHOP, and GRP-78 levels and made it tend to regress. SNP reduced autophagy damage by decreasing the Beclin-1 protein level increased by PbAc. The findings of the present study suggested that SNP attenuates PbAc-induced nephrotoxicity.


Assuntos
Antioxidantes , Insuficiência Renal , Humanos , Ratos , Animais , Antioxidantes/metabolismo , Rim , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Chumbo/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Acetatos/farmacologia , Peso Corporal , Apoptose
14.
Environ Toxicol ; 38(11): 2656-2667, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37471654

RESUMO

In this study, the effect of lead acetate (PbAc) and sinapic acid (SNP) administration on oxidative stress, apoptosis, inflammation, sperm quality and histopathology in testicular tissue of rats was tried to be determined. PbAc was administered at a dose of 30 mg/kg/bw for 7 days to induce testicular toxicity in rats. Oral doses of 5 and 10 mg/kg/bw SNP were administered to rats for 7 days after PbAc administration. According to our findings, while PbAc administration increased MDA content in rats, it decreased GPx, SOD, CAT activity and GSH content. NF-kB, IL-1ß, TNF-α, and COX-2, which are among the inflammation parameters that increased due to PbAc, decreased with the administration of SNP. Nrf2, HO-1, and NQO1 mRNA transcript levels decreased with PbAc, but SNP treatments increased these mRNA levels in a dose-dependent manner. RAGE and NLRP3 gene expression were upregulated in PbAc treated rats. MAPK14, MAPK15, and JNK relative mRNA levels decreased with SNP treatment in PbAc treated rats. While the levels of apoptosis markers Bax, Caspase-3, and Apaf-1 increased in rats treated with PbAc, the level of Bcl-2 decreased, but SNP inhibited this apoptosis markers. PbAc caused histopathological deterioration in testis tissue and negatively affected spermatogenesis. When the sperm quality was examined, the decrease in sperm motility and spermatozoon density caused by PbAc, and the increase in the ratio of dead and abnormal spermatozoa were inhibited by SNP. As a result, while PbAc increased apoptosis and inflammation by inducing oxidative stress in testicles, SNP treatment inhibited these changes and increased sperm quality.


Assuntos
Chumbo , Motilidade dos Espermatozoides , Ratos , Masculino , Animais , Sêmen/metabolismo , Testículo , Estresse Oxidativo , Antioxidantes/metabolismo , Apoptose , Inflamação/metabolismo , RNA Mensageiro/metabolismo , Acetatos
15.
Arch Razi Inst ; 78(1): 345-352, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312731

RESUMO

The poultry industry is one of the pillars of food security in the world, as it is relied upon to provide meat and eggs to meet the increasing food demands. Therefore, this study was designed to investigate the effect of L-carnitine and methionine supplementation to the standard diets of broiler chickens in productive performance of broiler (Ross 308). One Hundred- fifty broiler chicks unsexed (Ross 308) with an initial weight with 43 g, were obtained from Al-Habbaniya hatchery (commercial hatchery). All the animals were within an average weight of 40 g (one-day old chicks). The experimental groups were as follows: the animals in T1 group received basal diet without any addition, the animals in T1 group received basal diet supplemented with lead acetate 400 mg/kg feed , the animals in T3 group received diet supplemented with carnitine 300 mg + lead acetate 400 mg, the animals in T4 group received basal diet supplemented with methionine 100 mg + lead acetate 400 mg, the animals in T5 group received basal diet supplemented with methionine 100 mg + carnitine 300 mg + lead acetate 400 mg. Body weight gain and feed consumption were weekly recorded. Feed conversion ratio was also calculated. Results showed that Birds in (T5) fed diets with (carnitine + methionine) observed highest live body weights comparison with T3 (carnitine + lead acetate) and T4 (adding methionine+ lead acetate). Data of results showed no significant differences were recorded in body weight gain. Also, Results obtained increase with feed consumption for treatment T5, while birds in T1 and T4 recorded lowest means in feed consumed. However, birds in T4 and T5 observed best feed conversion ratio as compare with T1, T2 and T3. Therefore, it can conclude that addition carnitine and methionine enhanced broiler productive performance.


Assuntos
Galinhas , Metionina , Animais , Metionina/farmacologia , Carnitina/farmacologia , Racemetionina , Dieta/veterinária , Suplementos Nutricionais
16.
Biomedicines ; 11(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37189698

RESUMO

Naringenin (NRG) is one of the most important naturally occurring flavonoids, predominantly found in some edible fruits, such as citrus species and tomatoes. It has several biological activities, such as antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The heavy metal lead is toxic and triggers oxidative stress, which causes toxicity in many organs, including the liver and brain. This study explored the potential protective role of NRG in hepato- and neurotoxicity caused by lead acetate in rats. Four groups of ten male albino rats were included: group 1 was a control, group 2 was orally treated with lead acetate (LA) at a dose of 500 mg/kg BW, group 3 was treated with naringenin (NRG) at a dose of 50 mg/kg BW, and group 4 was treated with 500 mg/kg LA and 50 mg/kg NRG for 4 weeks. Then, blood was taken, the rats were euthanized, and liver and brain tissues were collected. The findings revealed that LA exposure induced hepatotoxicity with a significant increase in liver function markers (p < 0.05). In addition, albumin and total protein (TP) and the albumin/globulin ratio (A/G ratio) (p < 0.05) were markedly lowered, whereas the serum globulin level (p > 0.05) was unaltered. LA also induced oxidative damage, demonstrated by a significant increase in malonaldehyde (MDA) (p < 0.05), together with a pronounced antioxidant system reduction (SOD, CAT, and GSH) (p < 0.05) in both liver and brain tissues. Inflammation of the liver and brain caused by LA was indicated by increased levels of nuclear factor kappa beta (NF-κß) and caspase-3, (p < 0.05), and the levels of B-cell lymphocyte-2 (BCL-2) and interleukin-10 (IL-10) (p < 0.05) were decreased. Brain tissue damage induced by LA toxicity was demonstrated by the downregulation of the neurotransmitters norepinephrine (NE), dopamine (DA), serotonin (5-HT), and creatine kinase (CK-BB) (p < 0.05). Additionally, the liver and brain of LA-treated rats displayed notable histopathological damage. In conclusion, NRG has potential hepato- and neuroprotective effects against lead acetate toxicity. However, additional research is needed in order to propose naringenin as a potential protective agent against renal and cardiac toxicity mediated by lead acetate.

17.
J Trace Elem Med Biol ; 79: 127216, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37224746

RESUMO

BACKGROUND: Apoptotic and oxido-inflammatory pathways have been found to be up-regulated in lead acetate poisoning which has been associated to endothelial and testicular dysfunctions. It is yet uncertain, nevertheless, if treatment with Ginkgo biloba supplements (GBS), a flavonoid-rich natural product can lessen the adverse effects of lead on endothelial and testicular functions. This study investigated the impact of Ginkgo biloba supplementation on lead-induced endothelial and testicular dysfunctions. METHODS: The animals were treated with GBS (50 mg/kg and 100 mg/kg orally) for 14 days following oral exposure to lead acetate (25 mg/kg) for 14 days. After euthanasia, blood samples, epididymal sperm, testes, and aorta were collected. The quantities of the hormones (testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH), as well as the anti-apoptotic, oxidative, nitrergic, inflammatory markers, were then determined using immunohistochemistry, ELISA, and conventional biochemical methods. RESULTS: GBS reduced lead-induced oxidative stress by increasing the levels of the antioxidant enzymes catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD), while lowering malondialdehyde (MDA) in endothelium and testicular cells. Normal testicular weight was restored by GBS which also decreased endothelial endothelin-I and increased nitrite levels. TNF-α and IL-6 were decreased while Bcl-2 protein expression was enhanced. Lead-induced alterations in reproductive hormones (FSH, LH, and testosterone) were also restored to normal. CONCLUSION: According to our result, using Ginkgo biloba supplement prevented lead from causing endothelial and testicular dysfunction by raising pituitary-testicular hormone levels, boosting Bcl-2 protein expression and lowering oxidative and inflammatory stress in the endothelium and testes.


Assuntos
Hormônios Testiculares , Testículo , Ratos , Animais , Masculino , Ratos Wistar , Ginkgo biloba/metabolismo , Regulação para Baixo , Regulação para Cima , Hormônios Testiculares/metabolismo , Hormônios Testiculares/farmacologia , Chumbo/metabolismo , Antioxidantes/metabolismo , Testosterona , Estresse Oxidativo , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Glutationa/metabolismo , Suplementos Nutricionais , Sementes/metabolismo
18.
ACS Appl Mater Interfaces ; 15(15): 18800-18807, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37032480

RESUMO

Wide-bandgap (WBG) perovskites have great potential for inclusion in efficient tandem solar cells, but large open-circuit voltage losses have limited device performance to date. Here, we show that a high-quality WBG perovskite, FA0.83Cs0.17Pb(I0.8Br0.2)3, with enlarged grain sizes and improved crystallinity can be achieved by incorporating lead chloride (PbCl2) into a lead acetate (PbAc2)-based precursor. The improved film quality resulted in the suppression of nonradiative recombination and a reduction in defect density. Efficient WBG perovskite solar cells (1.66 eV) with an efficiency of 19.3% and a high Voc of 1.22 V were fabricated using a facile one-step spin-coating method without the need for an antisolvent. Notably, the unencapsulated devices retained 90% of their initial power conversion efficiency after storage in a dry box (10% humidity) for 800 h.

19.
J Biochem Mol Toxicol ; 37(6): e23335, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807407

RESUMO

Exposure to Lead -causes testicular dysfunction through oxidative stress, inflammation, and apoptosis; however, naringenin (NGN) therapeutic impact against lead-evoked testicular dysfunction remains elusive. Herein, the point of the study was to examine the defensive impact of NGN on testicular dysfunction initiated by lead. Seventy-Two male Wistar rats were allotted into nine groups; control group, drug control groups, lead acetate group, as well as NGN treated groups (10, 25, and 50 mg/kg) respectively, given 5 days before lead acetate treatment. The result showed clearly the impact of lead on reduced sperm count, sperm motility as well as serum testosterone and LH levels. Additionally, it caused a significant rise in testicular inflammatory markers TNF-α, IL-1ß, and TGFß, effects that were accompanied by a reduction of AKT and mTOR levels. Lead acetate also caused degenerative changes in the testis, atrophy, and loss of spermatogenic series. Our findings revealed that NGN in a dose-dependent manner improved spermiotoxicity induced by lead acetate via restoration of the testicular function, preservation of spermatogenesis, halting inflammatory cytokines along with the enhancement of germ cell survival using upregulation of AKT/mTOR expressions. The present study discloses that NGN suppresses lead acetate toxicity that is involved in the antioxidant effect in a dose-dependent manner, besides its anti-inflammatory property.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta , Ratos , Animais , Masculino , Ratos Wistar , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Chumbo , Testosterona , Motilidade dos Espermatozoides , Sêmen/metabolismo , Espermatozoides , Testículo/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Acetatos/farmacologia
20.
Ecotoxicol Environ Saf ; 253: 114666, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812871

RESUMO

Skeletal system toxicity due to lead exposure has attracted extensive attention in recent years, but few studies focus on the skeletal toxicity of lead in the early life stages of zebrafish. The endocrine system, especially the GH/IGF-1 axis, plays an important role in bone development and bone health of zebrafish in the early life. In the present study, we investigated whether lead acetate (PbAc) affected the GH/IGF-1 axis, thereby causing skeletal toxicity in zebrafish embryos. Zebrafish embryos were exposed to lead PbAc between 2 and 120 h post fertilization (hpf). At 120 hpf, we measured developmental indices, such as survival, deformity, heart rate, and body length, and assessed skeletal development by Alcian Blue and Alizarin Red staining and the expression levels of bone-related genes. The levels of GH and IGF-1 and the expression levels of GH/IGF-1 axis-related genes were also detected. Our data showed that the LC50 of PbAc for 120 h was 41 mg/L. Compared with the control group (0 mg/L PbAc), after PbAc exposure, the deformity rate increased, the heart rate decreased, and the body length was shortened at various time periods, in the 20-mg/L group at 120 hpf, the deformity rate increased by 50 fold, the heart rate decreased by 34%, and the body length shortened by 17%. PbAc altered cartilage structures and exacerbated bone loss in zebrafish embryos; in addition, PbAc exposure down-regulated the expression of chondrocyte (sox9a, sox9b), osteoblast (bmp2, runx2) and bone mineralization-related genes (sparc, bglap), and up-regulated the expression of osteoclast marker genes (rankl, mcsf). The GH level increased and the IGF-1 level declined significantly. The GH/IGF-1 axis related genes (ghra, ghrb, igf1ra, igf1rb, igf2r, igfbp2a, igfbp3, igfbp5b) were all decreased. These results suggested that PbAc inhibited the differentiation and maturation of osteoblasts and cartilage matrix, promoted the formation of osteoclasts, and ultimately induced cartilage defects and bone loss by disrupting the GH/IGF-1 axis.


Assuntos
Fator de Crescimento Insulin-Like I , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Chumbo/metabolismo , Sistema Endócrino/metabolismo , Acetatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...