Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Front Plant Sci ; 15: 1478094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381513

RESUMO

Investigating carbon (C), nitrogen (N) and phosphorus (P) contents and ecological stoichiometric characteristics in leaf litter from tropical rainforests is crucial for elucidating nutrient cycling and energy flow in forest ecosystems. In this study, a 60-ha tropical montane rainforest dynamic monitoring plot in Jianfengling, was selected as the research site and 60 subplots were selected for detailed study. Leaf litter was collected monthly throughout 2016, branches of similar height were placed atthe four corners of each sample square to support a nylon cloth (1 m× 1 m) with 1 mm apertures. The collected plant leaves were sorted,placed into envelopes, labelled, and transported to the laboratory and samples from various plant species were identified, resulting in a total of 107 samples collected and analyzed. For the 31 dominant species, the leaf litter had C, N and P contents of 312.71 ± 28.42, 4.95 ± 0.46 and 0.40 ± 0.03 g/kg, respectively. The C:N, C:P and N:P ratios were 63.61 ± 7.50, 790.91 ± 82.30 and 12.49 ± 1.00, respectively, indicating moderate variability. The C, N and P contents exhibited greater variability among the plant groups, indicating significant heterogeneity among the samples. In contrast, the data from the subplots exhibited less variability, highlighting significant homogeneity. Overall, the mean carbon, nitrogen and phosphorus contents in the leaf litter from tropical montane rainforests were lower than those observed at national and global scales. The N:P ratios in leaf litter below 14 indicated that nitrogen limited litter decomposition in Jianfengling. However, no significant correlations were observed between the C, N and P contents and their stoichiometric ratios in leaf litter and those in soil. The above results provide important reference data and scientific basis for the nutrient cycling and energy flow processes, and in the future, we can explore the limiting role and mechanism of nitrogen in the decomposition process of leaf litter.

2.
Sci Total Environ ; 953: 176082, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39244040

RESUMO

Freshwater ecosystems are being degraded by a wide range of stressors resulting from human activities. Various structural and functional metrics or indices are used to assess the 'health' or condition of riverine ecosystems. It is uncertain if structural or functional metrics or indices respond to different stressors and whether some are more responsive to stressors in general. Here we conducted a multi-study synthesis, similar to a meta-analysis, across four independent outdoor mesocosm experiments involving the manipulation of various chemical stressors - two types of salinity (synthetic marine salts (SMS) and sodium bicarbonate), two insecticides (malathion and sulfoxaflor), increased nutrients (N and P), increased sedimentation and two combinations of stressors (1: malathion, nutrients and sedimentation, 2: sulfoxaflor, nutrients and sedimentation). We compare the effects of these singular or multiple stressors on stream macroinvertebrate community structure, and Eucalyptus camaldulensis leaf litter breakdown rates by microbes and total (microbes and invertebrates). Macroinvertebrate communities were adversely affected by the two sets of multiple stressors, SMS, and both insecticides yet, and in contrast to several published studies, both microbial and total leaf litter was unaffected. Nutrients and sodium bicarbonate, increased breakdown rates or had a unimodal 'Ո' shaped response, with maxima at intermediate levels. Sedimentation by fine sand, however, decreased total leaf litter breakdown, while not affecting microbial leaf litter breakdown. Divergent responses between the effects of stressors on leaf litter breakdown rates that we observed and those in the literature may be caused by multiple mechanisms, including differences between communities, functional redundancy and differences in stressor magnitude and interactions with other (unknown) variables.


Assuntos
Monitoramento Ambiental , Invertebrados , Folhas de Planta , Rios , Invertebrados/fisiologia , Animais , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Salinidade
3.
PeerJ ; 12: e17769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39329142

RESUMO

Leaf litter decomposition, a crucial component of the global carbon cycle, relies on the pivotal role played by microorganisms. However, despite their ecological importance, leaf-litter-decomposing microorganism taxonomic and functional diversity needs additional study. This study explores the taxonomic composition, dynamics, and functional role of microbial communities that decompose leaf litter of forest-forming tree species in two ecologically unique regions of Europe. Twenty-nine microbial metagenomes isolated from the leaf litter of eight forest-forming species of woody plants were investigated by Illumina technology using read- and assembly-based approaches of sequences analysis. The taxonomic structure of the microbial community varies depending on the stage of litter decomposition; however, the community's core is formed by Pseudomonas, Sphingomonas, Stenotrophomonas, and Pedobacter genera of Bacteria and by Aureobasidium, Penicillium, Venturia genera of Fungi. A comparative analysis of the taxonomic structure and composition of the microbial communities revealed that in both regions, seasonal changes in structure take place; however, there is no clear pattern in its dynamics. Functional gene analysis of MAGs revealed numerous metabolic profiles associated with leaf litter degradation. This highlights the diverse metabolic capabilities of microbial communities and their implications for ecosystem processes, including the production of volatile organic compounds (VOCs) during organic matter decomposition. This study provides important advances in understanding of ecosystem processes and the carbon cycle, underscoring the need to unravel the intricacies of microbial communities within these contexts.


Assuntos
Florestas , Microbiota , Folhas de Planta , Estações do Ano , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Microbiota/genética , Microbiota/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Fungos/genética , Fungos/classificação , Fungos/metabolismo , Fungos/isolamento & purificação , Sequenciamento Completo do Genoma , Metagenoma/genética , Árvores/microbiologia
4.
Sci Total Environ ; 952: 175975, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39222804

RESUMO

Vegetation restoration of degraded land affects litter quality by changing the composition of tree species, providing direct effects on regulating the dynamic of soil organic C (SOC) through the priming effect (PE). However, it is unclear how the combined effects caused by vegetation restoration and input of different quality litters on PE-related C loss and gain. Here, we collected soils from an unrestored site and a site restored for 20 years, adding 13C-labeled low-quality (with high C/nitrogen [N] and lignin/N) and high-quality (with low C/N and lignin/N) litters to the soil, respectively. Our results revealed that adding high- and low-quality litter in two sites produced positive PEs after 150-day laboratory-based incubation. The PE induced by high-quality litter was lower than that of low-quality in two sites, which can be interpreted as low-quality litter has higher C/N that aggravates the nutrient imbalance of microorganisms and enhances their demand for N, prompting microorganisms to accelerate the mineralization of SOC through the "N mining". High-quality litter inputs can boost microbial C use efficiency and alleviate soil C loss due to PE in unrestored and restored pine forests. Moreover, high-quality litter input has a greater positive effect on SOC gain in unrestored lands than in restored lands, suggesting that litter with higher nutrient availability or fertilization is especially needed for the restoration of degraded soil fertility and C formation. Taken together, this study highlights the importance of tree species producing high-quality litter in mediating SOC decomposition and formation during degraded lands restoration, which is beneficial for the restoration of degraded lands and the enhancement of soil C sequestration.


Assuntos
Carbono , Pinus , Solo , Solo/química , Carbono/análise , Florestas , Nitrogênio/análise , Recuperação e Remediação Ambiental/métodos
5.
Sci Total Environ ; 951: 175685, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39182774

RESUMO

The decomposition of litter is susceptible to the influence of climate change and soil conditions, which can subsequently impact the release of carbon dioxide (CO2) from forest soils and the absorption of methane (CH4). Ecological theory proposes the existence of a home-field advantage (HFA) in litter decomposition, suggesting that the decomposition rate of litter (such as fallen leaves, twigs, and roots) may be faster in their native habitat than in foreign environments. Therefore, we selected litter from Pinus tabuliformis (PT) and Quercus acutissima Carruth (QC) in the field and conducted a 439-day litter transplant experiment to test the magnitude and direction of the HFA of these two litter types in three forest stands. During this experiment, we monitored the changes in soil CO2 and CH4 fluxes associated with the decomposition of PT and QC leaf litter in their native and foreign sites. Furthermore, we measured various soil physical, chemical, and biological indicators. The results indicated that the decomposition rate of QC leaf litter was faster in its native habitat, demonstrating a clear HFA effect. Conversely, the decomposition of PT leaf litter was observed to be more rapid in away soil, suggesting a pronounced home-field disadvantage (HFD). The study found that PT leaf litter exhibited greater CO2 release when decomposing in away soil, demonstrating 43 % and 32 % increases compared to bare soil, respectively. Conversely, QC leaf litter was observed to release more CO2 in its home soil. Additionally, the bare soils of the PT and QC home sites were found to absorb more CH4 compared to leaf litter coverage, with increases of 37.8 % and 31.2 %, respectively. The partial least squares model indicated that the litter attributes had a significant direct effect on soil temperature and enzyme activity. Soil temperature and enzyme activity further directly influenced the soil CO2 and CH4 fluxes. The results of our study indicate that the HFA of litter is dependent on litter type, and that litter transplantation can impact soil greenhouse gas exchange. This research provides a theoretical foundation for forest management and conservation strategies, as well as valuable data for global carbon neutrality efforts.


Assuntos
Dióxido de Carbono , Florestas , Metano , Folhas de Planta , Quercus , Solo , Dióxido de Carbono/análise , Solo/química , Metano/análise , Folhas de Planta/química , Pinus , Mudança Climática , Monitoramento Ambiental , Poluentes Atmosféricos/análise
6.
Sci Total Environ ; 951: 175844, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39214368

RESUMO

Plant litter is an important carbon (C) and nutrient pool in terrestrial ecosystems. The C components in plant litter are important because they regulate plant litter decomposition rate, but little is known on the global patterns and determinants of their concentrations in freshly fallen plant litter. Here, we quantified the concentrations of leaf litter C components (i.e., carbohydrate, polyphenol, tannin, and condensed tannin) with 864 measurements from 161 independent publications. We found that (1) the mean concentrations of leaf litter carbohydrate, polyphenol, tannin and condensed tannin were 27.7, 6.08, 8.84 and 5.7 %, respectively; (2) the concentrations of leaf litter C components were affected by taxonomic division, mycorrhizal association, life form, and/or leaf shedding strategy; (3) soil property had similar impacts on the concentrations of the four C compounds, while the influence of mean annual temperature and precipitation varied; and (4) elevation had opposing effects on carbohydrate and polyphenol concentrations, but not on that of tannin and condensed tannin, and only carbohydrate concentration was strongly affected by absolute latitude. In general, our results clearly show the global patterns and drivers of the concentrations of litter C compounds, providing new insights into the role of litter decomposition in global C dynamics.


Assuntos
Carbono , Folhas de Planta , Carbono/análise , Folhas de Planta/química , Solo/química , Taninos/análise , Monitoramento Ambiental , Ecossistema , Polifenóis/análise
7.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39020097

RESUMO

Leaf litter microbes collectively degrade plant polysaccharides, influencing land-atmosphere carbon exchange. An open question is how substrate complexity-defined as the structure of the saccharide and the amount of external processing by extracellular enzymes-influences species interactions. We tested the hypothesis that monosaccharides (i.e. xylose) promote negative interactions through resource competition, and polysaccharides (i.e. xylan) promote neutral or positive interactions through resource partitioning or synergism among extracellular enzymes. We assembled a three-species community of leaf litter-degrading bacteria isolated from a grassland site in Southern California. In the polysaccharide xylan, pairs of species stably coexisted and grew equally in coculture and in monoculture. Conversely, in the monosaccharide xylose, competitive exclusion and negative interactions prevailed. These pairwise dynamics remained consistent in a three-species community: all three species coexisted in xylan, while only two species coexisted in xylose, with one species capable of using peptone. A mathematical model showed that in xylose these dynamics could be explained by resource competition. Instead, the model could not predict the coexistence patterns in xylan, suggesting other interactions exist during biopolymer degradation. Overall, our study shows that substrate complexity influences species interactions and patterns of coexistence in a synthetic microbial community of leaf litter degraders.


Assuntos
Bactérias , Interações Microbianas , Folhas de Planta , Poaceae , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Bactérias/metabolismo , Ecossistema , Especificidade da Espécie , Xilanos/metabolismo , Xilose/metabolismo , Modelos Teóricos , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/metabolismo , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/metabolismo , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/metabolismo , Interações Microbianas/fisiologia , Poaceae/microbiologia
8.
Ecol Evol ; 14(7): e70075, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041019

RESUMO

Conspecific adults impose strong negative density-dependent effects on seed survival nearby parent trees, however, the underlying mechanisms are diversified and remain unclear. In this study, we presented consistent evidence that parent-scented forest floor masked seed odor, reduced cache recovery rate by scatter-hoarding animals, and then increased seed dispersal far away from mother trees. Our results showed that seed odors of Korean pine Pinus koraiensis match well with the volatile profile of their forest floor. Moreover, scatter-hoarding animals selectively transported P. koraiensis seeds toward the areas where seed odor was more contrasting against the background substrate, possibly due to the fact that accumulation of conspecific volatile compounds in caches hindered seed detection by scatter-hoarding animals. Our study provides insight into the role of leaf litter in directing seed dispersal process, representing a novel mechanism by which P. koraiensis increases selection for seed dispersal far away from the parent tree.

9.
Ambio ; 53(11): 1673-1685, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38871928

RESUMO

Foliar fungi on urban trees are important for tree health, biodiversity and ecosystem functioning. Yet, we lack insights into how urbanization influences foliar fungal communities. We created detailed maps of Stockholm region's climate and air quality and characterized foliar fungi from mature oaks (Quercus robur) across climatic, air quality and local habitat gradients. Fungal richness was higher in locations with high growing season relative humidity, and fungal community composition was structured by growing season maximum temperature, NO2 concentration and leaf litter cover. The relative abundance of mycoparasites and endophytes increased with temperature. The relative abundance of pathogens was lowest with high concentrations of NO2 and particulate matter (PM2.5), while saprotrophs increased with leaf litter cover. Our findings show that urbanization influences foliar fungi, providing insights for developing management guidelines to promote tree health, prevent disease outbreaks and maintain biodiversity within urban landscapes.


Assuntos
Fungos , Folhas de Planta , Folhas de Planta/microbiologia , Suécia , Fungos/fisiologia , Árvores/microbiologia , Quercus/microbiologia , Clima , Poluição do Ar , Microbiologia do Ar , Cidades , Urbanização , Biodiversidade
10.
Environ Pollut ; 357: 124418, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908673

RESUMO

Polystyrene nanoparticles (PS NPs) released from plastic products have been demonstrated to pose a threat to leaf litter decomposition in streams. Given the multitrophic systems of species interactions, the effects of PS NPs through different exposure routes on ecosystem functioning remain unclear. Especially dietary exposure, a frequently overlooked pathway leading to toxicity, deserves more attention. A microcosm experiment was conducted in this study to assess the effects of waterborne and dietary exposure to PS NPs on the litter-based food chain involving leaves, microbial decomposers, and detritivores (river snails). Compared to waterborne contamination, dietary contamination resulted in lower microbial enzyme activities and a significantly higher decrease in the lipid content of leaves. For river snails, their antioxidant activity was significantly increased by 20.21%-69.93%, and their leaf consumption rate was significantly reduced by 16.60% through the dietary route due to the lower lipid content of leaves. Besides, the significantly decreased nutritional quality of river snails would negatively influence their palatability to predators. The findings of this study indicate that dietary exposure to PS NPs significantly impacts microbial and detritivore activities, thus affecting their functions in the detritus food chain as well as nutrient cycling.


Assuntos
Cadeia Alimentar , Nanopartículas , Folhas de Planta , Rios , Caramujos , Poluentes Químicos da Água , Folhas de Planta/química , Animais , Rios/química , Poluentes Químicos da Água/análise , Caramujos/efeitos dos fármacos , Caramujos/fisiologia , Poliestirenos , Plásticos , Ecossistema
11.
Microb Pathog ; 192: 106690, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759935

RESUMO

The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.


Assuntos
Azadirachta , Fertilizantes , Oligoquetos , Praguicidas , Folhas de Planta , Azadirachta/química , Animais , Oligoquetos/microbiologia , Folhas de Planta/microbiologia , Praguicidas/farmacologia , Compostagem , Microbiologia do Solo , Solo/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
12.
Arch Microbiol ; 206(6): 264, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760519

RESUMO

Fungi that inhabit fire-prone forests have to be adapted to harsh conditions and fungi affiliated to Ascomycota recovered from foliar litter samples were used for bioprospecting of molecules such as enzymes. Agni's fungi isolated from leaf litter, whose spores are capable of tolerating 110 oC were screened for thermostable lipases. One of the isolates, Leptosphaerulina trifolii A SMR-2011 exhibited high positive lipase activity than other isolates while screening through agar plate assay using Tween 20 in the medium. Maximum lipase activity (173.2 U/mg) of L. trifolii was observed at six days of inoculation and decreased thereafter. Among different oils used, the maximum lipase activity was attained by soybean oil (940.1 U/mg) followed by sunflower oil (917.1 U/mg), and then by mustard oil (884.8 U/mg), showing its specificity towards unsaturated fatty acids. Among the various organic nitrogen sources tested, soybean meal showed maximum lipase activity (985.4 U/mg). The partially purified enzyme was active over a wide range of pH from 8 to 12 with a pH optimum of 11.0 (728.1 U/mg) and a temperature range of 60-80 oC with an optimal temperature of 70 oC (779.1 U/mg). The results showed that lipase produced by L. trifolii is alkali stable and retained 85% of its activity at pH 11.0. This enzyme also showed high thermal stability retaining more than 50% of activity when incubated at 60 oC to 90 °C for 2 h. The ions Ca2+ and Mn2+ induced the lipase activity, while Cu2+ and Zn2+ ions lowered the activity compared to control. These results suggests that the leaf litter fungus L. trifolii serves as a potential source for the production of alkali-tolerant and thermostable lipase.


Assuntos
Ascomicetos , Estabilidade Enzimática , Proteínas Fúngicas , Lipase , Folhas de Planta , Lipase/metabolismo , Lipase/genética , Folhas de Planta/microbiologia , Ascomicetos/enzimologia , Ascomicetos/genética , Ascomicetos/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Temperatura , Especificidade por Substrato , Temperatura Alta , Proteínas de Bactérias
13.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684466

RESUMO

Cynanchum auriculatum Royle ex Wight (CA) is experiencing challenges with continuous cropping obstacle (CCO) due to soil-borne fungal pathogens. The leaf litter from CA is regularly incorporated into the soil after root harvesting, but the impact of this practice on pathogen outbreaks remains uncertain. In this study, a fungal strain D1, identified as Fusarium solani, was isolated and confirmed as a potential factor in CCO. Both leave extract (LE) and root extract (RE) were found to inhibit seed germination and the activities of plant defense-related enzymes. The combinations of extracts and D1 exacerbated these negative effects. Beyond promoting the proliferation of D1 in soil, the extracts also enhanced the hypha weight, spore number, and spore germination rate of D1. Compared to RE, LE exhibited a greater degree of promotion in the activities of pathogenesis-related enzymes in D1. Additionally, caffeic acid and ferulic acid were identified as potential active compounds. LE, particularly in combination with D1, induced a shift in the composition of fungal communities rather than bacterial communities. These findings indicate that the water extract of leaf litter stimulated the growth and proliferation of fungal strain D1, thereby augmenting its pathogenicity toward CA and ultimately contributing to the CCO process.


Assuntos
Cynanchum , Fusarium , Doenças das Plantas , Folhas de Planta , Raízes de Plantas , Microbiologia do Solo , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Extratos Vegetais/farmacologia
14.
Heliyon ; 10(5): e27228, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495134

RESUMO

Leaf litter decomposition is a major component of nutrient cycling which depends on the quality and quantity of the leaf material. Ash trees (Fraxinus excelsior, decay time âˆ¼ 0.4 years) are declining throughout Europe due to a fungal pathogen (Hymenoscyphus fraxineus), which is likely to alter biochemical cycling across the continent. The ecological impact of losing species with fast decomposing leaves is not well quantified. In this study we examine how decomposition of three leaf species with varying decomposition rates including ash, sycamore (Acer pseudoplatanus, decay time âˆ¼ 1.4 years), and beech (Fagus sylvatica, decay time âˆ¼ 6.8 years) differ in habitats with and without ash as the dominant overstorey species. Ten plots (40 m × 40 m) were set up in five locations representing ash dominated and non-ash dominated habitats. In each plot mesh bags (30 cm × 30 cm, 0.5 mm aperture) with a single leaf species (5 g) were used to include (large holes added) and exclude macrofauna invertebrates (with a focus on decomposer organisms such as earthworms, millipedes, and woodlice). The mesh bags were installed in October 2020 and retrieved without replacement at exponential intervals after 6, 12, 24 and 48 weeks. Total leaf mass loss was highest in the ash dominated habitat (ash dominated: 88.5%, non-ash dominated: 66.5%) where macrofauna were the main contributor (macrofauna: 96%, microorganisms/mesofauna: 4%). The difference between macrofauna vs microorganisms and mesofauna was less pronounced in the non-ash dominated habitat (macrofauna: 68%, microorganisms/mesofauna: 31%). Our results suggest that if ash dominated habitats are replaced by species such as sycamore, beech, and oak, the role of macrofauna decomposers will be reduced and leaf litter decomposition rates will decrease by 25%. These results provide important insights for future ash dieback management decisions.

15.
Sci Total Environ ; 926: 171935, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527547

RESUMO

Urban streams are affected by a complex combination of stressors, which modify physical habitat structure, flow regime, water quality, biological community composition, and ecosystem processes and services, thereby altering ecosystem structure and functioning. Rehabilitation projects have been undertaken in several countries to rehabilitate urban streams. However, stream rehabilitation is still rarely reported for neotropical regions. In addition, most studies focus on structural aspects, such as water quality, sediment control, and flood events, without considering ecosystem function indicators. Here, we evaluated the structure and functioning of three 15-y old rehabilitated urban stream sites in comparison with three stream sites in the best available ecological condition (reference), three sites with moderate habitat alteration, and three severely degraded sites. Compared to degraded streams, rehabilitated streams had higher habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores, and lower biochemical oxygen demand, primary production, sediment deposition, and siltation. However, rehabilitated streams had higher primary production than moderate and reference streams, and lower canopy cover, habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores than reference streams. These results indicate that rehabilitated streams have better structural and functional condition than degraded streams, but do not strongly differ from moderately altered streams, nor have they reached reference stream condition. Nonetheless, we conclude that rehabilitation is effective in removing streams from a degraded state by improving ecosystem structure and functioning. Furthermore, the combined use of functional and structural indicators facilitated an integrative assessment of stream ecological condition and distinguished stream conditions beyond those based on water quality indicators.


Assuntos
Ecossistema , Invertebrados , Animais , Qualidade da Água , Biota , Monitoramento Ambiental
16.
Environ Entomol ; 53(2): 268-276, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38376061

RESUMO

Ticks and tick-borne diseases are of increasing concern across the United States, particularly in the Northeast. Ixodes scapularis Say (Ixodida: Ixodidae) remains the primary vector for the Lyme disease spirochete, Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner). Prior studies established that I. scapularis can be found in greatest abundance in the 1-m forested ecotone surrounding the lawn edge in residential backyards. Our study was conducted on 42 properties in Guilford, CT, and sought to expand upon this premise by determining which key habitat features were associated with increased densities of host-seeking I. scapularis nymphs. We quantified nymphal abundances in 19 different habitat types that were posited to influence densities. We determined that nymphal I. scapularis densities were greatest in forested areas closest to lawn edges with leaf litter or understory vegetation present, as well as short lawns adjacent to woodland edges. Additionally, we determined that there were no significant declines in nymphal I. scapularis density where leaf litter was removed, lawns were left unmowed, or woodchip barriers were installed. Bird feeders and woodpiles were not associated with increased nymphal I. scapularis densities. However, areas adjacent to stone walls did have nearly 3 times the density of I. scapularis nymphs present compared with habitats without stone walls. The culmination of the results from this study can be utilized to create more targeted acaricide applications rather than broadcast spraying, as well as increase homeowner awareness for areas with heightened risk for exposure to nymphal I. scapularis, which are deemed the most epidemiologically important species and stage for pathogen transfer to humans.


Assuntos
Borrelia burgdorferi , Ixodes , Ixodidae , Doença de Lyme , Humanos , Estados Unidos , Animais , Connecticut , Ninfa
17.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38373845

RESUMO

Community assembly is influenced by environmental niche processes as well as stochastic processes that can be spatially dependent (e.g. dispersal limitation) or independent (e.g. priority effects). Here, we sampled senesced tree leaves as unit habitats to investigate fungal community assembly at two spatial scales: (i) small neighborhoods of overlapping leaves from differing tree species and (ii) forest stands of differing ecosystem types. Among forest stands, ecosystem type explained the most variation in community composition. Among adjacent leaves within stands, variability in fungal composition was surprisingly high. Leaf type was more important in stands with high soil fertility and dominated by differing tree mycorrhizal types (sugar maple vs. basswood or red oak), whereas distance decay was more important in oak-dominated forest stands with low soil fertility. Abundance of functional groups was explained by environmental factors, but predictors of taxonomic composition within differing functional groups were highly variable. These results suggest that fungal community assembly processes are clearest for functional group abundances and large spatial scales. Understanding fungal community assembly at smaller spatial scales will benefit from further study focusing on differences in drivers for different ecosystems and functional groups, as well as the importance of spatially independent factors such as priority effects.


Assuntos
Ecossistema , Micobioma , Microbiologia do Solo , Florestas , Árvores/microbiologia , Solo , Fungos/genética
18.
Microb Ecol ; 87(1): 32, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228918

RESUMO

Alders are nitrogen (N)-fixing riparian trees that promote leaf litter decomposition in streams through their high-nutrient leaf litter inputs. While alders are widespread across Europe, their populations are at risk due to infection by the oomycete Phytophthora ×alni, which causes alder dieback. Moreover, alder death opens a space for the establishment of an aggressive N-fixing invasive species, the black locust (Robinia pseudoacacia). Shifts from riparian vegetation containing healthy to infected alder and, eventually, alder loss and replacement with black locust may alter the key process of leaf litter decomposition and associated microbial decomposer assemblages. We examined this question in a microcosm experiment comparing three types of leaf litter mixtures: one representing an original riparian forest composed of healthy alder (Alnus lusitanica), ash (Fraxinus angustifolia), and poplar (Populus nigra); one with the same species composition where alder had been infected by P. ×alni; and one where alder had been replaced with black locust. The experiment lasted six weeks, and every two weeks, microbially driven decomposition, fungal biomass, reproduction, and assemblage structure were measured. Decomposition was highest in mixtures with infected alder and lowest in mixtures with black locust, reflecting differences in leaf nutrient concentrations. Mixtures with alder showed distinct fungal assemblages and higher sporulation rates than mixtures with black locust. Our results indicate that alder loss and its replacement with black locust may alter key stream ecosystem processes and assemblages, with important changes already occurring during alder infection. This highlights the importance of maintaining heathy riparian forests to preserve proper stream ecosystem functioning.


Assuntos
Alnus , Ecossistema , Árvores , Rios/microbiologia , Biomassa , Nitrogênio , Folhas de Planta/microbiologia , Alnus/microbiologia
19.
Ecol Lett ; 27(1): e14330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866881

RESUMO

The associations of arbuscular mycorrhizal (AM) or ectomycorrhiza (EcM) fungi with plants have sequentially evolved and significantly contributed to enhancing plant nutrition. Nonetheless, how evolutionary and ecological forces drive nutrient acquisition strategies of AM and EcM woody plants remains poorly understood. Our global analysis of woody species revealed that, over divergence time, AM woody plants evolved faster nitrogen mineralization rates without changes in nitrogen resorption. However, EcM woody plants exhibited an increase in nitrogen mineralization but a decrease in nitrogen resorption, indicating a shift towards a more inorganic nutrient economy. Despite this alteration, when evaluating present-day woody species, AM woody plants still display faster nitrogen mineralization and lower nitrogen resorption than EcM woody plants. This inorganic nutrient economy allows AM woody plants to thrive in warm environments with a faster litter decomposition rate. Our findings indicate that the global pattern of nutrient acquisition strategies in mycorrhizal plants is shaped by the interplay between phylogeny and climate.


Assuntos
Micorrizas , Raízes de Plantas/microbiologia , Nitrogênio , Plantas , Nutrientes , Solo , Simbiose
20.
Sci Total Environ ; 912: 168926, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029985

RESUMO

Arable land use and the associated application of agrochemicals can affect local freshwater communities with consequences for the entire ecosystem. For instance, the structure and function of leaf-associated microbial communities can be affected by pesticides, such as fungicides. Additionally, the leaf species on which these microbial communities grow reflects another environmental filter for community structure. These factors and their interaction may jointly modify leaves' nutritional quality for higher trophic levels. To test this assumption, we studied the structure of leaf-associated microbial communities with distinct exposure histories (pristine [P] vs vineyard run off [V]) colonising two leaf species (black alder, European beech, and a mixture thereof). By offering these differently colonised leaves as food to males and females of the leaf-shredding amphipod Gammarus fossarum (Crustacea; Amphipoda) we assessed for potential bottom-up effects. The growth rate, feeding rate, faeces production and neutral lipid fatty acid profile of the amphipod served as response variable in a 2 × 3 × 2-factorial test design over 21d. A clear separation of community history (P vs V), leaf species and an interaction between the two factors was observed for the leaf-associated aquatic hyphomycete (i.e., fungal) community. Sensitive fungal species were reduced by up to 70 % in the V- compared to P-community. Gammarus' growth rate, feeding rate and faeces production were affected by the factor leaf species. Growth was negatively affected when Gammarus were fed with beech leaves only, whereas the impact of alder and the mixture of both leaf species was sex-specific. Overall, this study highlights that leaf species identity had a more substantial impact on gammarids relative to the microbial community itself. Furthermore, the sex-specificity of the observed effects (excluding fatty acid profile, which was only measured for male) questions the procedure of earlier studies, that is using either only one sex or not being able to differentiate between males and females. However, these results need additional verification to support a reliable extrapolation.


Assuntos
Anfípodes , Fungicidas Industriais , Microbiota , Poluentes Químicos da Água , Animais , Anfípodes/fisiologia , Ecossistema , Ácidos Graxos , Água Doce , Fungicidas Industriais/toxicidade , Folhas de Planta , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA