RESUMO
Epiphytic and rupicolous plants inhabit environments with limited water resources. Such plants commonly use Crassulacean Acid Metabolism (CAM), a photosynthetic pathway that accumulates organic acids in cell vacuoles at night, so reducing their leaf water potential and favouring water absorption. Foliar water uptake (FWU) aids plant survival during drought events in environments with high water deficits. We hypothesized that FWU represents a strategy employed by epiphytic and rupicolous orchids for water acquisition and that CAM will favour increased water absorption. We examined 6 epiphyte, 4 terrestrial and 6 rupicolous orchids that use C3 (n = 9) or CAM (n = 7) pathways. Five individuals per species were used to evaluate FWU, structural characteristics and leaf water balance. Rupicolous species with C3 metabolism had higher FWU than other species. FWU (Cmax and k) could be related to succulence, SLM and leaf RWC. The results indicated that high orchid leaf densities favoured FWU, as area available for water storage increases with leaf density. Structural characteristics linked to water storage (e.g. high RWC, succulence), on the other hand, could limit leaf water absorption by favouring high internal leaf water potentials. Epiphytic, rupicolous and terrestrial orchids showed FWU. Rupicolous species had high levels of FWU, probably through absorption from mist. However, succulence in plants with CAM appears to mitigate FWU.
Assuntos
Folhas de Planta , Água , Água/metabolismo , Folhas de Planta/metabolismo , Ecossistema , Fotossíntese , Árvores/metabolismoRESUMO
The effect of anthropogenic disturbance on plant community traits and tradeoffs remains poorly explored in tropical forests. In this study, we aimed to identify tradeoffs between defense and other plant functions related to growth processes in order to detect potential aboveground and edaphic environmental conditions modulating traits variation on plant communities, and to find potential assembly rules underlying species coexistence in secondary (SEF) and old-growth forests (OGF). We measured the foliar content of defense phytochemicals and leaf traits related to fundamental functions on 77 species found in SEF and OGF sites in the Jalisco dry forest ecoregion, Mexico, and we explored (1) the trait-trait and trait-habitat associations, (2) the intra and interspecies trait variation, and (3) the traits-environment associations. We found that phytochemical content was associated with high leaf density and leaf fresh mass, resulting in leaves resistant to drought and high radiation, with chemical and physical defenses against herbivore/pathogen attack. The phytochemicals and chlorophyll concentrations were negatively related, matching the predictions of the Protein Competition Model. The phylogenetic signal in functional traits, suggests that abundant clades share the ability to resist the harsh biotic and abiotic conditions and face similar tradeoffs between productive and defensive functions. Environmental filters could modulate the enhanced expression of defensive phytochemicals in SEF, while, in OGFs, we found a stronger filtering effect driving community assembly. This could allow for the coexistence of different defensive strategies in OGFs, where a greater species richness could dilute the prevalence of pathogens/herbivores. Consequently, anthropogenic disturbance could alter TDF ecosystem properties/services and functioning.
RESUMO
The northeastern slope of the Andes is an area of high diversity of ferns and lycophytes. In this study we assessed the diversity patterns of ferns and lycophytes in ten 250 m x 2 m plots installed at three elevational zones, from 418 to 3447 m.a.s.l., in the Napo province of Ecuador. Floristic diversity was measured using Hill numbers and by partitioning species diversity. Three functional diversity indices were calculated from a set of five leaf traits and weighted by species abundance: functional richness (FRic), evenness (FEve) and divergence (FDiv). To disentangle functional diversity from species richness, the standardized effect size (SES) of each index was also calculated. We recorded 148 species, Polypodiaceae and Dryopteridaceae being the most representative families. Species richness continuously decreased with elevation. Floristic composition was highly heterogeneous among elevation zones, with total species turnover found between 1500 and 2000 m.a.s.l. SES-FDiv and SES-FEve were higher than the null expectation for plots at mid-elevations, suggesting that deterministic mechanisms, such as biotic or abiotic filters, could explain assemblage composition at these sites. However, SES-FEve, SES-FRic and SES-FDiv did not differ from the null expectations at low and high elevation sites, suggesting the predominance of a stochastic process. By combining floristic and functional diversity, we were able to infer the observed community patterns with the resource-use strategies of fern and lycophytes in a mountain area, an approach that can be used to understand how assemblages might react to changing environmental conditions.(AU)
La vertiente noreste de los Andes del Ecuador tiene alta diversidad de helechos y licófitos. En este estudio describimos patrones de diversidad de estos grupos en diez parcelas de 250 m x 2 m instaladas en tres zonas altitudinales, de 418 a 3447 m.s.n.m., en la provincia de Napo, Ecuador. La diversidad se calculó utilizando los números de Hill y particionando la diversidad de especies. Tres índices de diversidad funcional fueron estimados a partir de cinco atributos de las hojas ponderados por la abundancia de las especies: riqueza (FRic), uniformidad (FEve) y divergencia (FDiv). Para separar la diversidad funcional de la riqueza, se calculó el tamaño del efecto estandarizado (SES) de cada índice. Registramos 148 especies, siendo Polypodiaceae y Dryopteridaceae las familias más representativas. La riqueza disminuyó continuamente en el gradiente altitudinal. La composición de la comunidad tuvo un cambio total de especies entre 1500 y 2000 m.s.n.m. En parcelas intermedias, SES-FDiv y SES-FEve registraron valores más altos de lo esperado por el modelo nulo, lo que sugiere que los mecanismos deterministas, como los filtros bióticos y abióticos, podrían explicar el ensamble en estas comunidades. En parcelas de altitudes bajas y altas los tres índices no difirieron del valor nulo, lo que sugiere que predominan procesos estocásticos. Al combinar composición florística y diversidad funcional, pudimos identificar patrones de diversidad y estrategias de uso de recursos de helechos y licófitos. Este enfoque se puede utilizar para comprender cómo el ensamble de las comunidades es afectado por la variación en las condiciones ambientales.(AU)
Assuntos
Polypodiaceae/fisiologia , Dryopteridaceae/fisiologia , Biodiversidade , Biota/fisiologia , Recursos Naturais , EquadorRESUMO
Controversies exist regarding the iso/anisohydric continuum for classifying plant water-use strategies. Isohydricity has been argued to result from plant-environment interaction rather than it being an intrinsic property of the plant itself. Discrepancies remain regarding the degree of isohydricity (σ) of plants and their threshold for physiological responses and resistance to drought. Thus, the aim of this study was to evaluate the isohydricity of the grapevine varieties Syrah and Carménère under a non-lethal water deficit progression from veraison from two different locations, the Cachapoal Valley (CV) and Maipo Valley (MV), in central Chile and with different rootstock only in Syrah. For this purpose, the midday stem water potential (Ψmds) regulation and stomatal responses to drought, leaf traits related to pressure-volume curves, stomatal sensitivity to ABA, cavitation threshold, and photosynthetic responses were assessed. A higher atmospheric water demand was observed in the CV compared to the MV, with lower Ψmds values in the former for both varieties. Also, the σ values in Carménère were 1.11 ± 0.14 MPa MPa-1 and 0.68 ± 0.18 MPa MPa-1 in the CV and MV, respectively, and in Syrah they were 1.10 ± 0.07 MPa MPa-1 in the CV and 0.60 ± 0.10 MPa MPa-1 in the MV. Even though similar variations in σ between locations in both varieties were evident, Carménère plants showed a conserved stomatal response to Ψmds in both study sites, while those of Syrah resulted in a higher stomatal sensitivity to Ψmds in the site of lower σ. Besides the differences in seasonal weather conditions, it is likely that the different rootstock and clonal variability of each season in Syrah were able to induce coordinated changes in σ, Ψgs12, and osmotic potential at full turgor (π0). On the other hand, irrespective of the σ, and given the similarity between the π0 and Ψgs12 in leaves before drought, it seems that π0 could be a convenient tool for assessing the Ψmds threshold values posing a risk to the plants in order to aid the irrigation decision making in grapevines under controlled water deficit. Finally, water deficits in vineyards might irreversibly compromise the photosynthetic capacity of leaves.
RESUMO
Identifying the environmental factors that shape intraspecific genetic and phenotypic diversity of species can provide insights into the processes that generate and maintain divergence in highly diverse biomes such as the savannas of the Neotropics. Here, we sampled Qualea grandiflora, the most widely distributed tree species in the Cerrado, a large Neotropical savanna. We analyzed genetic variation with microsatellite markers in 23 populations (418 individuals) and phenotypic variation of 10 metamer traits (internode, petiole and corresponding leaf lamina) in 36 populations (744 individuals). To evaluate the role of geography, soil, climate, and wind speed in shaping the divergence of genetic and phenotypic traits among populations, we used Generalized Dissimilarity Modelling. We also used multiple regressions to further investigate the contributions of those environmental factors on leaf trait diversity. We found high genetic diversity, which was geographically structured. Geographic distance was the main factor shaping genetic divergence in Qualea grandiflora, reflecting isolation by distance. Genetic structure was more related to past climatic changes than to the current climate. We also found high metamer trait variation, which seemed largely influenced by precipitation, soil bulk density and wind speed during the period of metamer development. The high degree of metamer trait variation seems to be due to both, phenotypic plasticity and local adaptation to different environmental conditions, and may explain the success of the species in occupying all the Cerrado biome.
RESUMO
PREMISE: Two fundamental hypotheses on herbivore resistance and leaf habit are the resource availability hypothesis (RAH) and the carbon-nutrient balance hypothesis (CNBH). The RAH predicts higher constitutive resistance by evergreens, and the CNBH predicts higher induced resistance by deciduous species. Although support for these hypotheses is mixed, they have rarely been examined in congeneric species. METHODS: We compared leaf constitutive and induced resistance (as leaf polyphenol and tannin concentrations, and as damage level in non-choice experiments) and leaf traits associated with herbivory of coexisting Nothofagus species using (1) a defoliation experiment and (2) natural defoliation caused by an outbreak of a common defoliator of Nothofagus species. RESULTS: In the defoliation experiment, polyphenol and tannin concentrations were similar between deciduous and evergreen species; regardless of leaf habit, polyphenols increased in response to defoliation. In the natural defoliation survey, N. pumilio (deciduous) had significantly higher herbivory, lower carbon/nitrogen ratio and leaf mass per area, and higher nitrogen and phosphorus concentrations than N. betuloides (evergreen); N. antarctica (deciduous) had intermediate values. Polyphenol concentrations and herbivore resistance indicated by the non-choice experiment were lower in N. pumilio than in N. antarctica and N. betuloides, which had similar values. CONCLUSIONS: Higher herbivory in N. pumilio was associated with a higher nutritional value and a lower level of leaf carbon-based defenses compared to both the evergreen and the other deciduous species, indicating that herbivore resistance in Nothofagus species cannot be attributed to only leaf habit as predicted by the RAH or CNBH.
Assuntos
Antibiose , Fagales/fisiologia , Herbivoria , Folhas de Planta/fisiologia , Simpatria/fisiologia , Especificidade da EspécieRESUMO
Resumen La selección mediada por herbívoros moldea la evolución de los caracteres defensivos en las plantas. El conocimiento acerca del rol de los herbívoros como mediadores de selección es escaso y más aún si se consideran los grupos funcionales de herbívoros. Los objetivos de este trabajo fueron (1) describir la variación en rasgos foliares entre poblaciones, entre plantas dentro de una población y a nivel sub-individual (intra-planta), (2) explorar la relación entre la variación en el nivel de herbivoría y rasgos foliares, (3) determinar la relación entre rasgos foliares y patrones de daño y (4) estimar los regímenes de selección por diferentes grupos funcionales de herbívoros. Realizamos este estudio en cuatro poblaciones de Vassobia breviflora en el noroeste de Argentina (Yungas). Los rasgos foliares considerados fueron: tamaño, área foliar (af), forma (relación longitud/ancho de la hoja; laf) y proporción de área foliar removida (pafr) (N = 1 582 hojas, 57 plantas). Los herbívoros consumieron 15.6 % del área foliar y 76.8 % de la variación en la pafr ocurrió a nivel sub-individual. El patrón de daño fue dominado por herbívoros cortadores (70 %), seguido de un patrón de herbivoría punteada (22 %), 5 % mixto y 1 % minador. Se detectó selección no lineal para laf (γii = -0.180, EE = 0.76, P < 0.05), y selección correlacional entre el daño cortador y af (γij = -1.297, SE = 0.62, P < 0.05) y entre el daño punteado y af (γij= -1.130, SE=0.76, P < 0.05). La selección natural favoreció plantas con hojas pequeñas y alta remoción foliar y hojas grandes con menor daño y se detectó selección en contra de hojas grandes con mayor daño. Además, deducido de la relación entre el tipo de daño y la adecuación relativa, la selección favorecería el daño punteado por sobre el cortador. Las plantas resolverían el conflicto con los herbívoros según el tipo de daño y la selección natural regularía el despliegue foliar como una estrategia para lidiar con la diversidad de herbívoros.(AU)
Abstract Herbivore mediated-selection shapes the evolution of defensive plant traits. Knowledge about the role of herbivores as mediators of selection is scarce and even more if herbivore functional groups are considered. The objectives of this work were (1) to describe the variation in foliar traits between populations and both between and intra-plants within a population, (2) to explore the relationship between the variation in the herbivory level and foliar traits, (3) to determine the relationship between leaf traits and damage patterns and (4) estimate the selection regimes by different herbivore functional groups. We conducted this study in four populations of Vassobia breviflora in Northwestern Argentina (Yungas). The foliar traits considered were size, leaf area (af), shape (leaf length / width ratio; laf) and proportion of leaf area removed (pafr) (N = 1 582 leaves, 57 plants). The herbivores consumed 15.6 % of the leaf area and 76.8 % of the variation in the pafr occurred at the sub-individual level. The damage pattern was dominated by cutter herbivores (70 %), followed by a dotted herbivory pattern (22 %), mixed 5 % and 1 % miner. Nonlinear selection was detected for laf (γii = -0.180; EE = 0.76; P < 0.05), and correlational selection between the cutter damage and af (γij = -1.297; SE = 0.62; P < 0.05) and between the dotted damage and af (γij = -1.130; SE = 0.76; P < 0.05). Natural selection favored plants with small leaves and high foliar removal and large leaves with less damage and selection against larger leaves with greater damage was detected. In addition, deduced from the relationship between the damage type and the relative fitness, the selection would favor the dotted damage over the cutter one. The plants would resolve the conflict with the herbivores according to the damage type and natural selection would regulate the foliar display as a strategy to deal with the herbivore diversity.(AU)
Assuntos
Plantas , Biodiversidade , Herbivoria , Variação Biológica da População , ArgentinaRESUMO
The Antarctic Peninsula has experienced a rapid warming in the last decades. Although recent climatic evidence supports a new tendency towards stabilization of temperatures, the impacts on the biosphere, and specifically on Antarctic plant species, remain unclear. We evaluated the in situ warming effects on photosynthesis, including the underlying diffusive, biochemical and anatomical determinants, and the relative growth of two Antarctic vascular species, Colobanthus quitensis and Deschampsia antarctica, using open top chambers (OTCs) and gas exchange measurements in the field. In C. quitensis, the photosynthetic response to warming relied on specific adjustments in the anatomical determinants of the leaf CO2 transfer, which enhanced mesophyll conductance and photosynthetic assimilation, thereby promoting higher leaf carbon gain and plant growth. These changes were accompanied by alterations in the leaf chemical composition. By contrast, D. antarctica showed no response to warming, with a lack of significant differences between plants grown inside OTCs and plants grown in the open field. Overall, the present results are the first reporting a contrasting effect of in situ warming on photosynthesis and its underlying determinants, of the two unique Antarctic vascular plant species, which could have direct consequences on their ecological success under future climate conditions.
Assuntos
Embriófitas/crescimento & desenvolvimento , Embriófitas/fisiologia , Aquecimento Global , Fotossíntese , Feixe Vascular de Plantas/fisiologia , Regiões Antárticas , Biomassa , Dióxido de Carbono/metabolismo , Geografia , Células do Mesofilo/fisiologia , Microclima , Modelos Biológicos , Nitrogênio/metabolismo , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , TemperaturaRESUMO
Different growth rates of grasses from South American natural grasslands are adaptations to soils of low fertility. Grasses with fast growth rate are species with an accumulation of nutrients in soluble forms, with a high metabolic rate. This work aimed to study whether grasses with different growth rates have different phosphorus (P) uptake and efficiency of P use with high and low P availability in soil, as well as whether phosphatase activity is related to the species growth rate and variations in P biochemical forms in the tissues. Three native grasses (Axonopus affinis, Paspalum notatum, and Andropogon lateralis) were grown in pots with soil. Along plant growth, biomass production and its structural components were measured, as well as leaf acid phosphatase activity and leaf P chemical fractions. At 40 days of growth, leaf acid phosphatase activity declined by about 20-30% with an increase of P availability in soil for A. affinis and P. notatum, respectively. Under both soil P levels, P. notatum showed the highest plant total biomass, leaf dry weight and highest P use efficiency. A. affinis presented the higher P uptake efficiency and soluble organic P concentration in the leaf tissues. A. lateralis showed P-Lipid concentration 1.6 and 1.3 times higher than A. affinis and P. notatum, respectively. In conclusion, acid phosphatase activity in grass of higher growth rate is related to higher remobilization of P due to higher demand, as in A. affinis, and higher growth rates are associated with higher P uptake efficiency.
Assuntos
Fósforo , Poaceae , Monoéster Fosfórico Hidrolases , SoloRESUMO
Leaf water uptake (LWU) has been observed in plants of different ecosystems and this process is distinct among different species. Four plant species from the Brazilian fog mountain fields were evaluated in order to detect if leaf water uptake capacity is related to the cell wall composition of leaf epidermis. LWU measurements and their relation to anatomical and biochemical traits were analyzed. Cell wall composition was verified through immunocytochemistry using monoclonal antibodies recognizing pectin compounds, and histochemistry with calcofluor white to track cellulose. Differences in LWU among the four species were clearly revealed. Two species presented higher maximum leaf water content and the lowest values of water absorption speed. The other two species presented opposite behavior, namely, low leaf water uptake and the highest values of water absorption speed. The anatomical traits associated with the cell wall composition corroborated the data on the different LWU strategies. The species with abundant detection of cellulose in their epidermal cell walls absorbed more water, but more slowly, while those with abundant detection of pectins absorbed water at a higher speed. These results indicate that cell wall composition regarding pectin and cellulose are significant for water uptake by the leaf epidermis. Pectin provides greater porosity and absorption speed, while cellulose provides greater hydrophilicity and greater water uptake capacity. Current data indicate that the composition of epidermal cell walls is a relevant trait for leaf water uptake.
Assuntos
Celulose/metabolismo , Ecossistema , Pectinas/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Clima TropicalRESUMO
Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (Vcmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (Jmax ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax ), and leaf dark respiration (Rd ). The raw net photosynthesis by intercellular CO2 (A/Ci ) data used to calculate Vcmax , Jmax , and Vpmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange.
Assuntos
Carbono/metabolismo , Folhas de Planta/metabolismo , Dióxido de Carbono , América Central , Fotossíntese , Ribulose-Bifosfato Carboxilase , ÁrvoresRESUMO
Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula.
Assuntos
Caryophyllaceae/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Poaceae/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Regiões Antárticas , Carbono/metabolismo , Clima Frio , Células do Mesofilo/metabolismo , Folhas de Planta/anatomia & histologiaRESUMO
We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax ), and the maximum rate of electron transport (Jmax )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma , Na and Pa , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests.
Assuntos
Altitude , Florestas , Umidade , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Clima Tropical , Dióxido de Carbono/metabolismo , Ensaios Enzimáticos , Cinética , Modelos Biológicos , Nitrogênio/metabolismo , Peru , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Ribulose-Bifosfato Carboxilase/metabolismo , Especificidade da Espécie , TemperaturaRESUMO
Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (Pmass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (Nmass ) and carbon (Cmass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R2 = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R2 = 0.07-0.73; %RMSE = 7-38) and multiple (R2 = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.
Assuntos
Fenômenos Químicos , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Árvores/fisiologia , Ecossistema , Análise dos Mínimos Quadrados , Modelos Teóricos , Peru , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Tecnologia de Sensoriamento Remoto , Comunicações Via Satélite , Especificidade da EspécieRESUMO
Leaf economics spectrum (LES) theory suggests a universal trade-off between resource acquisition and storage strategies in plants, expressed in relationships between foliar nitrogen (N) and phosphorus (P), leaf mass per area (LMA), and photosynthesis. However, how environmental conditions mediate LES trait interrelationships, particularly at large biospheric scales, remains unknown because of a lack of spatially explicit data, which ultimately limits our understanding of ecosystem processes, such as primary productivity and biogeochemical cycles. We used airborne imaging spectroscopy and geospatial modeling to generate, to our knowledge, the first biospheric maps of LES traits, here centered on 76 million ha of Andean and Amazonian forest, to assess climatic and geophysical determinants of LES traits and their interrelationships. Elevation and substrate were codominant drivers of leaf trait distributions. Multiple additional climatic and geophysical factors were secondary determinants of plant traits. Anticorrelations between N and LMA followed general LES theory, but topo-edaphic conditions strongly mediated and, at times, eliminated this classic relationship. We found no evidence for simple P-LMA or N-P trade-offs in forest canopies; rather, we mapped a continuum of N-P-LMA interactions that are sensitive to elevation and temperature. Our results reveal nested climatic and geophysical filtering of LES traits and their interrelationships, with important implications for predictions of forest productivity and acclimation to rapid climate change.
Assuntos
Clima , Florestas , Folhas de Planta/crescimento & desenvolvimento , Tecnologia de Sensoriamento Remoto , Altitude , Geografia , Peru , Folhas de Planta/metabolismoRESUMO
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
Assuntos
Annona/genética , Variação Genética , Brasil , Pradaria , Folhas de Planta , Chuva , Estações do Ano , Inquéritos e Questionários , Temperatura , ÁrvoresRESUMO
The Central American locust (CAL) Schistocerca piceifrons piceifrons Walker is one of the most harmful plant pests in the Yucatan Peninsula, where an important gregarious zone is located. The olfactory response and host plant acceptance by the CAL have not been studied in detail thus far. In this work, the olfactory response of the CAL to odor of various plant species was evaluated using an olfactometer test system. In addition, the host plant acceptance was assessed by the consumption of leaf area. Results showed that the CAL was highly attracted to odor of Pisonia aculeata. Evaluation of host plant acceptance showed that the CAL fed on Leucaena glauca and Waltheria americana, but not on P. aculeata or Guazuma ulmifolia. Analysis of leaf thickness, and leaf content of nitrogen (N) and carbon (C) showed that the CAL was attracted to plant species with low leaf C content.
Assuntos
Gafanhotos , Folhas de Planta , Olfato , Animais , Comportamento Alimentar , Himenópteros , Nitrogênio , Plantas , Estados UnidosRESUMO
Studies of leaf traits often focus on tradeoffs between growth and resource conservation, but little is known about variation in the mechanical traits that influence resource conservation. This study investigates how leaf mechanical traits vary across matorral vegetation in central Chile, how they correlate with environmental factors, and how these trends compare at a broader geographic scale. Leaf toughness, strength, stiffness, and associated traits were measured in five matorral types in central Chile, and relationships with soil N and P and climate variables were assessed. Trends with soil and climate were then analyzed across shrubland and woodland in Chile, Western Australia, and New Caledonia. Chilean species varied in leaf mechanics and associated traits, both within and among matorral types, with more species in sclerophyll matorral having strong, tough, and stiff leaves than in arid and littoral matorral. Overall, leaves with high leaf dry mass per area were stiffer, tougher, stronger, thicker, denser, with more fiber, lignin, phenolics and fiber per unit protein and less protein: tannin activity and N and P per mass, forming a broad sclerophylly syndrome. Mechanical traits of matorral species were not correlated with soil N or P, or predictably with climate variables, except flexural stiffness (EI W) which correlated positively with annual reference evapotranspiration (ET 0). However, soil P made strong independent contributions to variation in leaf mechanics across shrublands and woodlands of Chile, Western Australia, and New Caledonia, either separately (strength) or together with ET 0 (toughness) explaining 46-90% of variation. Hence ET 0 was predictive of EI W in Chilean matorral, whereas soil P was highly predictive of variation in leaf strength, and combined with ET 0 was highly predictive of toughness, at a broader geographic scale. The biological basis of these relationships, however, may be complex.
RESUMO
Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.