Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
1.
J Periodontol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031577

RESUMO

BACKGROUND: This study was designed to test the hypothesis that the leptin receptor (LepR) regulates changes in periodontal tissues and that the overexpression of the receptor for resolvin E1 (ERV1) prevents age- and diabetes-associated alveolar bone loss. METHODS: LepR-deficient transgenic (TG) mice were cross-bred with those overexpressing ERV1 (TG) to generate double-TG mice. In total, 95 mice were divided into four experimental groups: wild type (WT), TG, LepR deficient (db/db), and double transgenic (db/db TG). The groups were followed from 4 weeks up to 16 weeks of age. The natural progression of periodontal disease without any additional method of periodontitis induction was assessed by macroscopic and histomorphometric analyses. Osteoclastic activity was measured by tartrate-resistant acid phosphatase (TRAP) staining. RESULTS: At 4 weeks, ERV1 overexpression prevented weight gain. From Week 8 onward, there was a significant increase in the weight of db/db mice with or without ERV1 overexpression compared to the WT mice, accompanied by an increase in glucose levels. By 8 weeks of age, the percentage of bone loss in the LepR deficiency groups was significantly greater compared to WT mice. ERV1 overexpression in the db/db TG mice prevented early alveolar bone loss; however, it did not impact the development of diabetic bone loss in aging mice after the onset of weight gain and diabetes. CONCLUSIONS: The findings suggest that the overexpression of ERV1 prevents LepR-associated alveolar bone loss during the early phases of periodontal disease by delaying weight gain, diabetes onset, and associated inflammation; however, LepR deficiency increases susceptibility to naturally occurring inflammatory alveolar bone loss as the animal ages, associated with excess weight gain, onset of diabetes, and excess inflammation.

2.
Immunol Cell Biol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014534

RESUMO

Adipokines play essential roles in regulating a range of biological processes, but growing evidence indicates that they are also fundamental in immunological mechanisms and, primarily, inflammatory responses. Adipokines mediate their actions through specific receptors. However, although adipokine receptors are widely distributed in many cell and tissue types, limited data are available on their expression in mast cells (MCs) and, consequently, adipokine's significance in the modulation of MC activity within the tissues. In this study, we demonstrate that rat peritoneal MCs constitutively express the leptin receptor (i.e. LEPR), adiponectin receptors (i.e. ADIPOR1 and ADIPOR2) and the chemerin receptor (i.e. CMKLR1). We also found that LEPR, ADIPOR1, ADIPOR2 and CMKLR1 expression in MCs changes in response to stimulation by their specific ligands and some cytokines with potent proinflammatory properties. Furthermore, the involvement of intracellular signaling molecules in leptin-, adiponectin- and chemerin-induced MC response was analyzed. Overall, our findings suggest that adipokines leptin, adiponectin and chemerin can significantly affect the activity of MCs in various processes, especially during inflammation. These observations may contribute significantly to understanding the relationship between adipokines, immune mechanisms and diseases or conditions with an inflammatory component.

3.
Cells ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891042

RESUMO

The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) and stem cell factor (SCF). Different authors have defined different markers for mouse MSC identification like PDGFR+Sca-1+ subsets, Nestin+, or LepR+ cells. Of these, the LepR+ cells are the major source of SCF and CXCL12 in the BM microenvironment and play a major role in HSC maintenance and hematopoiesis. LepR+ cells give rise to most of the bones and BM adipocytes, further regulating the microenvironment. In adult BM, LepR+ cells are quiescent but after fracture or irradiation, they proliferate and differentiate into mesenchymal lineage osteogenic, adipogenic and/or chondrogenic cells. They also play a crucial role in the steady-state hematopoiesis process, as well as hematopoietic regeneration and the homing of hematopoietic stem cells (HSCs) after myeloablative injury and/or HSC transplantation. They line the sinusoidal cavities, maintain the trabeculae formation, and provide the space for HSC homing and retention. However, the LepR+ cell subset is heterogeneous; some subsets have higher adipogenic potential, while others express osteollineage-biased genes. Different transcription factors like Early B cell factor 3 (EBF3) or RunX2 help maintain this balance between the self-renewing and committed states, whether osteogenic or adipogenic. The study of LepR+ MSCs holds immense promise for advancing our understanding of HSC biology, tissue regeneration, metabolic disorders, and immune responses. In this review, we will discuss the origin of the BM resident LepR+ cells, different subtypes, and the role of LepR+ cells in maintaining hematopoiesis, osteogenesis, and BM adipogenesis following their multifaceted impact.


Assuntos
Células-Tronco Mesenquimais , Receptores para Leptina , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Receptores para Leptina/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Osso e Ossos/metabolismo , Hematopoese , Medula Óssea/metabolismo , Diferenciação Celular
4.
Front Endocrinol (Lausanne) ; 15: 1386309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846494

RESUMO

Introduction: Leptin and its receptors are expressed by the human placenta throughout gestation, yet the role of leptin in early human placental development is not well characterized. Leptin is overexpressed in the placentas from preeclamptic (PE) pregnancies. PE can result from the impaired invasion of fetal placental cells, cytotrophoblasts (CTBs), into the maternal decidua. We hypothesized that elevated leptin levels would impair human CTB invasion. Methods: The effects of leptin on the invasion of human CTBs were evaluated in three cell models, HTR-8/SVneo cells, primary CTBs, and placental villous explants using invasion assays. Further, leptin receptor expression was characterized in all three cell models using RT-PCR. Further phosphokinase assays were performed in HTR-8/SVneo cells to determine signaling pathways involved in CTB invasion in response to differential leptin doses. Results: We found that, prior to 8 weeks gestation, leptin promoted CTB invasion in the explant model. After 11 weeks gestation in explants, primary CTBs and in HTR-8/SVneo cells, leptin promoted invasion at moderate but not at high concentrations. Further, leptin receptor characterization revealed that leptin receptor expression did not vary over gestation, however, STAT, PI3K and MAPK pathways showed different signaling in response to varied leptin doses. Discussion: These data suggest that the excess placental leptin observed in PE may cause impaired CTB invasion as a second-trimester defect. Leptin's differential effect on trophoblast invasion may explain the role of hyperleptinemia in preeclampsia pathogenesis.


Assuntos
Idade Gestacional , Leptina , Receptores para Leptina , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , Leptina/metabolismo , Leptina/farmacologia , Feminino , Gravidez , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Placenta/metabolismo , Placenta/efeitos dos fármacos , Placenta/patologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Relação Dose-Resposta a Droga , Transdução de Sinais , Placentação/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
5.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928125

RESUMO

Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.


Assuntos
Tecido Adiposo , Fígado Gorduroso , Leptina , Fígado , Omento , Humanos , Leptina/metabolismo , Feminino , Masculino , Fígado/metabolismo , Pessoa de Meia-Idade , Omento/metabolismo , Omento/patologia , Tecido Adiposo/metabolismo , Adulto , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Resistência à Insulina , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética
6.
Ann Endocrinol (Paris) ; 85(3): 201-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38871500

RESUMO

Lipodystrophy syndromes are rare diseases of genetic or acquired origin, characterized by quantitative and qualitative defects in adipose tissue. The metabolic consequences of lipodystrophy syndromes, such as insulin resistant diabetes, hypertriglyceridemia and hepatic steatosis, are frequently very difficult to treat, resulting in significant risks of acute and/or chronic complications and of decreased quality of life. The production of leptin by lipodystrophic adipose tissue is decreased, more severely in generalized forms of lipodystrophy, where adipose tissue is absent from almost all body fat depots, than in partial forms of the disease, where lipoatrophy affects only some parts of the body and can be associated with increased body fat in other anatomical regions. Several lines of evidence in preclinical and clinical models have shown that leptin replacement therapy could improve the metabolic complications of lipodystrophy syndromes. Metreleptin, a recombinant leptin analogue, was approved as an orphan drug to treat the metabolic complications of leptin deficiency in patients with generalized lipodystrophy in the USA or with either generalized or partial lipodystrophy in Japan and Europe. In this brief review, we will discuss the benefits and limitations of this therapy, and the new expectations arising from the recent development of a therapeutic monoclonal antibody able to activate the leptin receptor.


Assuntos
Terapia de Reposição Hormonal , Leptina , Lipodistrofia , Leptina/uso terapêutico , Leptina/análogos & derivados , Leptina/deficiência , Humanos , Lipodistrofia/tratamento farmacológico , Terapia de Reposição Hormonal/métodos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Síndrome , Animais
7.
J Endocrinol Invest ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907823

RESUMO

BACKGROUND AND PURPOSE: Subclinical hypothyroidism (SCH) has been identified to be associated with implantation failure, in which the dysfunction of trophoblast cells is involved. In this study, the transcriptomics of aborted placenta from SCH rats were analyzed. Jupiter microtubule-associated homolog 2 (JPT2) was downregulated in the aborted placenta. This study aims to investigate its role in SCH-associated miscarriage. METHODS: Spontaneous abortion was observed in SCH rats generated by thyroidectomy combined with levothyroxine administration. The transcriptomics analysis was performed using aborted placenta. Afterward, the effects of JPT2 on trophoblast cells were explored using gain-and loss-of-function experiments. RESULTS: Transcriptomics analysis showed 1286 downregulated genes and 2300 upregulated genes in the aborted placenta, and JPT2 was significantly downregulated in the aborted placenta from SCH rats. Afterward, gain-and loss-of-function experiments exhibited that overexpression of JPT2 promoted the proliferation, migration, invasion, spheroid formation of HTR-8/SVneo trophoblast cells and their attachment to endometrial stromal cells, while these biological behaviors were suppressed by JPT2 knockdown. Furthermore, JPT2 accelerated the transcription of leptin receptor (LEPR), and activated signal transducer and activator of transcription 3 (STAT3) signal in a transcription factor AP-2γ-dependent manner. In addition, silencing of LEPR abolished the role of JPT2. CONCLUSION: Our results revealed that JPT2, which was downregulated in the aborted placenta from SCH rats, promoted proliferation, migration, invasion, spheroid formation, and attachment of trophoblast cells via regulating LEPR/STAT3 axis as a transcription co-factor. It is indicated that low expression of JPT2 may contribute to the abortion in individuals with SCH.

8.
Eur J Pharmacol ; 978: 176796, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945286

RESUMO

The purpose of this study was to determine the receptor subtype and the underlying mechanisms involved in the relaxant effect to leptin in mid- and late-pregnant mouse uterus. We determined the relative mRNA expression of receptor subtypes, eNOS, and BKCa channel by quantitative PCR and also the overall receptor expression by immunohistochemistry. Isometric tension studies were conducted to evaluate the effects of leptin and to delineate its mechanisms. A selective siRNA for the ObRb receptor was used to determine the participation of the receptor subtype in biochemical and molecular effects of leptin. The relaxant response to leptin was greater in mid-pregnancy compared to late pregnancy and was mediated by the activation of BKCa channels by eNOS-derived nitric oxide in an ObRb receptor-dependent manner. In comparison to mid-pregnancy, expression of short forms (mainly ObRa receptor) of the receptor was significantly increased in late pregnancy, whereas ObRb receptor expression was similar in both phases. The results of the study suggest that ObRb receptor mediates leptin-induced increase in eNOS expression and NO synthesis. Leptin-induced eNOS expression and activation cause cGMP-independent stimulation of BKCa channels causing uterine relaxation. Increased short forms of the receptors and reduced BKCa channels exert a negative effect on uterine relaxation in late pregnancy. Leptin may have a physiological role in maintaining uterine quiescence in mid-pregnancy and its reduced relaxant response in late gestation may facilitate labor. Further, ObRb receptor agonists may be useful in the management of preterm labor.

9.
Biochem Biophys Res Commun ; 719: 150042, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761633

RESUMO

BACKGROUND & AIMS: Psychosocial stress has become an unavoidable part of life, which was reported to promote tumor development. Chronic stress significantly promotes the norepinephrine (NE) secretion and the expression of leptin receptor (LEPR), leading to tumor invasion, metastasis, and proliferation. However, the mechanism of chronic stress-induced tumor proliferation remains unclear. METHODS: To reveal the effect of chronic stress on tumor proliferation, subcutaneous tumor models combined with chronic restraint stress (CRS) were established. Combined with the transcript omics database of liver cancer patients, the target pathways were screened and further verified by in vitro experiments. RESULTS: The results showed that the CRS with subcutaneous tumor transplantation (CRS + tumor) group exhibited significantly larger tumor sizes than the subcutaneous tumor transplantation (tumor) group. Compared with the tumor group, CRS obviously increased the mRNA levels of LEPR, FOS, and JUNB of tumor tissues in the CRS + tumor group. Furthermore, the treatment with norepinephrine (NE) significantly elevated the survival rate of H22 cells and enhanced the expression of LEPR, FOS, and JUNB in vitro. Silencing LEPR significantly reduced the expression of FOS and JUNB, accompanied by a decrease in H22 cell viability. CONCLUSIONS: Our study demonstrated that CRS activates the LEPR-FOS-JUNB signaling pathway by NE, aggravating tumor development. These findings might provide a scientific foundation for investigating the underlying pathological mechanisms of tumors in response to chronic stress.


Assuntos
Proliferação de Células , Proteínas Proto-Oncogênicas c-fos , Receptores para Leptina , Transdução de Sinais , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Masculino , Proteínas Proto-Oncogênicas c-jun/metabolismo , Estresse Psicológico/metabolismo , Restrição Física , Norepinefrina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos Endogâmicos BALB C
10.
Fish Physiol Biochem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722479

RESUMO

Leptins and other related genes have been proven to play vital roles in food intake, weight control, and other life activities. While the function of leptins in yellowtail kingfish (Seriola lalandi) has not yet been explored, in the present study, we investigated the structure and preliminary function of four leptin-related genes in S. lalandi. In detail, the sequence of two leptin genes (lepa and lepb), one leptin receptor gene (lepr), and one leptin receptor overlapping transcript (leprot) gene were obtained by homology cloning and RACE methods, in which lepa and lepb have similar structure. Moreover, homologous sequence alignment and evolutionary analysis of all four genes were clustered with Seriola dumerili. The tissue distribution of these four genes in thirteen tissues of yellowtail kingfish was detected by RT-qPCR. Both lepa and leprot were highly expressed in the brain and ovary, while lepb was highly expressed in the pituitary, gill, muscle, and ovary; lepr was highly expressed in the gill, kidney, and ovary. Additionally, these four genes also played roles in embryo development and early growth and development of larvae and juveniles of yellowtail kingfish. Finally, the function of leptin and leptin-related genes was investigated during fasting and re-feeding adaption of yellowtail kingfish. The results showed that these four genes have different regulation functions in five tissues; for example, the mRNA levels of lepa, lepr, and leprot in the brain decreased during fasting and immediately increased after re-feeding, while the mRNA level of lepb did not show significant fluctuation during starvation but significantly lowered after re-feeding. However, lepa and lepb mRNA levels were significantly elevated during fasting and returned to control levels after re-feeding, and there were no significant changes in the expression of lepr and leprot in the liver during fasting and after re-feeding. Moreover, the body mass of fish in the experimental group was measured, and compensatory growth was found after the resumption of feeding. These results suggested that leptin and receptor genes play different functions in different tissues to regulate the physiological state of fish in food deficiency and gain processes.

11.
Biotechnol J ; 19(5): e2300676, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38730523

RESUMO

Genetic diseases can be caused by monogenic diseases, which result from a single gene mutation in the DNA sequence. Many innovative approaches have been developed to cure monogenic genetic diseases, namely by genome editing. A specific type of genomic editing, prime editing, has the potential advantage to edit the human genome without requiring double-strand breaks or donor DNA templates for editing. Additionally, prime editing does not require a precisely positioned protospacer adjacent motif (PAM) sequence, which offers flexible target and more precise genomic editing. Here we detail a novel construction of a prime editing extended guide RNA (pegRNA) to target mutated leptin receptors in B6.BKS(D)-Leprdb/J mice (db/db mice). The pegRNA was then injected into the flexor digitorum brevis (FDB) muscle of db/db mice to demonstrate in vivo efficacy, which resulted in pegRNA mediated base transversion at endogenous base transversion. Genomic DNA sequencing confirmed that prime editing could correct the mutation of leptin receptor gene in db/db mice. Furthermore, prime editing treated skeletal muscle exhibited enhanced leptin receptor signals. Thus, the current study showed in vivo efficacy of prime editing to correct mutant protein and rescue the physiology associated with functional protein.


Assuntos
Edição de Genes , Receptores para Leptina , Animais , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Edição de Genes/métodos , Camundongos , Músculo Esquelético/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , Mutação , Sistemas CRISPR-Cas/genética , Camundongos Endogâmicos C57BL
12.
J Infect Dis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687212

RESUMO

Proinflammatory cytokine levels and host genetic makeup are key determinants of Clostridioides difficile infection (CDI) outcomes. We previously reported that blocking the inflammatory cytokine macrophage migration inhibitory factor (MIF) ameliorates CDI. Here, we determined kinetics of MIF production and its association with a common genetic variant in leptin receptor (LEPR) using blood from patients with CDI. We found highest plasma MIF early after C difficile exposure and in individuals who express mutant/derived LEPR. Our data suggest that early-phase CDI provides a possible window of opportunity in which MIF targeting, potentially in combination with LEPR genotype, could have therapeutic utility.

13.
Life Sci ; 346: 122649, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626868

RESUMO

AIMS: Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS: In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS: Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE: The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.


Assuntos
Hipotálamo , Leptina , Proteoma , Proteômica , Ratos Wistar , Receptores para Leptina , Transdução de Sinais , Animais , Masculino , Leptina/metabolismo , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/deficiência , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteômica/métodos , Proteoma/metabolismo , Obesidade/metabolismo , Metabolismo Energético/efeitos dos fármacos
14.
Hormones (Athens) ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564143

RESUMO

PURPOSE: Evidence from previous experimental and observational research demonstrates that the gut microbiota is related to circulating adipokine concentrations. Nevertheless, the debate as to whether gut microbiome composition causally influences circulating adipokine concentrations remains unresolved. This study aimed to take an essential step in elucidating this issue. METHODS: We used two-sample Mendelian randomization (MR) to causally analyze genetic variation statistics for gut microbiota and four adipokines (including adiponectin, leptin, soluble leptin receptor [sOB-R], and plasminogen activator inhibitor-1 [PAI-1]) from large-scale genome-wide association studies (GWAS) datasets. A range of sensitivity analyses was also conducted to assess the stability and reliability of the results. RESULTS: The composite results of the MR and sensitivity analyses revealed 22 significant causal associations. In particular, there is a suggestive causality between the family Clostridiaceae1 (IVW: ß = 0.063, P = 0.034), the genus Butyrivibrio (IVW: ß = 0.029, P = 0.031), and the family Alcaligenaceae (IVW: ß=-0.070, P = 0.014) and adiponectin. Stronger causal effects with leptin were found for the genus Enterorhabdus (IVW: ß=-0.073, P = 0.038) and the genus Lachnospiraceae (NK4A136 group) (IVW: ß=-0.076, P = 0.01). Eight candidate bacterial groups were found to be associated with sOB-R, with the phylum Firmicutes (IVW: ß = 0.235, P = 0.03) and the order Clostridiales (IVW: ß = 0.267, P = 0.028) being of more interest. In addition, the genus Roseburia (IVW: ß = 0.953, P = 0.022) and the order Lactobacillales (IVW: ß=-0.806, P = 0.042) were suggestive of an association with PAI-1. CONCLUSION: This study reveals a causal relationship between the gut microbiota and circulating adipokines and may help to offer novel insights into the prevention of abnormal concentrations of circulating adipokines and obesity-related diseases.

15.
Environ Toxicol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634192

RESUMO

Increasing evidence has suggested a strong association of hepatocellular carcinoma (HCC) susceptibility and Gln223Arg (rs1137101) and Lys109Arg (rs1137100) polymorphisms in leptin receptor (LEPR) genes. To provide a quantitative assessment for such correlation, we reviewed all related systems and conducted meta-analysis for case and control researches. A literature search of Web of Science, EMBASE, PubMed, Scopus as well as China National Knowledge Infrastructure databases was collected. 95% confidence intervals (95% CIs) together with odds ratios (ORs) were calculated. Five case-control researches consisting of 1323 cases and 1919 control cases were incorporated into meta-analysis. Researches indicated A-allelic and AA genotype of rs1137101 were substantially related to boosted susceptibility of hepatitis B virus (HBV)-related HCC (mutant model, OR = 1.81, 95% CI = 1.36-2.41, p < .001; allelic model, OR = 1.55, 95% CI = 1.32-1.83, p < .001). On the contrary, we observed GG genotype of rs1137101 substantially related to reduced risk of HBV-related HCC (wild model, OR 0.59, 95%CI = 0.46-0.75, p < .001). We observed AA genotype of rs1137100 relevant to boosted HCC risk (mutant model, OR = 1.51, 95%CI = 1.14-2.01, p = .005) as well as in those with HBV-related HCCs (homozygous model, OR = 2.12, 95%CI = 1.49-3.02, p < .001; mutant model, OR = 1.67, 95%CI = 1.23-2.26, p = .001). G-allele and AA genotype of rs1137101 might be in connection with boosted HBV-related HCC susceptibility, and wild-type GG genotype might prevent diseases. AA genotype of rs1137100 might also improve HBV-related HCC susceptibility. Such conclusions ought to be validated by larger and better-designed researches.

16.
Cell Metab ; 36(4): 857-876.e10, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569472

RESUMO

Leptin resistance during excess weight gain significantly contributes to the recidivism of obesity to leptin-based pharmacological therapies. The mechanisms underlying the inhibition of leptin receptor (LepR) signaling during obesity are still elusive. Here, we report that histone deacetylase 6 (HDAC6) interacts with LepR, reducing the latter's activity, and that pharmacological inhibition of HDAC6 activity disrupts this interaction and augments leptin signaling. Treatment of diet-induced obese mice with blood-brain barrier (BBB)-permeable HDAC6 inhibitors profoundly reduces food intake and leads to potent weight loss without affecting the muscle mass. Genetic depletion of Hdac6 in Agouti-related protein (AgRP)-expressing neurons or administration with BBB-impermeable HDAC6 inhibitors results in a lack of such anti-obesity effect. Together, these findings represent the first report describing a mechanistically validated and pharmaceutically tractable therapeutic approach to directly increase LepR activity as well as identifying centrally but not peripherally acting HDAC6 inhibitors as potent leptin sensitizers and anti-obesity agents.


Assuntos
Leptina , Obesidade , Animais , Camundongos , Desacetilase 6 de Histona , Leptina/metabolismo , Obesidade/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Aumento de Peso , Redução de Peso
17.
J Bone Miner Res ; 39(5): 611-626, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477792

RESUMO

The impaired bone healing in tooth extraction sockets due to periodontitis presents a major obstacle to restoring oral health. The mechanisms regulating the osteogenic capacity of jawbone-derived stromal cells in the periodontitis microenvironment remain elusive. Leptin receptor (LepR) expressing stromal cells, which largely overlap with Cxcl12-abundant reticular (CAR) cells in bone tissue, rapidly proliferate and differentiate into bone-forming cells during extraction socket healing to support alveolar bone repair. In this study, we identify that CCRL2 is significantly expressed and inhibits osteogenesis in LepR+/CAR cells of alveolar bones with periodontitis. The Ccrl2-KO mice exhibit significant improvements in bone healing in extraction sockets with periodontitis. Specifically, the binding of CCRL2 to SFRP1 on the surface of LepR+/CAR cells can amplify the suppressive effect of SFRP1 on Wnt signaling under inflammation, thus hindering the osteogenic differentiation of LepR+/CAR cells and resulting in poor bone healing in extraction sockets with periodontitis. Together, we clarify that the CCRL2 receptor of LepR+/CAR cells can respond to periodontitis and crosstalk with Wnt signaling to deteriorate extraction socket healing.


The impaired bone healing in tooth extraction sockets due to periodontitis presents a major obstacle to restoring oral health. Alterations in the cellular activity of LepR+/CAR cells, an essential stromal cell population for extraction socket healing, in the periodontitis microenvironment have yet to be determined. In this study, we identify that CCRL2, as a potent agent of inflammation-bone crosstalk, is significantly expressed and inhibits osteogenesis in LepR+/CAR cells of alveolar bones with periodontitis. Specifically, the binding of CCRL2 to SFRP1 on the surface of LepR+/CAR cells can amplify the suppressive effect of SFRP1 on the Wnt/ß-catenin signaling under inflammation, thus hindering the osteogenic differentiation of LepR+/CAR cells and resulting in poor bone healing in tooth extraction sockets with periodontitis.


Assuntos
Osteogênese , Periodontite , Receptores para Leptina , Via de Sinalização Wnt , Animais , Periodontite/metabolismo , Periodontite/patologia , Receptores para Leptina/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Camundongos , Camundongos Knockout , Células Estromais/metabolismo , Células Estromais/patologia , Masculino , Humanos , Processo Alveolar/patologia , Processo Alveolar/metabolismo , Cicatrização , Proteínas de Membrana/metabolismo
18.
Diabetol Metab Syndr ; 16(1): 33, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302999

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery is an effective metabolic surgery against diabetes and obesity. Clinical evidence indicates that patients with severe obesity have a poor curative effect in losing weight if they suffer from leptin or its receptor deficiency, but the underlying mechanism remains elusive. Here, we investigated the effect of leptin receptor deficiency on metabolic dysfunction in db/db mice treated by RYGB surgery. METHODS: The db/db mice and their heterozygote control db/m mice were subjected to RYGB or sham surgery. Body weight, blood glucose, food intake and glucose tolerance were evaluated. Micro-PET/CT and histological analysis were performed to examine the glucose uptake of tissues and the fat changes in mice. The key factors in glucose and fatty acid metabolism were detected by western blot analysis. RESULTS: Compared with the sham group, the db/db mice in the RYGB group showed more significant weight regain after surgical recovery and improvement in hyperinsulinemia and glucose tolerance. However, the total body fat and multiple organ lipid deposition of RYGB-treated db/db mice was increased. The underlying mechanism studies suggested that the activation of AMPK regulated GLUT4 to increase glucose uptake, but AMPK could not promote fatty acid oxidation through the JAK2/STAT3 pathway under leptin receptor deficiency in db/db mice. CONCLUSION: We conclude that leptin receptor deficiency impedes the AMPK activation-mediated fat catabolism but does not affect AMPK-related glucose utilization after metabolic surgery in db/db mice. This result helps select surgical indications for patients with obesity and diabetes.

19.
Arch Med Sci ; 20(1): 54-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414477

RESUMO

Introduction: Worldwide, there has been an increase in the incidence of metabolic syndrome. The search for genetic markers of this syndrome is ongoing. The leptin receptor has recently received attention. One of the polymorphisms (Gln223Arg) is possibly associated with the development of obesity and insulin resistance. However, the results of studies on this polymorphism remain equivocal. Gln223Arg polymorphism has not been studied previously in the Kyrgyz population. Thus, we aimed to investigate the possible association of the Gln223Arg polymorphism of the leptin receptor gene with metabolic syndrome components in the Kyrgyz population. Material and methods: 237 Kyrgyz subjects, aged 35-70 years, were studied. For the analysis anthropometric data, glucose, insulin, lipid spectrum, leptin were obtained. The genotype of the Gln223Arg leptin polymorphism was evaluated using TaqMan real-time PCR. Results: The distribution of genotypes was as follows: Gln223Gln 46.4%, Gln223Arg 40.1%, Arg223Arg 13.5%. In the study no association was found with abdominal obesity, arterial hypertension, hypertriglyceridemia or low-density cholesterol levels. Relationships of Gln223Arg and Arg223Arg genotypes with insulin resistance (p < 0.03) were found. Gln223Arg polymorphism was associated with a higher level of glycemia (5.54 vs. 5.39 mmol/l, p < 0.05) and insulinemia (8.3 vs. 7.1 µIU/ml, p < 0.05). Correlation analysis showed that carriers of the Arg223 allele demonstrated a higher risk of insulin resistance (odds ratio (OR) = 1.83, 95% CI: 1.03-3.24; p < 0.03) than carriers of the Gln223 allele. Conclusions: Gln223Arg polymorphism of the leptin receptor gene may be a marker of predisposition to insulin resistance in the Kyrgyz population. Further studies are necessary to confirm these results in populations from other regions.

20.
Front Endocrinol (Lausanne) ; 15: 1281135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362276

RESUMO

Stress is the body's physiological reaction to a dangerous or threatening situation, leading to a state of alertness. This reaction is necessary for developing an effective adaptive response to stress and maintaining the body's homeostasis. Chronic stress, caused mainly by social stress, is what primarily affects the world's population. In the last decades, the emergence of psychological disorders in humans has become more frequent, and one of the symptoms that can be observed is aggressiveness. In the brain, stress can cause neuronal circuit alterations related to the action of hormones in the central nervous system. Leptin, for example, is a hormone capable of acting in brain regions and neuronal circuits important for behavioral and emotional regulation. This study investigated the correlation between chronic social stress, neuroendocrine disorders, and individual behavioral changes. Then, leptin and its receptors' anatomical distribution were evaluated in the brains of mice subjected to a protocol of chronic social stress. The model of spontaneous aggression (MSA) is based on grouping young mice and posterior regrouping of the same animals as adults. According to the regrouping social stress, we categorized the mice into i) harmonic, ii) attacked, and iii) aggressive animals. For leptin hormone evaluation, we quantified plasma and brain concentrations by ELISA and evaluated its receptor and isoform expression by western blotting. Moreover, we verified whether stress or changes in leptin levels interfered with the animal's body weight. Only attacked animals showed reduced plasma leptin concentration and weight gain, besides a higher expression of the high-molecular-weight leptin receptor in the amygdala and the low-molecular-weight receptor in the hippocampal region. Aggressive animals showed a reduction in the cerebral concentration of leptin in the hippocampus and a reduced high-and low-molecular-weight leptin receptor expression in the amygdala. The harmonic animals showed a reduction in the cerebral concentration of leptin in the pituitary and a reduced expression of the high-molecular-weight leptin receptor in the amygdala. We then suggest that leptin and its receptors' expression in plasma and specific brain areas are involved in how individuals react in stressful situations, such as regrouping stress in MSA.


Assuntos
Leptina , Receptores para Leptina , Adulto , Animais , Camundongos , Peso Corporal , Leptina/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...