Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.263
Filtrar
1.
Mol Cell ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39368465

RESUMO

MicroRNA (miRNA) biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryoelectron microscopy (cryo-EM) and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5' UG sequence motif, more comprehensively represented as the "flipped U with paired N" (fUN) motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a non-canonical precursor with a 1-nt 3' overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC motif and Drosha's Piwi/Argonaute/Zwille (PAZ)-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.

2.
Neurotherapeutics ; : e00458, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39384453

RESUMO

Peripheral neuropathies (PNs) are common diseases in elderly individuals characterized by Schwann cell (SC) dysfunction and irreversible Wallerian degeneration (WD). Although the molecular mechanisms of PN onset and progression have been widely studied, therapeutic opportunities remain limited. In this study, we investigated the pharmacological inhibition of Mammalian Ste20-like kinase 1/2 (MST1/2) by using its chemical inhibitor, XMU-MP-1 (XMU), against WD. XMU treatment suppressed the proliferation, dedifferentiation, and demyelination of SCs in models of WD in vitro, in vivo, and ex vivo. As a downstream mediator of canonical and noncanonical Hippo/MST1 pathway activation, the mature microRNA (miRNA) let-7b and its binding partners quaking homolog (QKI)/nucleolin (NCL) modulated miRNA-mediated silencing of genes involved in protein transport. Hence, direct phosphorylation of QKI and NCL by MST1 might be critical for WD onset and pathogenesis. Moreover, p38α/mitogen-activated protein kinase 14 (p38α) showed a strong affinity for XMU, and therefore, it may be an alternative XMU target for controlling WD in SCs. Taken together, our findings provide new insights into the Hippo/MST pathway function in PNs and suggest that XMU is a novel multitargeted therapeutic for elderly individuals with PNs.

3.
Gut Microbes ; 16(1): 2394249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224018

RESUMO

Inflammatory bowel diseases (IBD) etiology is multifactorial. Luminal microRNAs (miRNAs) have been suspected to play a role in the promotion of chronic inflammation, but the extent to which fecal miRNAs are interacting with the intestinal ecosystem in a way that contribute to diseases, including IBD, remains unknown. Here, fecal let-7b and miR-21 were found elevated, associated with inflammation, and correlating with multiple bacteria in IBD patients and IL-10-/- mice, model of spontaneous colitis. Using an in vitro microbiota modeling system, we revealed that these two miRNAs can directly modify the composition and function of complex human microbiota, increasing their proinflammatory potential. In vivo investigations revealed that luminal increase of let-7b drastically alters the intestinal microbiota and enhances macrophages' associated proinflammatory cytokines (TNF, IL-6, and IL-1ß). Such proinflammatory effects are resilient and dependent on the bacterial presence. Moreover, we identified that besides impairing the intestinal barrier function, miR-21 increases myeloperoxidase and antimicrobial peptides secretion, causing intestinal dysbiosis. More importantly, in vivo inhibition of let-7b and miR-21 with anti-miRNAs significantly improved the intestinal mucosal barrier function and promoted a healthier host-microbiota interaction in the intestinal lining, which altogether conferred protection against colitis. In summary, we provide evidence of the functional significance of fecal miRNAs in host-microbiota communication, highlighting their therapeutic potential in intestinal inflammation and dysbiosis-related conditions, such as IBD.


Assuntos
Colite , Fezes , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Fezes/microbiologia , Camundongos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Colite/microbiologia , Colite/induzido quimicamente , Colite/genética , Inflamação/microbiologia , Inflamação/metabolismo , Disbiose/microbiologia , Camundongos Endogâmicos C57BL , Feminino , Camundongos Knockout , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Masculino , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Modelos Animais de Doenças , Interleucina-10/genética , Interleucina-10/metabolismo
4.
J Biochem Mol Toxicol ; 38(9): e23834, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39230185

RESUMO

The involvement of let-7 in the occurrence and progression of various cancers has been well-documented. However, the precise molecular mechanisms underlying its impact on oral cancer development remain unclear. In this study, we aimed to elucidate the role of let-7 in oral cancer progression and investigate its underlying molecular mechanisms. The expression of let-7 and high mobility group A2 (HMGA2) mRNA was assessed using the quantitative reverse transcription polymerase chain reaction. Western blot analysis was employed to detect the expression of key proteins in the PI3K/AKT signaling pathway as well as HMGA2 protein levels. The targeting relationship between let-7 and HMGA2 was predicted through bioinformatics methods and confirmed via luciferase reporter gene assay. The effects of let-7 and HMGA2 on the functionality of oral cancer cells were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation assay, Transwell assay, wound healing assay, and Annexin V/PI apoptosis assay. Additionally, the impact of let-7 on the growth of oral cancer cells in vivo was investigated by inducing subcutaneous tumor formation in nude mice. Let-7 effectively suppresses the proliferation, migration, and invasion of oral cancer cells by inhibiting the activation of the PI3K/AKT signaling pathway. HMGA2, a downstream target gene of let-7, exhibits high expression in oral cancer. However, overexpression of HMGA2 diminishes the inhibitory effects induced by let-7 overexpression on the proliferation, migration, and invasion of oral cancer cells. The occurrence and progression of oral cancer cells are inhibited by Let-7 through the downregulation of HMGA2, potentially mediated by the inhibition of PI3K/AKT signaling pathway activation.


Assuntos
Movimento Celular , Proliferação de Células , Proteína HMGA2 , MicroRNAs , Neoplasias Bucais , Transdução de Sinais , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Proteína HMGA2/metabolismo , Proteína HMGA2/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Genes Chromosomes Cancer ; 63(9): e23272, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39324493

RESUMO

RUNX1 fuses with over 70 different partner genes in hematological neoplasms. While common RUNX1 chimeras have been extensively studied and their prognosis is well established, our current understanding of less common RUNX1 chimeras is limited. Here, we present a case of acute myeloid leukemia (AML) with a rare RUNX1 chimera. Bone marrow cells obtained at diagnosis from a 71-year-old patient diagnosed with AML-M5 were studied using G-banding, fluorescence in situ hybridization, array comparative genomic hybridization, RNA sequencing, PCR, and Sanger sequencing. Combined findings from the abovementioned assays suggested three cytogenetic clones: one with a normal karyotype, one with inv(21)(q21q22), and one with two inv(21)(q21q22). The molecular analysis revealed the fusion of RUNX1 with MIR99AHG (at 21q21.1), further supporting the presence of an inv(21)(q21q22). The present case is the third reported AML harboring a RUNX1::MIR99AHG chimera. Similar to the two previously described AML patients, our case also had an FLT3 aberration.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Idoso , Humanos , Masculino , Cromossomos Humanos Par 21/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , Proteínas de Fusão Oncogênica/genética
6.
Vet Sci ; 11(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39330771

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) has caused substantial damage to the pig industry. MicroRNAs (miRNAs) were found to play crucial roles in modulating the pathogenesis of PRRS virus (PRRSV). In the present study, we revealed that PRRSV induced let-7f-5p to influence lipid metabolism to regulate PRRSV pathogenesis. A transcriptome analysis of PRRSV-infected PK15CD163 cells transfected with let-7f-5p mimics or negative control (NC) generated 1718 differentially expressed genes, which were primarily associated with lipid metabolism processes. Furthermore, the master regulator of lipogenesis SREBP2 was found to be directly targeted by let-7f-5p using a dual-luciferase reporter system and Western blotting. The findings demonstrate that let-7f-5p modulates lipogenesis by targeting SREBP2, providing novel insights into miRNA-mediated PRRSV pathogenesis and offering a potential antiviral therapeutic target.

7.
Oncol Res ; 32(10): 1623-1635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308508

RESUMO

Background: Oral cancer, a malignancy that is prevalent worldwide, is often diagnosed at an advanced stage. MicroRNAs (miRNAs) in circulating exosomes have emerged as promising cancer biomarkers. The role of miRNA let-7c-5p in oral cancer remains underexplored, and its potential involvement in tumorigenesis warrants comprehensive investigation. Methods: Serum samples from 30 patients with oral cancer and 20 healthy controls were used to isolate exosomes and quantify their RNA content. Isolation of the exosomes was confirmed through transmission electron microscopy. Quantitative PCR was used to assess the miRNA profiles. The effects of let-7c-5p and TAGLN overexpression on oral cancer cell viability, migration, and invasion were analyzed via CCK-8 and Transwell assays. Moreover, we conducted mRNA sequencing of exosomal RNA from exosomes overexpressing let-7c-5p to delineate the gene expression profile and identify potential let-7c-5p target genes. Results: let-7c-5p was upregulated in serum-derived exosomes of patients with oral cancer. Overexpression of let-7c-5p in the TCA8113 and CAL-27 cell lines enhanced their proliferative, migratory, and invasive capacities, and overexpression of let-7c-5p cell-derived exosomes promoted oral cancer cell invasiveness. Exosomal mRNA sequencing revealed 2,551 differentially expressed genes between control cell-derived exosomes and overexpressed let-7c-5p cell-derived exosomes. We further identified TAGLN as a direct target of let-7c-5p, which has been implicated in modulating the oncogenic potential of oral cancer cells. Overexpression of TAGLN reverses the promoting role of let-7c-5p on oral cancer cells. Conclusion: Our findings highlight the role of exosomal let-7c-5p in enhancing oral cancer cell aggressiveness by downregulating TAGLN expression, highlighting its potential as a diagnostic and therapeutic strategy.


Assuntos
Movimento Celular , Proliferação de Células , Exossomos , MicroRNAs , Neoplasias Bucais , Humanos , Exossomos/genética , Exossomos/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , MicroRNAs/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica
8.
J Cell Sci ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308343

RESUMO

Argonaute (AGO), a component of RNA-induced silencing complexes (RISCs), is a representative RNA-binding protein (RBP) known to bind with mature microRNA (miRNA) and is directly involved in post-transcriptional gene silencing. However, despite the biological significance of miRNA, the roles of other micro RNA-binding proteins (miRBPs) remain unclear in regulation of miRNA loading, dissociation from RISC, and extracellular release. In this study, we perform protein arrays to profile miRBPs and identify 118 RNA-binding proteins directly binding with miRNAs. Among those proteins, RBP quaking (QKI) inhibits extracellular release of mature microRNA let-7b by controlling the loading of let-7b into extracellular vesicles via additional miRBPs such as hnRNPD/AUF1 and hnRNPK. The enhanced extracellular release of let-7b after QKI depletion activates the Toll-like Receptor 7 (TLR7) and promotes the production of proinflammatory cytokines in recipient cells, leading to brain inflammation in mouse cortex. Thus, this study reveals contribution of QKI to the inhibition of brain inflammation via regulation of extracellular let-7b release.

9.
Genes (Basel) ; 15(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39336756

RESUMO

Liver fibrosis, a critical precursor to hepatocellular carcinoma (HCC), results from chronic liver injury and significantly contributes to HCC progression. Schistosomiasis, a neglected tropical disease, is known to cause liver fibrosis; however, this process can be modulated by schistosome-derived miRNAs. Previous studies from our laboratory have demonstrated that Schistosoma japonicum extracellular vesicles (EVs) deliver sja-let-7 to hepatic stellate cells, leading to the inhibition of Col1α2 expression and alleviation of liver fibrosis. Given the well-documented antifibrotic and antiproliferative properties of the let-7 miRNA family, this study aims to preliminarily investigate the effects of the sja-let-7/Col1α2 axis on BALB/c mice and HCC cell line SNU387, providing a basis for the potential application of parasite-derived molecules in HCC therapy. In the present study, schistosome-induced fibrosis datasets were analyzed to identify the role of Col1α2 in extracellular matrix organization. Pan-cancer analysis revealed that Col1α2 is upregulated in various cancers, including HCC, with significant associations with immune cell infiltration and clinical parameters, highlighting its diagnostic importance. Functional assays demonstrated that transfection with sja-let-7 mimics significantly reduced Col1α2 expression, inhibited HCC cell proliferation, migration, and colony formation. These findings suggest that sja-let-7, by targeting Col1α2, has the potential to serve as a therapeutic agent in HCC treatment. This study indicates the pivotal role of Col1α2 in liver fibrosis and HCC, and the promising therapeutic application of helminth-derived miRNAs.


Assuntos
Carcinoma Hepatocelular , Colágeno Tipo I , Neoplasias Hepáticas , MicroRNAs , Schistosoma japonicum , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/parasitologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Regulação Neoplásica da Expressão Gênica , Cirrose Hepática/genética , Cirrose Hepática/parasitologia , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/parasitologia , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Schistosoma japonicum/genética , Schistosoma japonicum/metabolismo
10.
Cell Signal ; 123: 111373, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214267

RESUMO

BACKGROUND: Transforming growth factor-beta1 (TGF-ß1)-mediated renal fibrosis is a critical pathological process of chronic kidney disease worsening to end-stage renal disease. Recent studies have shown that long noncoding RNA H19 (lncRNA H19) is widely involved in the formation and progression of fibrosis in multiple organs. However, its molecular events in renal fibrosis remain to be elucidated. METHODS: Rats were treated with adenine intragastrically and HK-2 cells were induced by TGF-ß1 to construct renal fibrosis models in vivo and in vitro, respectively. Renal histopathological examination was performed using HE and Masson staining. Gene expression levels of interleukin-1beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), TGF-ß1, fibronectin (Fn), alpha-smooth muscle actin (α-SMA), H19, let-7b-5p, TGF-ß receptor 1 (TGF-ßR1), and type I collagen (COL1A1) were detected by qRT-PCR. Immunohistochemistry, immunofluorescence, and western blot analysis were used to evaluate the expression of renal fibrosis biomarkers. Dual-luciferase reporter assay was used to verify the presence of binding sites between H19 and let-7b-5p, and between let-7b-5p and TGF-ßR1 and COL1A1. RESULTS: H19 was overexpressed in both in vivo and in vitro renal fibrosis models. H19 knockdown significantly reversed TGF-ß1-induced upregulation of fibronectin, COL1A1, and α-SMA and downregulation of E-cadherin in HK-2 cells, accompanied by an increase in let-7b-5p. Let-7b-5p was bound to H19 in HK-2 cells, and its overexpression inhibited TGF-ß1-induced HK-2 cell fibrosis. Further experiments determined that let-7b-5p directly targets TGF-ßR1 and COL1A1 in HK-2 cells. In addition, inhibition of let-7b-5p reversed the reduction in HK-2 cell fibrosis induced by H19 knockdown. Finally, knockdown of H19 alleviated renal fibrosis in vivo and was associated with regulation of the let-7b-5p/TGF-ßR1/COL1A1 axis. CONCLUSION: Our results indicate that knockdown of H19 inhibits renal tubular epithelial fibrosis by negatively regulating the let-7b-5p/TGF-ßR1/COL1A1 axis, which may provide new mechanistic insights into CRF progression.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I , Fibrose , MicroRNAs , RNA Longo não Codificante , Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo I , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Ratos , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Masculino , Colágeno Tipo I/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Rim/patologia , Rim/metabolismo , Transdução de Sinais
11.
Oncology ; : 1-16, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134012

RESUMO

INTRODUCTION: Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS: This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS: Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION: We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.

12.
FEBS Lett ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152528

RESUMO

Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.

13.
Genes Chromosomes Cancer ; 63(8): e23262, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39120141

RESUMO

BACKGROUND: Cellular angiofibroma, a rare benign mesenchymal neoplasm, is classified within the 13q/RB1 family of tumors due to morphological, immunohistochemical, and genetic similarities with spindle cell lipoma. Here, genetic data reveal pathogenetic heterogeneity in cellular angiofibroma. METHODS: Three cellular angiofibromas were studied using G-banding/Karyotyping, array comparative genomic hybridization, RNA sequencing, and direct cycling sequencing. RESULTS: The first tumor carried a del(13)(q12) together with heterozygous loss and minimal expression of the RB1 gene. Tumors two and three displayed chromosome 8 abnormalities associated with chimeras of the pleomorphic adenoma gene 1 (PLAG1). In tumor 2, the cathepsin B (CTSB) fused to PLAG1 (CTSB::PLAG1) while in tumor 3, the mir-99a-let-7c cluster host gene (MIR99AHG) fused to PLAG1 (MIR99AHG::PLAG1), both leading to elevated expression of PLAG1 and insulin growth factor 2. CONCLUSION: This study uncovers two genetic pathways contributing to the pathogenetic heterogeneity within cellular angiofibromas. The first aligns with the 13q/RB1 family of tumors and the second involves PLAG1-chimeras. These findings highlight the diverse genetic landscape of cellular angiofibromas, providing insights into potential diagnostic strategies.


Assuntos
Angiofibroma , Cromossomos Humanos Par 13 , Heterogeneidade Genética , Humanos , Angiofibroma/genética , Angiofibroma/patologia , Masculino , Cromossomos Humanos Par 13/genética , Proteínas de Ligação a DNA/genética , Adulto , Feminino , Proteínas de Ligação a Retinoblastoma/genética , MicroRNAs/genética , Ubiquitina-Proteína Ligases/genética , Pessoa de Meia-Idade , Hibridização Genômica Comparativa , Cromossomos Humanos Par 8/genética , Catepsina B
14.
Mol Biol Rep ; 51(1): 929, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172288

RESUMO

Epilepsy is a common neurological disease. Increasing evidence has highlighted the role of miRNAs in the molecular mechanisms underlying the development of neurological diseases such as epilepsy. In this study, we established a lithium chloride-pilocarpine epilepsy mouse model, performed miRNA sequencing of hippocampal tissue samples, and compared the obtained miRNA expression profile with that of normal control mice to determine differences in expression levels. We found that 55 miRNAs were differentially expressed in status epilepticus mice compared with normal control mice, with 38 upregulated and 17 downregulated miRNAs. Through subsequent analysis of the five downregulated miRNAs (mmu-let-7a-1-3p, mmu-let-7a-2-3p, mmu-let-7c-5p, mmu-let-7d-5p, and mmu-let-7e-5p) with the most significant differences in expression, the key pathways involved included the MAPK signaling pathway and focal adhesion, among others. Therefore, we believe that let-7 family miRNAs may be potential therapeutic targets for epilepsy.


Assuntos
Modelos Animais de Doenças , Epilepsia , Hipocampo , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Hipocampo/metabolismo , Camundongos , Epilepsia/genética , Epilepsia/metabolismo , Perfilação da Expressão Gênica/métodos , Masculino , Pilocarpina , Regulação da Expressão Gênica , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Estado Epiléptico/induzido quimicamente , Cloreto de Lítio/farmacologia
15.
J Extracell Vesicles ; 13(8): e12497, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39140452

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have been recognized as promising cytotherapeutics due to their demonstrated immunomodulatory effects in various preclinical models. The immunomodulatory capabilities of EVs stem from the proteins and genetic materials they carry from parent cells, but the cargo contents of EVs are significantly influenced by MSC tissues and donors, cellular age and culture conditions, resulting in functional variations. However, there are no surrogate assays available to validate the immunomodulatory potency of MSC-EVs before in vivo administration. In previous work, we discovered that microcarrier culture conditions enhance the immunomodulatory function of MSC-EVs, as well as the levels of immunosuppressive molecules such as TGF-ß1 and let-7b in MSC-EVs. Building on these findings, we investigated whether TGF-ß1 levels in MSC-EVs could serve as a surrogate biomarker for predicting their potency in vivo. Our studies revealed a strong correlation between TGF-ß1 and let-7b levels in MSC-EVs, as well as their capacity to suppress IFN-γ secretion in stimulated splenocytes, establishing biopotency and surrogate assays for MSC-EVs. Subsequently, we validated MSC-EVs generated from monolayer cultures (ML-EVs) or microcarrier cultures (MC-EVs) using murine models of experimental autoimmune uveoretinitis (EAU) and additional in vitro assays reflecting the Mode of Action of MSC-EVs in vivo. Our findings demonstrated that MC-EVs carrying high levels of TGF-ß1 exhibited greater efficacy than ML-EVs in halting disease progression in mice with EAU as well as inducing apoptosis and inhibiting the chemotaxis of retina-reactive T cells. Additionally, MSC-EVs suppressed the MAPK/ERK pathway in activated T cells, with treatment using TGF-ß1 or let-7b showing similar effects on the MAPK/ERK pathway. Collectively, our data suggest that MSC-EVs directly inhibit the infiltration of retina-reactive T cells toward the eyes, thereby halting the disease progression in EAU mice, and their immunomodulatory potency in vivo can be predicted by their TGF-ß1 levels.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Fator de Crescimento Transformador beta1 , Uveíte , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Camundongos , Uveíte/terapia , Uveíte/imunologia , Uveíte/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , MicroRNAs/metabolismo , Doenças Autoimunes/terapia , Doenças Autoimunes/imunologia , Modelos Animais de Doenças , Imunomodulação , Camundongos Endogâmicos C57BL , Humanos , Feminino
16.
Cardiovasc Toxicol ; 24(11): 1253-1267, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39181944

RESUMO

Circular RNAs (circRNAs) play an important role in the progression of atherosclerosis (AS). This study aimed to explore the exact role and mechanism of circ_0002984 in oxidized low-density lipoprotein (ox-LDL)-mediated human vascular smooth muscle cells (HVSMCs). The model of smooth muscle cell phenotype switching was constructed by treating HVSMCs with ox-LDL. The levels of circ_0002984, let-7a-5p, and kruppel-like factor 5 (KLF5) were measured by quantitative real-time PCR or western blot assay. Cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 (CCK-8), EdU staining, wound healing assay, transwell assay, and flow cytometry. The expression of cleaved-caspase-3 and KLF5 was examined by western blot. The relationship between let-7a-5p and circ_0002984 or KLF5 was verified by dual-luciferase reporter assay or RIP assay. The results showed that circ_0002984 and KLF5 were up-regulated, while let-7a-5p was down-regulated in AS patients and ox-LDL-disposed HVSMCs. Silence of circ_0002984 suppressed proliferation and migration, and promoted apoptosis in ox-LDL-stimulated HVSMCs. Moreover, circ_0002984 sponged let-7a-5p to regulate the proliferation, migration, and apoptosis in ox-LDL-resulted HVSMCs. In addition, KLF5 was a target of let-7a-5p and its overexpression reversed the effect of let-7a-5p on the proliferation, migration, and apoptosis in ox-LDL-treated HVSMCs. Also, circ_0002984 positively regulated KLF5 expression by absorbing let-7a-5p. The promotion effect of circ_0002984 on the proliferation and migration of ox-LDL-treated HVSMCs was reversed by KLF5 silencing. Taken together, depletion of circ_0002984 inhibited the proliferation and migration of ox-LDL-stimulated HVSMCs, which might be achieved by modulating the let-7a-5p/KLF5 axis.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Fatores de Transcrição Kruppel-Like , Lipoproteínas LDL , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , RNA Circular , Transdução de Sinais , Lipoproteínas LDL/toxicidade , Humanos , Proliferação de Células/efeitos dos fármacos , RNA Circular/metabolismo , RNA Circular/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Regulação da Expressão Gênica
17.
Mikrochim Acta ; 191(9): 533, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134753

RESUMO

A novel functional nucleic acid (FNA) nanomaterial based on hybrid chain reaction (HCR) nanoscaffolds is proposed to solve the problem of time superposition and repeated primer design in sensitive miRND detection using cascade amplification technique. Rolling circle amplification (RCA) was cascaded with the prepared FNA nanomaterials for miRNA let-7a (as a model target) sensitive detection by lateral flow assay (LFA). Under the optimal conditions, the proposed RCA-FNA-LFA assay demonstrated the specificity and accuracy for miRNA let-7a detection with a detection limit of 1.07 pM, which increased sensitivity by nearly 20 times compared with that of RCA -LFA assay. It is worth noting that the non-target-dependent self-assembly process of HCR nanoscaffolds does not take up the whole detection time, thus, less time is taken than that of the conventional cascaded method. Moreover, the proposed assay does not need to consider the system compatibility between two kinds of isothermal amplification techniques. As for detection of different miRNAs, only the homologous arm of the padlock probe of RCA needs to be changed, while the FNA nanomaterial does not need any change, which greatly simplifies the primer design of the cascaded amplification techniques. With further development, the proposed RCA-FNA-LFA assay might achieve more sensitive and faster results to better satisfy the requirements of clinical diagnosis combing with more sensitive labels or small strip reader.


Assuntos
Limite de Detecção , MicroRNAs , Nanoestruturas , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , MicroRNAs/análise , Humanos , Nanoestruturas/química , Técnicas Biossensoriais/métodos
18.
J Agric Food Chem ; 72(40): 22092-22104, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39188059

RESUMO

Milk-derived extracellular vesicles (mEVs) are beneficial to the health of infants. However, the effect of mEVs on early intestinal inflammation is not well established. Herein, weaned colitic mice were used to explore the potential effects and underlying mechanisms of porcine mEVs (pmEVs) on intestinal inflammation during early life. We found that pmEVs administration attenuated early life intestinal inflammation and promoted colonic barrier integrity in mice. The anti-inflammatory effect of pmEVs was achieved by shifting a proinflammatory macrophage (M1) toward an anti-inflammatory macrophage (M2). Moreover, pmEVs can be absorbed by macrophages and reduce proinflammatory polarization (stimulated by LPS) in vitro. Noteworthily, ssc-let-7c was found to be highly expressed in pmEVs that can regulate the polarization of macrophages by targeting the tensin homologue deleted on chromosome ten (PTEN), thereby activating the PI3K/Akt pathway. Collectively, our findings revealed a crucial role of mEVs in early intestinal immunity and its underlying mechanism.


Assuntos
Vesículas Extracelulares , Macrófagos , Leite , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/química , Camundongos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Leite/química , Leite/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Suínos , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Feminino , Camundongos Endogâmicos C57BL , Masculino , Inflamação/metabolismo , Inflamação/genética , Inflamação/imunologia , Intestinos/imunologia
19.
Scand J Immunol ; : e13399, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073054

RESUMO

Oral mucositis (OM) is a severe side effect of anti-cancer therapy, with limited available treatments. Mesenchymal stem cells (MSCs) and their secreted extracellular vesicles (EVs) have demonstrated effective protection against OM. However, the underlying mechanism remains elusive. In the current study, we purified EVs secreted by human umbilical cord MSCs (hUC-MSC-EVs) and investigated their role in lipopolysaccharide (LPS)-induced human oral keratinocytes (HOKs). We observed that treatment with hUC-MSC-EVs significantly reduced the inflammatory response of HOKs to LPS induction. Through small RNA-seq using miRNAs extracted from hUC-MSC-EVs, we identified hsa-let-7e-5p as one of the most highly expressed miRNAs. Bioinformatic analysis data indicated that hsa-let-7e-5p may inhibit the NF-κB signalling pathway by targeting TAB2. Overexpression of the hsa-let-7e-5p inhibitor significantly attenuated the anti-inflammatory effect of hUC-MSC-EVs in LPS-induced HOKs, which could be reversed by the knockdown of TAB2. In addition, we administered hUC-MSC-EVs in a hamster model for OM and observed that these EVs alleviated OM phenotypes. Taken together, our observations suggest that hsa-let-7e-5p in hUC-MSC-EVs could protect the oral mucosa from OM by repressing TAB2 expression.

20.
Mikrochim Acta ; 191(7): 437, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951284

RESUMO

A stable DNA signal amplification sensor was developed on account of rolling circle amplification (RCA). This sensor includes target DNA-controlled rolling circle amplification technology and locking probe DNA replacement technology, which can be used to detect DNA fragments with genetic information, thus constructing a biosensor for universal detection of DNA. This study takes the homologous DNA of human immunodeficiency virus (HIV) and let-7a as examples to describe this biosensor. The padlock probe is first cyclized by T4 DNA ligase in response to the target's reaction with it. Then, rolling cycle amplification is initiated by Phi29 DNA polymerase, resulting in the formation of a lengthy chain with several triggers. These triggers can open the locked probe LP1 with the fluorescence signal turned off, so that it can continue to react with H2 to form a stable H1-H2 double strand. This regulates the distance between B-DNA modified by the quenching group and H1 modified by fluorescent group, and the fluorescence signal is recovered.


Assuntos
Técnicas Biossensoriais , Sondas de DNA , Técnicas de Amplificação de Ácido Nucleico , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Sondas de DNA/química , Sondas de DNA/genética , Corantes Fluorescentes/química , DNA Viral/análise , DNA Viral/genética , DNA/química , DNA/genética , Espectrometria de Fluorescência/métodos , Fluorescência , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Limite de Detecção , HIV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA