Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.919
Filtrar
1.
Cureus ; 16(6): e62269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39006565

RESUMO

Background Numerous reports have shown the role of human leukocyte antigen (HLA) alleles in the induction of cutaneous adverse drug reactions by moderating drug metabolism. We therefore aimed to investigate the docking patterns of four HLA alleles (HLA-B x 5101, HLA-B x 1501, HLA-A x 02:06 and HLA-B x 57:01) against four commercial drugs. Methodology   Four drugs (phenytoin (PHT), amoxicillin (AMX), aceclofenac (ACE) and ciprofloxacin (CIP)) were investigated for their docking behavior against four HLA alleles (HLA-B x 5101, HLA-B x 1501, HLA-A x 02:06, and HLA-B x 57:01) using the SwissDock method. In addition, toxicity (Tox) and the search tool for interactions of chemicals (STITCH) (protein-drug interaction) analyses were also carried out using the predicating the small molecule pharmaco-kinetic (pk) properties using graph-based signature method (pkCSM) and STITCH free online servers, respectively. Results Toxicity analysis showed that two drugs (amoxicillin and ciprofloxacin) exhibit hepatotoxicity. The STITCH analysis of the drug amoxicillin revealed its interaction with two human proteins. The drug phenytoin exhibited the lowest binding energy (LBE) with all four HLA alleles (HLA-B x 5101, HLA-B x 1501, HLA-A x 02:06, and HLA-B x 57:01). Conclusions The present findings provide new knowledge about the four drugs (phenytoin (PHT), amoxicillin (AMX), aceclofenac (ACE) and ciprofloxacin (CIP)) and their binding affinities with HLA alleles, which may cause cutaneous adverse drug reactions.

2.
Front Transplant ; 3: 1336563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993777

RESUMO

Introduction: Sensitization to donor human leukocyte antigen (HLA) molecules prior to transplantation is a significant risk factor for delayed access to transplantation and to long-term outcomes. Memory T cells and their cytokines play a pivotal role in shaping immune responses, thereby increasing the risk of allograft rejection among highly sensitized patients. This study aims to elucidate the precise contribution of different CD4+ memory T cell subsets to alloreactivity in highly sensitized (HS) kidney transplant recipients. Methods and results: Stimulation of peripheral blood mononuclear cells (PBMC) with various polyclonal stimulating agents to assess non-specific immune responses revealed that HS patients exhibit elevated immune reactivity even before kidney transplantation, compared to non-sensitized (NS) patients. HS patients' PBMC displayed higher frequencies of CD4+ T cells expressing IFNγ, IL4, IL6, IL17A, and TNFα and secreted relatively higher levels of IL17A and IL21 upon stimulation with PMA/ionomycin. Additionally, PBMC from HS patients stimulated with T cell stimulating agent phytohemagglutinin (PHA) exhibited elevated expression levels of IFNγ, IL4 and, IL21. On the other hand, stimulation with a combination of resiquimod (R848) and IL2 for the activation of memory B cells demonstrated higher expression of IL17A, TNFα and IL21, as determined by quantitative real-time PCR. A mixed leukocyte reaction (MLR) assay, employing third-party donor antigen presenting cells (APCs), was implemented to evaluate the direct alloreactive response. HS patients demonstrated notably higher frequencies of CD4+ T cells expressing IL4, IL6 and IL17A. Interestingly, APCs expressing recall HLA antigens triggered a stronger Th17 response compared to APCs lacking recall HLA antigens in sensitized patients. Furthermore, donor APCs induced higher activation of effector memory T cells in HS patients as compared to NS patients. Conclusion: These results provide an assessment of pretransplant alloreactive T cell subsets in highly sensitized patients and emphasize the significance of Th17 cells in alloimmune responses. These findings hold promise for the development of treatment strategies tailored to sensitized kidney transplant recipients, with potential clinical implications.

3.
J Leukoc Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952292

RESUMO

The absolute lymphocyte count (ALC), lymphocyte-to-monocyte ratio (LMR), and neutrophil-to-lymphocyte ratio (NLR) offer convenient means to assess systemic inflammation post-cancer treatment, which influences treatment outcomes. Understanding these biomarker variations and leukocyte subpopulation interplay is crucial for optimizing radiotherapy. Herein, leukocyte subpopulations (T-CD4+, T-CD8+, B-cells, NK-cells, neutrophils, monocytes) during and after brain irradiation (using X-rays or Protons) in tumor-free mice were used to compute ALC, LMR, and NLR, on which radiation parameter influence was assessed by principal component analysis (PCA). NLR kinetics were further examined using modeling. Leukocyte subpopulations interplays and their response to radiation parameters were examined using PCA and correlation analysis. Under X-rays, ALC and LMR decreased, with ALC recovered to baseline after irradiation, but not LMR. Both X-rays and protons increased the NLR during irradiation, recovering in protons but not X-rays. Both irradiation volume and dose rate had a pronounced effect on the NLR. Leukocyte subpopulation interplay was observed under X-rays and protons, normalizing in the proton group by day 28. Lymphopenia was observed in all lymphocyte subpopulations under X-ray irradiation but not protons. The recovery patterns varied among the subpopulations. Neutrophil counts increased during irradiation, with the recovery of protons, but not X-rays, by day 28. Interplays between NK-cells and myeloid subpopulations were evident under X-rays but not protons. Importantly, no interplay was detected between myeloid cells and T/B-cells, indicating that LMR and NLR variations were primarily due to independent responses to brain irradiation. A tumor-free experimental mouse model was used to study the effects of brain radiotherapy on systemic immunity. When administering fractionated irradiation with a total dose of 20 Gy using a vertical beam to either the whole brain or hemi-brain, proton irradiation had fewer adverse impacts on the immune system compared to X-rays in tumor-free rodents.

5.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000468

RESUMO

Previously, we found that a greater dissimilarity in swine leukocyte antigen (SLA) class I and class II alleles between mating partners resulted in increased farrowing rates in a highly inbred population of Microminipigs (MMPs). In this follow-up study, we have analyzed the effects of dissimilarity in SLA alleles between mating partners for seven different reproductive traits, including litter size and the number of stillborn and live or dead weaned piglets. We determined the relationships among reproductive traits within each mating event and the amino acid distances of SLA alleles as markers of diversity between mating partners. Our results indicate that mating partners with greater amino acid pairwise genetic distances in the SLA-1 class I gene or DQB1 class II gene alleles were associated with significantly larger litter sizes and higher numbers of live piglets at birth and weaning. Also, partners with greater pairwise distances in the SLA-2 class I gene alleles exhibited fewer pre-weaning deaths. These findings suggest that the dissimilarity in SLA class I and class II alleles between mating partners may affect not only farrowing rates but also other key reproductive traits such as litter size and improved piglet survival rates. Consequently, SLA alleles could serve as valuable genetic markers for selecting mating partners in breeding programs and for conducting epistatic studies on various reproductive traits in MMPs.


Assuntos
Alelos , Antígenos de Histocompatibilidade Classe I , Reprodução , Animais , Suínos/genética , Antígenos de Histocompatibilidade Classe I/genética , Reprodução/genética , Feminino , Tamanho da Ninhada de Vivíparos/genética , Porco Miniatura/genética , Masculino , Antígenos de Histocompatibilidade Classe II/genética , Aminoácidos/genética
6.
Sci Rep ; 14(1): 16179, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003313

RESUMO

Several viruses have been implicated in breast cancer, including human herpes virus 4 (HHV4), human herpes virus 5 (HHV5), human papilloma virus (HPV), human JC polyoma virus (JCV), human endogenous retrovirus group K (HERVK), bovine leukemia virus (BLV) and mouse mammary tumor virus (MMTV). Human leukocyte antigen (HLA) is involved in virus elimination and has been shown to influence breast cancer protection/susceptibility. Here we investigated the hypothesis that the contribution of a virus to development of breast cancer would depend on the presence of the virus, which, in turn, would be inversely related to the success of its elimination. For that purpose, we estimated in silico predicted binding affinities (PBA) of proteins of the 7 viruses above to 127 common HLA alleles (69 Class I [HLA-I] and 58 Class II HLA-II]) and investigated the association of these binding affinities to the breast cancer-HLA (BC-HLA) immunogenetic profile of the same alleles. Using hierarchical tree clustering, we found that, for HLA-I, viruses BLV, JCV and MMTV were grouped with the BC-HLA, whereas, for HLA-II, viruses BLV, HERVK, HPV, JCV, and MMTV were grouped with BC-HLA. Finally, for both HLA classes, the average PBAs of the viruses grouped with the BC-HLA profile were significantly lower than those of the other, non BC-HLA associated viruses. Assuming that low PBAs are likely associated with slower viral elimination, these findings support the hypothesis that a defective/slower elimination and, hence, longer persistence and inefficient/delayed production of antibodies against them underlies the observed association of the low-PBA group with breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/virologia , Feminino , Antígenos HLA/imunologia , Antígenos HLA/genética , Alelos , Animais , Ligação Proteica , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/imunologia
7.
J Med Virol ; 96(7): e29776, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953430

RESUMO

The genetic diversity of killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) genes influences the host's immune response to viral pathogens. This study aims to explore the impact of five single nucleotide polymorphisms (SNPs) in KIR3DL2 and HLA-A genes on hepatitis C virus (HCV) infection. A total of 2251 individuals were included in the case-control study. SNPs including KIR3DL2 rs11672983, rs3745902, rs1654644, and HLA-A rs3869062, rs12202296 were genotyped. By controlling various confounding factors using a modified logistic regression model, as well as incorporating stratified analysis, joint effects analysis, and multidimensional bioinformatics analysis, we analyzed the relationship between SNPs and HCV infection. The logistic regression analysis showed a correlation between KIR3DL2 rs11672983 AA, KIR3DL2 rs3745902 TT, and increased HCV susceptibility (p < 0.01). Stratified analysis indicated that KIR3DL2 rs1654644 and HLA-A rs3869062 also heightened HCV susceptibility in certain subgroups. A linear trend of rising HCV infection rates was observed when combining KIR3DL2 rs11672983 AA and KIR3DL2 rs3745902 TT (ptrend = 0.007). Bioinformatics analysis suggested these SNPs' regulatory potential and their role in altering messenger RNA secondary structure, implying their functional relevance in HCV susceptibility. Our findings indicate that KIR3DL2 rs11672983 AA and KIR3DL2 rs3745902 TT are significantly associated with increased susceptibility to HCV infection.


Assuntos
Predisposição Genética para Doença , Genótipo , Hepatite C , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Feminino , Estudos de Casos e Controles , Hepatite C/genética , Hepatite C/virologia , Hepatite C/imunologia , Pessoa de Meia-Idade , Adulto , Antígenos HLA-A/genética , Hepacivirus/genética , Hepacivirus/imunologia , Receptores KIR/genética , Idoso , Receptores KIR3DL2/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-38955781

RESUMO

Accurate detection of heterogeneous circulating tumor cells (CTCs) is critical as they can make tumor cells more aggressive, drug-resistant, and metastasizing. Although the leukocyte membrane coating strategy is promising in meeting the challenge of detecting heterogeneous CTCs due to its inherent antiadhesive properties, it is still limited by the reduction or loss of expression of known markers. Bioorthogonal glycol-metabolic engineering is expected to break down this barrier by feeding the cells with sugar derivatives with a unique functional group to establish artificial targets on the surface of tumor cells. Herein, an engineered leukocyte biomimetic colorimetric sensor was accordingly fabricated for high-efficient detection of heterogeneous CTCs. Compared with conventional leukocyte membrane coating, the sensor could covalently bound to the heterogeneous CTCs models fed with Ac4ManNAz in vitro through the synergy of bioorthogonal chemistry and metabolic glycoengineering, ignoring the phenotypic changes of heterogeneous CTCs. Meanwhile, a sandwich structure composed of leukocyte biomimetic layer/CTCs/MoS2 nanosheet was formed for visual detection of HeLa cells as low as 10 cells mL-1. Overall, this approach can overcome the dependence of conventional cell membrane biomimetic technology on specific cell phenotypes and provide a new viewpoint to highly efficiently detect heterogeneous CTCs.

9.
Diabetologia ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38981930

RESUMO

AIMS/HYPOTHESIS: Alterations in circadian rhythms increase the likelihood of developing type 2 diabetes and CVD. Circadian rhythms are controlled by several core clock genes, which are expressed in nearly every cell, including immune cells. Immune cells are key players in the pathophysiology of type 2 diabetes, and participate in the atherosclerotic process that underlies cardiovascular risk in these patients. The role of the core clock in the leukocytes of people with type 2 diabetes and the inflammatory process associated with it are unknown. We aimed to evaluate whether the molecular clock system is impaired in the leukocytes of type 2 diabetes patients and to explore the mechanism by which this alteration leads to an increased cardiovascular risk in this population. METHODS: This is an observational cross-sectional study performed in 25 participants with type 2 diabetes and 28 healthy control participants. Clinical and biochemical parameters were obtained. Peripheral blood leukocytes were isolated using magnetic bead technology. RNA and protein lysates were obtained to assess clock-related gene transcript and protein levels using real-time PCR and western blot, respectively. Luminex XMAP technology was used to assess levels of inflammatory markers. Leukocyte-endothelial interaction assays were performed by perfusing participants' leukocytes or THP-1 cells (with/without CLK8) over a HUVEC monolayer in a parallel flow chamber using a dynamic adhesion system. RESULTS: Participants with type 2 diabetes showed increased BMAL1 and NR1D1 mRNA levels and decreased protein levels of circadian locomotor output cycles kaput (CLOCK), cryptochrome 1 (CRY1), phosphorylated basic helix-loop-helix ARNT like 1 (p-BMAL1) and period circadian protein homologue 2 (PER2). Correlation studies revealed that these alterations in clock proteins were negatively associated with glucose, HbA1c, insulin and HOMA-IR levels and leukocyte cell counts. The leukocyte rolling velocity was reduced and rolling flux and adhesion were enhanced in individuals with type 2 diabetes compared with healthy participants. Interestingly, inhibition of CLOCK/BMAL1 activity in leukocytes using the CLOCK inhibitor CLK8 mimicked the effects of type 2 diabetes on leukocyte-endothelial interactions. CONCLUSIONS/INTERPRETATION: Our study demonstrates alterations in the molecular clock system in leukocytes of individuals with type 2 diabetes, manifested in increased mRNA levels and decreased protein levels of the core clock machinery. These alterations correlated with the impaired metabolic and proinflammatory profile of the participants with type 2 diabetes. Our findings support a causal role for decreased CLOCK/BMAL1 activity in the increased level of leukocyte-endothelial interactions. Overall, our data suggest that alterations in core clock proteins accelerate the inflammatory process, which may ultimately precipitate the onset of CVD in patients with type 2 diabetes.

10.
Front Genet ; 15: 1424119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962453

RESUMO

Purpose: This study aimed to explore the influence of serum leukocytes on urologic cancers (UC) using observation-based investigations. In the present study, Mendelian randomization (MR) was employed to assess the link between leukocyte count (LC) and the risk of UC development. Methods: Five LC and three major UC patient prognoses were obtained for MR analysis from genome-wide association studies (GWAS). Furthermore, in order to evaluate reverse causality, bidirectional studies were conducted. Finally, a sensitivity analysis using multiple methods was carried out. Results: There was no significant correlation found in the genetic assessment of differential LC between the co-occurrence of bladder cancer (BCA) and renal cell carcinoma (RCC). Conversely, an individual 1-standard deviation (SD) rise in neutrophil count was strongly linked to a 9.3% elevation in prostate cancer (PCA) risk ([odd ratio]OR = 1.093, 95% [confidence interval]CI = 0.864-1.383, p = 0.002). Reverse MR analysis suggested that PCA was unlikely to cause changes in neutrophil count. Additional sensitivity studies revealed that the outcomes of all MR evaluations were similar, and there was no horizontal pleiotropy. Primary MR analysis using inverse-variance weighted (IVW) revealed that differential lymphocyte count significantly influenced RCC risk (OR = 1.162, 95%CI = 0.918-1.470, p = 0.001). Moreover, altered basophil count also affected BCA risk (OR = 1.249, 95% CI = 0.904-1.725, p = 0.018). Nonetheless, these causal associations were not significant in the sensitivity analysis. Conclusion: In summary, the results revealed that increased neutrophil counts represent a significant PCA risk factor. The current research indicates a significant relationship between immune cell activity and the cause of UC.

11.
Sleep ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975699

RESUMO

STUDY OBJECTIVES: Shift work, insufficient sleep, and poor sleep quality at young age have been associated with increased risk of multiple sclerosis (MS). This study aimed to investigate the potential interaction between aspects of inadequate sleep (short sleep, phase shift, and poor sleep quality) during adolescence and HLA-DRB1*15:01 in relation to MS risk. METHODS: We used a Swedish population-based case-control study (1253 cases and 1766 controls). Subjects with different sleep patterns during adolescence and HLA-DRB1*15:01 status were compared regarding MS risk by calculating odds ratios (OR) with 95% confidence intervals (CI) using logistic regression models. Additive interaction between aspects of inadequate sleep and HLA-DRB1*15:01 status was assessed by calculating the attributable proportion due to interaction (AP) with 95% CI. RESULTS: Short sleep duration (<7 hours/night) during adolescence acted synergistically with HLA-DRB1*15:01, increasing the risk of MS (AP 0.38, 95% CI 0.01-0.75, p=0.04). Similarly, subjective low sleep quality during adolescence interacted with HLA-DRB1*15:01 regarding risk of MS (AP 0.30, 95% CI 0.06-0.56, p=0.03), whereas phase shift did not significantly influence the risk of the disease, irrespective of HLA-DRB1*15:01 status. CONCLUSIONS: Our findings underscore the importance of addressing inadequate sleep during adolescence, particularly in the context of the HLA-DRB1*15:01 allele, as it appears to amplify the risk of subsequently developing MS.

12.
J Ethnopharmacol ; 334: 118523, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969149

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY: To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS: Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS: Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION: The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.

13.
Front Cardiovasc Med ; 11: 1397701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962087

RESUMO

Objective: Leukocyte parameters are associated with cardiovascular diseases. The aim of the present study was to investigate the role of leukocyte parameters in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI) with high thrombus burden (HTB). Methods: A total of 102 consecutive STEMI patients with HTB who underwent PPCI within 12 h from the onset of symptoms between June 2020 and September 2021 were enrolled in this study. In addition, 101 age- and sex-matched STEMI patients with low thrombus burden (LTB) who underwent PPCI within 12 h from the onset of symptoms were enrolled as controls. Leukocyte parameters, such as neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and monocyte to lymphocyte ratio (MLR), were calculated at the time of admission. Results: The value of NLR and MLR were significantly higher in the HTB group than in the LTB group (6.24 ± 4.87 vs. 4.65 ± 3.47, p = 0.008; 0.40 ± 0.27 vs. 0.33 ± 0.20, p = 0.038). A cutoff value of >5.38 for NLR had a sensitivity and specificity of 53.9% and 74.3%, respectively, and MLR >0.29 had a sensitivity and specificity of 60.8% and 55.4%, respectively, for determining the STEMI patients with HTB [area under the receiver operating characteristic curve (AUC): 0.603, 95% confidence interval (CI): 0.524-0.681, p = 0.012; AUC: 0.578, 95% CI: 0.499-0.656, p = 0.046]. There was no significant difference of all-cause mortality rate and major adverse cardiac events (MACEs) between the STEMI patients with HTB or with LTB (3.92% in HTB group vs. 2.97% in LTB group, p = 0.712; 10.78% in HTB group vs. 8.91% in LTB group, p = 0.215). Compared with the HTB patients in the low NLR group, C-reactive protein, baseline troponin I, baseline brain natriuretic peptide, and leukocyte parameters, such as white blood cell, neutrophil, lymphocyte, NLR, PLR, and MLR, were also significantly higher in the high NLR group in STEMI patients who underwent PPCI with HTB (18.94 ± 19.06 vs. 35.23 ± 52.83, p = 0.037; 10.99 ± 18.07 vs. 21.37 ± 19.64, p = 0.007; 199.39 ± 323.67 vs. 430.72 ± 683.59, p = 0.028; 11.55 ± 3.56 vs. 9.31 ± 2.54, p = 0.001; 9.77 ± 3.17 vs. 5.79 ± 1.97, p = 0.000; 1.16 ± 0.44 vs. 2.69 ± 1.23, p = 0.000; 9.37 ± 4.60 vs 1.31 ± 2.58, p = 0.000; 200.88 ± 89.90 vs. 97.47 ± 50.99, p = 0.000; 0.52 ± 0.29 vs. 0.26 ± 0.14, p = 0.000, respectively). MACEs and heart failure in the high NLR group were significantly higher than that in the low NLR group of STEMI patients who underwent PPCI with HTB (20.45% vs. 4.25%, p = 0.041; 10.91% vs. 2.13%, p = 0.038). Conclusion: The value of NLR and MLR were higher in STEMI patients who underwent PPCI with HTB. In STEMI patients who underwent PPCI with HTB, a raised NLR could effectively predict the occurrence of MACEs and heart failure.

14.
Cureus ; 16(6): e61996, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38983984

RESUMO

Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa (sLea). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology. They have been implicated in the pathology of diverse inflammatory disorders, and several selectin antagonists have been tested clinically. E-selectin plays a unique role in leukocyte activation, making it an attractive target for intervention, for example, in sickle cell disease (SCD). This review summarizes selectin biology and pathology, structure and ligand binding, and selectin antagonists that have reached clinical testing with an emphasis on E-selectin.

15.
Life Sci ; : 122895, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986896

RESUMO

AIMS: To investigate the SARS-CoV-2 Spike protein (Spk)-induced inflammatory response and its downmodulation by diminazene aceturate (DIZE). MATERIALS AND METHODS: Through inducing Spk inflammation in murine models, leukocyte migration to the peritoneum, levels of myeloperoxidase (MPO), malondialdehyde (MDA), rolling and adhesion of mesenteric leukocytes, and vascular permeability were investigated. Extracellular DNA traps (DETs) induced by Spk and the production of IL-6 and TNF-α were analyzed using human neutrophils, monocytes, and macrophages. In silico assays assessed the molecular interaction between DIZE and molecules related to leukocyte migration and DETs induction. KEY FINDINGS: Spk triggered acute inflammation, demonstrated by increasing leukocyte migration. Oxidative stress was evidenced by elevated levels of MPO and MDA in the peritoneal liquid. DIZE attenuated cell migration, rolling, and leukocyte adhesion, improved vascular barrier function, mitigated DETs, and reduced the production of Spk-induced pro-inflammatory cytokines. Computational studies supported our findings, showing the molecular interaction of DIZE with targets such as ß2 integrin, PI3K, and PAD2 due to its intermolecular coupling. SIGNIFICANCE: Our results outline a novel role of DIZE as a potential therapeutic agent for mitigating Spk-induced inflammation.

16.
Scand J Clin Lab Invest ; : 1-7, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990075

RESUMO

OBJECTIVES: The objective of this study was to perform a method comparison between the CellaVision preclassification neutrophil count and the reclassification neutrophil count performed by trained laboratory technicians, and to evaluate the diagnostic performance of the preclassification neutrophil count at clinical decision levels. METHODS: We retrospectively identified patient samples through 2019-2022 in which the differential count was performed on Cellavision (n = 4,354). Data on sample characteristics and leukocyte- and differential counts was extracted from the electronic medical journal. For each sample, data containing the pre- and reclassification leukocyte classification, respectively, was extracted from the Cellavision software. Method comparison between the pre-and reclassification neutrophil count was performed using Bland Altman analysis. Diagnostic performance of the preclassification neutrophil count was evaluated according to four pre-specified categories of results with the reclassification as reference method. RESULTS: The median difference between the pre- and reclassification neutrophil count was 0.044 x 109/L. The preclassification neutrophil count categorised 95.6% of all samples correctly according to the four categories. The sensitivity, specificity, positive predictive value and negative predictive value for detecting neutrophilia > 7.00 x 109/L was 98.8%, 97.2%, 95.8%, and 99.2%, respectively. In samples with leukopenia (n = 543), the sensitivity, specificity, positive predictive value and negative predictive value for detecting severe neutropenia (< 0.50 x 109/L) was 97.7%, 99.1%, 98.6%, and 98.5%, respectively. CONCLUSION: The diagnostic performance of the CellaVision preclassification neutrophil count was satisfactory. The preclassification neutrophil count may be released to the electronic medical journal to improve turnaround time and benefit laboratory management.

17.
Aging Cell ; : e14266, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958042

RESUMO

Age-related chronic inflammatory lung diseases impose a threat on public health, including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, their etiology and potential targets have not been clarified. We performed genome-wide meta-analysis for IPF with the largest sample size (2883 cases and 741,929 controls) and leveraged the summary statistics of COPD (17,547 cases and 617,598 controls). Transcriptome-wide and proteome-wide Mendelian randomization (MR) designs, together with genetic colocalization, were implemented to find robust targets. The mediation effect was assessed using leukocyte telomere length (LTL). The single-cell transcriptome analysis was performed to link targets with cell types. Individual-level data from UK Biobank (UKB) were used to validate our findings. Sixteen genetically predicted plasma proteins were causally associated with the risk of IPF and 6 proteins were causally associated with COPD. Therein, genetically-elevated plasma level of SCARF2 protein should reduce the risk of both IPF (odds ratio, OR = 0.9974 [0.9970, 0.9978]) and COPD (OR = 0.7431 [0.6253, 0.8831]) and such effects were not mediated by LTL. Genetic colocalization further corroborated these MR results of SCARF2. The transcriptome-wide MR confirmed that higher expression level of SCARF2 was associated with a reduced risk of both. However, the single-cell RNA analysis indicated that SCARF2 expression level was only relatively lower in epithelial cells of COPD lung tissue compared to normal lung tissue. UKB data implicated an inverse association of serum SCARF2 protein with COPD (hazard ratio, HR = 1.215 [1.106, 1.335]). The SCARF2 gene should be a novel target for COP.

18.
Mol Immunol ; 172: 56-67, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901180

RESUMO

The Class I MHC molecule (MHC-I) HLA-E presents peptides that are derived from the signal sequences, either those of other MHC-I products, or of viral type I membrane glycoproteins. Monoclonal antibodies with proven specificity for HLA-E, and with no cross-reactions with other MHC-I products, have yet to be described. To obtain anti-HLA-E-specific antibodies suitable for a range of applications, we generated monoclonal antibodies against a unique feature of HLA-E: its cytoplasmic tail. We created an immunogen by performing an enzymatically catalyzed transpeptidation reaction to obtain a fusion of the cytoplasmic tail of HLA-E with a nanobody that recognizes murine Class II MHC (MHC-II) products. We obtained a mouse monoclonal antibody that recognizes a 13-residue stretch in the HLA-E cytoplasmic tail. We cloned the genes that encode this antibody in expression vectors to place an LPETG sortase recognition motif at the C-terminus of the heavy and light chains. This arrangement allows the site-specific installation of fluorophores or biotin at these C-termini. The resulting immunoglobulin preparations, labeled with 4 equivalents of a fluorescent or biotinylated payload of choice, can then be used for direct immunofluorescence or detection of the tag by fluorescence or by streptavidin-based methods. We also show that the 13-residue sequence can serve as an epitope tag, independent of the site of its placement within a protein's sequence. The antibody can be used diagnostically to stain for HLA-E on patient tumor samples, it can be used as an antibody-epitope tag for extracellular proteins, and it enables research into the unique role of the cytoplasmic tail of HLA-E.

19.
Front Aging ; 5: 1389789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873125

RESUMO

No clear consensus has emerged from the literature on the gene expression changes that occur in human whole blood with age. In this study we compared whole blood ageing genes from the published literature with data on gene specificity for leukocyte subtypes. Surprisingly we found that highly ranked ageing genes were predominantly expressed by naïve T cells, with limited expression from more common cell types. Highly ranked ageing genes were also more likely to have decreased expression with age. Taken together, it is plausible that much of the observed gene expression changes in whole blood is reflecting the decline in abundance of naïve T cells known to occur with age, rather than changes in transcription rates in common cell types. Correct attribution of the gene expression changes that occur with age is essential for understanding the underlying mechanisms.

20.
Methods Mol Biol ; 2809: 1-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907887

RESUMO

The major histocompatibility complex (MHC) with its highly polymorphic HLA genes represents one of the most intensely studied genomic regions in the genome. MHC proteins play a key role in antigen-specific immunity and are associated with a wide range of complex diseases. Despite decades of research and many advances in the field, the characterization and interpretation of its genetic and genomic variability remain challenging. Here an overview is provided of the MHC, the nature of its exceptional variability, and the complex evolutionary processes assumed to drive this variability. Highlighted are also recent advances in the field that promise to improve our understanding of the variability in the MHC and in antigen-specific immunity more generally.


Assuntos
Evolução Molecular , Variação Genética , Antígenos HLA , Complexo Principal de Histocompatibilidade , Humanos , Antígenos HLA/genética , Complexo Principal de Histocompatibilidade/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...