Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Chromatogr A ; 1730: 465102, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38941799

RESUMO

Staphylococcal protein-A affinity chromatography has been optimized for antibody purification, achieving a current capacity of up to 90 mg/ml in packed bed. The morphology of the particles, the number of antibodies bound per ligand and the spatial arrangement of the ligands were assessed by in-situ Small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM) combined with measurement of adsorption isotherms. We employed SAXS measurements to probe the nanoscale structure of the chromatographic resin. From scanning electron microcopy, the morphology and area of the beads were obtained. The adsorption isotherm revealed a bi-Langmuirian behavior where the association constant varied with the critical bulk concentration, indicating multilayer adsorption. Determining the antibody-ligand stoichiometry was crucial for understanding the adsorption mechanism, which was estimated to be 4 at lower concentrations and 4.5 at higher concentrations, suggestive of reversible protein-protein interactions. The same results were reached from the in-situ small angle X-ray scattering measurements. A stoichiometry of 6 cannot be achieved since the two protein A monomers are anchored to the stationary phase and thus sterically hindered. Normalization through ellipsoids facilitated SAXS analysis, enabling the determination of distances between ligands and antibody-ligand complexes. Density fluctuations were examined by subtracting the elliptical fit, providing insights into ligand density distribution. The dense ligand packing of TOYOPEARL® AF-rProtein A HC was confirmed, making further increases in ligand density impractical. Additionally, SAXS analysis revealed structural rearrangements of the antibody-ligand complex with increasing antibody surface load, suggesting reversible association of antibodies.

2.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838668

RESUMO

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Assuntos
Mecanotransdução Celular , Imagem Individual de Molécula , Animais , Humanos , Camundongos , Fenômenos Biomecânicos , Adesão Celular , DNA/química , DNA/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Linhagem Celular , Sobrevivência Celular , Pareamento de Bases , Calibragem
3.
ACS Nano ; 18(26): 16674-16683, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38907991

RESUMO

Targeted nanoparticles have been extensively explored for their ability to deliver their payload to a selective cell population while reducing off-target side effects. The design of actively targeted nanoparticles requires the grafting of a ligand that specifically binds to a highly expressed receptor on the surface of the targeted cell population. Optimizing the interactions between the targeting ligand and the receptor can maximize the cellular uptake of the nanoparticles and subsequently improve their activity. Here, we evaluated how the density and presentation of the targeting ligands dictate the cellular uptake of nanoparticles. To do so, we used a DNA-scaffolded PLGA nanoparticle system to achieve efficient and tunable ligand conjugation. A prostate-specific membrane antigen (PSMA) expressing a prostate cancer cell line was used as a model. The density and presentation of PSMA targeting ligand ACUPA were precisely tuned on the DNA-scaffolded nanoparticle surface, and their impact on cellular uptake was evaluated. It was found that matching the ligand density with the cell receptor density achieved the maximum cellular uptake and specificity. Furthermore, DNA hybridization-mediated targeting chain rigidity of the DNA-scaffolded nanoparticle offered ∼3 times higher cellular uptake compared to the ACUPA-terminated PLGA nanoparticle. Our findings also indicated a ∼ 3.7-fold reduction in the cellular uptake for the DNA hybridization of the non-targeting chain. We showed that nanoparticle uptake is energy-dependent and follows a clathrin-mediated pathway. Finally, we validated the preferential tumor targeting of the nanoparticles in a bilateral tumor xenograft model. Our results provide a rational guideline for designing actively targeted nanoparticles and highlight the application of DNA-scaffolded nanoparticles as an efficient active targeting platform.


Assuntos
DNA , Glutamato Carboxipeptidase II , Nanopartículas , Neoplasias da Próstata , Nanopartículas/química , Humanos , DNA/química , DNA/metabolismo , Ligantes , Masculino , Glutamato Carboxipeptidase II/metabolismo , Glutamato Carboxipeptidase II/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Camundongos , Antígenos de Superfície/metabolismo , Antígenos de Superfície/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
4.
ACS Biomater Sci Eng ; 10(4): 2224-2234, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38537162

RESUMO

Designing targeted drug delivery systems to effectively treat bone diseases ranging from osteoporosis to nonunion bone defects remains a significant challenge. Previously, nanoparticles (NPs) self-assembled from diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) delivering a Wnt agonist were shown to effectively target bone and improve healing via the introduction of a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by the osteoclasts during bone remodeling. Despite these promising results, the underlying biological factors governing targeting and subsequent drug delivery system (DDS) design parameters have not been examined to enable the rational design to improve bone selectivity. Therefore, this work investigated the effect of target ligand density, the treatment window after injury, specificity of TRAP binding peptide (TBP), the extent of TRAP deposition, and underlying genetic factors (e.g., mouse strain differences) on TBP-NP targeting. Data based on in vitro binding studies and in vivo biodistribution analyses using a murine femoral fracture model suggest that TBP-NP-TRAP interactions and TBP-NP bone accumulation were ligand-density-dependent; in vitro, TRAP affinity was correlated with ligand density up to the maximum of 200,000 TBP ligands/NP, while NPs with 80,000 TBP ligands showed 2-fold increase in fracture accumulation at day 21 post injury compared with that of untargeted or scrambled controls. While fracture accumulation exhibited similar trends when injected at day 3 compared to that at day 21 postfracture, there were no significant differences observed between TBP-functionalized and control NPs, possibly due to saturation of TRAP by NPs at day 3. Leveraging a calcium-depletion diet, TRAP deposition and TBP-NP bone accumulation were positively correlated, confirming that TRAP-TBP binding leads to TBP-NP bone accumulation in vivo. Furthermore, TBP-NP exhibited similar bone accumulation in both C57BL/6 and BALB/c mouse strains versus control NPs, suggesting the broad applicability of TBP-NP regardless of the underlying genetic differences. These studies provide insight into TBP-NP design, mechanism, and therapeutic windows, which inform NP design and treatment strategies for fractures and other bone-associated diseases that leverage TRAP, such as marrow-related hematologic diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Camundongos , Distribuição Tecidual , Ligantes , Camundongos Endogâmicos C57BL , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/farmacologia
5.
ACS Nano ; 17(23): 24090-24103, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010073

RESUMO

The self-assembly of colloidal nanocrystals remains of robust interest due to its potential in creating hierarchical nanomaterials that have advanced function. For gold nanocrystals, junctions between nanoparticles yield large enhancements in local electric fields under resonant illumination, which is suitable for surface-enhanced spectroscopies for molecular sensors. Gold nanorods can provide such plasmonic fields at near-infrared wavelengths of light for longitudinal excitation. Through the use of careful concentration and stoichiometric control, a method is reported herein for selective biotinylation of the ends of gold nanorods for simple, consistent, and high-yielding self-assembly upon addition of the biotin-binding protein streptavidin. This method was applied to four different sized nanorods of similar aspect ratio and analyzed through UV-vis spectroscopy for qualitative confirmation of self-assembly and transmission electron microscopy to determine the degree of self-assembly in end-linked nanorods. The yield of end-linked assemblies approaches 90% for the largest nanorods and approaches 0% for the smallest nanorods. The number of nanorods linked in one chain also increases with an increased nanoparticle size. The results support the notion that the lower ligand density at the ends of the larger nanorods yields preferential substitution reactions at those ends and hence preferential end-to-end assembly, while the smallest nanorods have a relatively uniform ligand density across their surfaces, leading to spatially random substitution reactions.

6.
Biomaterials ; 302: 122318, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708659

RESUMO

Nanoparticle-based drug delivery systems (DDS) have shown promising results in reversing hepatic fibrosis, a common pathological basis of chronic liver diseases (CLDs), in preclinical animal models. However, none of these nanoparticle formulations has transitioned to clinical usage and there are currently no FDA-approved drugs available for liver fibrosis. This highlights the need for a better understanding of the challenges faced by nanoparticles in this complex disease setting. Here, we have systematically studied the impact of targeting strategy, the degree of macrophage infiltration during fibrosis, and the severity of fibrosis, on the liver uptake and intrahepatic distribution of nanocarriers. When tested in mice with advanced liver fibrosis, we demonstrated that the targeting ligand density plays a significant role in determining the uptake and retention of the nanoparticles in the fibrotic liver whilst the type of targeting ligand modulates the trafficking of these nanoparticles into the cell population of interest - activated hepatic stellate cells (aHSCs). Engineering the targeting strategy indeed reduced the uptake of nanoparticles in typical mononuclear phagocyte (MPS) cell populations, but not the infiltrated macrophages. Meanwhile, additional functionalization may be required to enhance the efficacy of DDS in end-stage fibrosis/cirrhosis compared to early stages.


Assuntos
Cirrose Hepática , Nanopartículas , Camundongos , Animais , Ligantes , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Fígado/patologia , Biomarcadores
7.
Pharmaceutics ; 15(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37765240

RESUMO

Overcoming the blood-brain barrier (BBB) remains a significant challenge with regard to drug delivery to the brain. By incorporating targeting ligands, and by carefully adjusting particle sizes, nanocarriers can be customized to improve drug delivery. Among these targeting ligands, transferrin stands out due to the high expression level of its receptor (i.e., transferrin receptor) on the BBB. Porous silicon nanoparticles (pSiNPs) are a promising drug nanocarrier to the brain due to their biodegradability, biocompatibility, and exceptional drug-loading capacity. However, an in-depth understanding of the optimal nanoparticle size and transferrin surface density, in order to maximize BBB penetration, is still lacking. To address this gap, a diverse library of pSiNPs was synthesized using bifunctional poly(ethylene glycol) linkers with methoxy or/and carboxyl terminal groups. These variations allowed us to explore different transferrin surface densities in addition to particle sizes. The effects of these parameters on the cellular association, uptake, and transcytosis in immortalized human brain microvascular endothelial cells (hCMEC/D3) were investigated using multiple in vitro systems of increasing degrees of complexity. These systems included the following: a 2D cell culture, a static Transwell model, and a dynamic BBB-on-a-chip model. Our results revealed the significant impact of both the ligand surface density and size of pSiNPs on their ability to penetrate the BBB, wherein intermediate-level transferrin densities and smaller pSiNPs exhibited the highest BBB transportation efficiency in vitro. Moreover, notable discrepancies emerged between the tested in vitro assays, further emphasizing the necessity of using more physiologically relevant assays, such as a microfluidic BBB-on-a-chip model, for nanocarrier testing and evaluation.

8.
ACS Appl Mater Interfaces ; 15(32): 38171-38184, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527490

RESUMO

Stem cell adhesion is mediated via the binding of integrin receptors to adhesion motifs present in the extracellular matrix (ECM). The spatial organization of adhesion ligands plays an important role in stem cell integrin-mediated adhesion. In this study, we developed a series of biointerfaces using arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles (MSN-RGD) to study the effect of RGD adhesion ligand global density (ligand coverage over the surface), spacing, and RGD clustering levels on stem cell adhesion and differentiation. To prepare the biointerface, MSNs were chemically functionalized with RGD peptides via an antifouling poly(ethylene glycol) (PEG) linker. The RGD surface functionalization ratio could be controlled to create MSNs with high and low RGD ligand clustering levels. MSN films with varying RGD global densities could be created by blending different ratios of MSN-RGD and non-RGD-functionalized MSNs together. A computational simulation study was performed to analyze nanoparticle distribution and RGD spacing on the resulting surfaces to determine experimental conditions. Enhanced cell adhesion and spreading were observed when RGD global density increased from 1.06 to 5.32 nmol cm-2 using highly clustered RGD-MSN-based films. Higher RGD ligand clustering levels led to larger cell spreading and increased formation of focal adhesions. Moreover, a higher RGD ligand clustering level promoted the expression of alkaline phosphatase in hMSCs. Overall, these findings indicate that both RGD global density and clustering levels are crucial variables in regulating stem cell behaviors. This study provides important information about ligand-integrin interactions, which could be implemented into biomaterial design to achieve optimal performance of adhesive functional peptides.


Assuntos
Nanopartículas , Dióxido de Silício , Adesão Celular , Dióxido de Silício/farmacologia , Ácido Aspártico , Glicina/farmacologia , Ligantes , Peptídeos/farmacologia , Integrinas/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Arginina/farmacologia
9.
Nanomedicine (Lond) ; 17(19): 1375-1395, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36317852

RESUMO

Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.


Globally, cancer is one of the leading causes of death. Among various cancers, lung cancer is highly lethal and quickly spreads to other body parts. Directly delivering the drugs to cancer cells has been possible due to the application of receptor-based targeted nanomedicine. However, variation among patients and the complexity of the lung cancer has depicted that a single-receptor-based drug targeting lung cancer has limited outcomes. Therefore, delivering the drug to the lungs via dual-receptor-targeted nanomedicine has added advantages over conventional and single-receptor-targeted drug-delivery systems. Hence, the authors have reviewed various single- and dual-receptor-targeted nanomedicines reported for lung cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Nanomedicina , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
10.
J Chromatogr A ; 1680: 463410, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35994780

RESUMO

Cation exchange chromatography, as part of the monoclonal antibody purification train, is known as a mild polishing technique. However, in the last couple of years, more and more publications have shown unusual elution behavior, resulting from e.g. on-column (reversible) unfolding and aggregation of the predominantly mAb molecules. The stability of the investigated protein seems to play a significant role in this phenomenon. We have used a glycosylated IgG1 antibody as a model protein and investigated several influencing factors, including pH value and ligand density variations of three prototype Fractogel® cation exchange resins. Ligand density, pH and salt concentration are the main contributing factors in the Donnan effect, i.e. distribution of ions, between resin pore volume and bulk volume. This leads to a significantly lower pH value the protein is subjected to during the on-column hold time and therefore influences the conformational stability of our protein. Nano-DSF and kinetic SEC measurements show that the protein is destabilized at low pH values, but also, that the binding to the CEX resin and the elution with increasing salt concentration is responsible for the resulting two-peak elution behavior and partially reversible unfolding and aggregation.


Assuntos
Anticorpos Monoclonais , Resinas de Troca de Cátion , Anticorpos Monoclonais/química , Resinas de Troca de Cátion/química , Cátions/química , Cromatografia por Troca Iônica/métodos , Concentração de Íons de Hidrogênio , Ligantes
11.
ACS Appl Mater Interfaces ; 14(33): 37514-37527, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35944246

RESUMO

CAR-T-cell therapies must be expanded to obtain a large number of effector cells quickly, and the current technology cannot address this challenge. A longer operational time would lose or alter the function and phenotype of CAR-T cells in response to therapy, and it also causes a loss in the optimal treatment time for patients. At present, lower survival time and homing efficiency reduce the antitumor effect of CAR-T in vivo. But nobody has solved these two issues in one system, which has a similar microenvironment of lymphoid organs to activate/expand cell delivery for immunotherapy. Here, we generated artificial, customized immune cell matrix scaffolds based on a self-assembling peptide to preserve and augment the cell phenotype in light of the characteristics of CAR-T. The all-in-one nanoscale matrix scaffolds reduced the processing time of CAR-T to 3 days and resulted in over a 10-fold increase compared with the traditional protocol. The cells were combined to modulate mechanotransduction and chemical signals, and the mimic matrix scaffolds showed optimal stiffness and adhesive ligand density, thereby accelerating CAR-T-cell proliferation. Meanwhile, engineering CAR-T-secreted intrinsic PD-1 blocking single-chain variable fragments (scFv) further increased cell proliferation and cytotoxicity by resisting the self and tumor microenvironment in a paracrine and autocrine manner. Local delivery of CAR-T cells from the scaffolds significantly enabled long-term retention, suppressed tumor growth, and increased infiltration of effector T cells compared with traditional CAR-T treatment. The application of bioengineering and genetic engineering approaches has led to the development of rapid culture environments that can control matrix scaffold properties for CAR-T-cell and cancer immunotherapies.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Linhagem Celular Tumoral , Proliferação de Células , Hidrogéis , Imunoterapia , Mecanotransdução Celular , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Colloid Interface Sci ; 627: 126-141, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35842963

RESUMO

The conjugation of high-affinity cRGD-containing peptides is a promising approach in nanomedicine to efficiently reduce off-targeting effects and enhance the cellular uptake by integrin-overexpressing tumor cells. Herein we utilize atomistic molecular dynamics simulations to evaluate key structural-functional parameters of these targeting ligands for an effective binding activity towards αVß3 integrins. An increasing number of cRGD ligands is conjugated to PEG chains grafted to highly curved TiO2 nanoparticles to unveil the impact of cRGD density on the ligand's presentation, stability, and conformation in an explicit aqueous environment. We find that a low density leads to an optimal spatial presentation of cRGD ligands out of the "stealth" PEGylated layer around the nanosystem, favoring a straight upward orientation and spaced distribution of the targeting ligands in the bulk-water phase. On the contrary, high densities favor over-clustering of cRGD ligands, driven by a concerted mechanism of enhanced ligand-ligand interactions and reduced water accessibility over the ligand's molecular surface. These findings strongly suggest that the ligand density modulation is a key factor in the design of cRGD-targeting nanodevices to maximize their binding efficiency into over-expressed αVß3 integrin receptors.


Assuntos
Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Integrina alfaVbeta3/metabolismo , Integrina beta3 , Ligantes , Simulação de Dinâmica Molecular , Nanopartículas/química , Peptídeos Cíclicos/química , Polietilenoglicóis/química , Titânio , Água
13.
ACS Nano ; 16(4): 6886-6897, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35394292

RESUMO

Active targeting has been hailed as one of the most promising strategies to further enhance the therapeutic efficacy of liposomal nanomedicines. Owing to the critical role of ligand density in mediating cellular uptake and the intrinsic heterogeneity of liposomal formulations, precise quantification of the surface ligand density on a single-particle basis is of fundamental importance. In this work, we report a method to simultaneously measure the particle size and the number of ligands on the same liposomal nanoparticles by nanoflow cytometry. Then the ligand density for each individual liposome can be determined. With an analysis rate up to 10 000 particles per minute, a statistically representative distribution of ligand density could be determined in minutes. By utilizing fluorescently labeled recombinant receptors as the detection probe against the conjugated ligands, only those available for cell targeting can be exclusively detected. The influence of ligand input, conjugation strategy, and the polyethylene glycol spacer length on the available ligand density of folate-modified liposomes was investigated. The correlation between the available ligand density and cell targeting capability was assessed in a quantitative perspective for liposomes modified with three different targeting moieties. The optimal ligand density was determined to be 0.5-2.0, 0.7, and 0.2 ligand per 100 nm2 for folate-, transferrin-, and HER2-antibody-conjugated liposomes, respectively. These optimal values agreed well with the spike density of the natural counterparts, viruses. The as-developed approach is generally applicable to a wide range of active-targeting nanocarriers.


Assuntos
Lipossomos , Nanopartículas , Nanomedicina , Ligantes , Polietilenoglicóis , Ácido Fólico , Sistemas de Liberação de Medicamentos
14.
Colloids Surf B Biointerfaces ; 211: 112289, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34954516

RESUMO

Due to its overexpression in cancer cells, the folate receptor (FR) is heavily exploited in the active targeting of nanoparticles (NPs). Its ligand, folic acid (FA) is as a consequence widely used as a NP targeting ligand. Although rather popular and successful in principle, recent data has shown that FA may result in breast cancer initiation and progression, which questions the suitability of FA as NP cancer targeting ligand. In this work, intravenous administration of free FA to healthy female mice resulted in breast tissue dysplasia, hyperplasia and in the increased expression of human epidermal growth factor receptor-2 (HER2), folate receptor (FR), cancer antigen 15-3 (CA15.3), vascular endothelial growth factor (VEGF), signal transducer and activator of transcription 3 (STAT3) and the pro-inflammatory cytokines, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6) and interleukin-1ß. In addition to the reduction in IL2. To evaluate the suitability and safety of FA as NP targeting ligand in breast cancer, small (≈ 150 nm) and large (≈ 500 nm) chitosan NPs were formulated and decorated with two densities of FA. The success of active targeting by FA was confirmed in two breast cancer cell lines (MCF-7 and MDA-MB-231 cells) in comparison to HEK293 cells. FA modified NPs that demonstrated successful active targeting in-vitro were assessed in-vivo. Upon intravenous administration, large NPs modified with a high density of FA accumulated in the breast tissue and resulted in similar effects as those observed with free FA. These results therefore question the suitability of FA as a targeting ligand in breast cancer and shed light on the importance of considering the activity (other than targeting) of the ligands used in NP active targeting.


Assuntos
Neoplasias da Mama , Nanopartículas , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Ácido Fólico/metabolismo , Células HEK293 , Humanos , Ligantes , Camundongos , Fator A de Crescimento do Endotélio Vascular
15.
J Chromatogr A ; 1652: 462077, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34214832

RESUMO

Stepwise change between low and high salt concentration buffers of the same pH results in pH transition, the length of which was demonstrated to be proportional to the quantity of ion-exchange groups present on the matrix. In this work, we analyzed the effect of the ligand type, density, and buffer concentration on the pH transition shape for typical ion-exchange groups (QA, DEAE, SO3, and COOH) and ligands acting as metal-chelators, such as IDA, TAEA, and EDA. It was demonstrated that pH transition can occur either as a chromatographic or flat-top peak. pH transition peaks were evaluated by their length, height, and peak center parameters. While no parameter can describe the ligand density accurately with a single linear correlation for both peak types, all parameters can be used for the description of one peak type. Peak length and height exhibited the same accuracy, while their sensitivity depended on the pH transition shape: length being more sensitive for the flat-top peaks, while height for the chromatographic peaks. pH height can be obtained faster, at lower elution volume, and seems to be more suitable for the determination of low amounts of ligand, when typically chromatographic peak type pH transitions occur.


Assuntos
Técnicas de Química Analítica , Ligantes , Polímeros , Soluções Tampão , Quelantes/química , Técnicas de Química Analítica/métodos , Cromatografia Líquida , Emulsões/química , Concentração de Íons de Hidrogênio , Polímeros/química
16.
Eng Life Sci ; 21(6): 392-404, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34140850

RESUMO

The formation of a stable spatial arrangement of protein A ligands is a great challenge for the development of high-capacity polymer-grafted protein A adsorbents due to the complexity in interplay between coupled ligands and polymer chain. In this work, carboxymethyl dextrans (CMDs) with different molecular weight were introduced to provide stable spatial ligand arrangement in CMD-grafted protein A gels to improve IgG adsorption. The result showed that coupling of protein A ligand in CMD-grafted layer had no marked influence on pore size and dextran layers coupled with the ligands were stable in experimental range of salt concentrations. The result of IgG adsorption revealed that carboxymethyl dextran T10, a short CMD, was more suitable as a scaffold for the synthesis of high-capacity protein A gels. Moreover, the maximal adsorption capacity for IgG was obtained to be 96.4 mg/g gel at ionic capacities of 300-350 mmol/L and a ligand density of 15.2 mg/g gel. Dynamic binding capacity for IgG exhibited a higher capacity utilization in CMD-grafted protein A gels than non-grafted protein A gel. The research presented a tactics to establish a stable dextran layer coupled with protein A ligands and demonstrated its importance to improve binding capacity for IgG.

17.
J Sep Sci ; 44(4): 805-821, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33285038

RESUMO

Ion exchange chromatography is a powerful and ubiquitous unit operation in the purification of therapeutic proteins. However, the performance of an ion-exchange process depends on a complex interrelationship between several parameters, such as protein properties, mobile phase conditions, and chromatographic resin characteristics. Consequently, batch variations of ion exchange resins play a significant role in the robustness of these downstream processing steps. Ligand density is known to be one of the main lot-to-lot variations, affecting protein adsorption and separation performance. The use of a model-based approach can be an effective tool for comprehending the impact of parameter variations (e.g., ligand density) and their influence on the process. The objective of this work was to apply mechanistic modeling to gain a deeper understanding of the influence of ligand density variations in anion exchange chromatography. To achieve this, 13 prototype resins having the same support as the strong anion exchange resin Fractogel® EMD TMAE (M), but differing in ligand density, were analyzed. Linear salt gradient elution experiments were performed to observe the elution behavior of a monoclonal antibody and bovine serum albumin. A proposed isotherm model for ion exchange chromatography, describing the dependence of ligand density variations on protein retention, was successfully applied.


Assuntos
Resinas de Troca Aniônica/química , Anticorpos Monoclonais/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Cromatografia por Troca Iônica , Ligantes , Modelos Moleculares , Propriedades de Superfície
18.
Adv Biosyst ; 4(11): e2000172, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33073549

RESUMO

The newest generation of drug delivery systems (DDSs) exploits ligands to mediate specific targeting of cells and/or tissues. However, studies investigating the link between ligand density and nanoparticle (NP) uptake are limited to a small number of ligand-receptor systems. C-type lectin-like molecule-1 (CLL1) is uniquely expressed on myeloid cells, which enables the development of receptors specifically targeting treat various diseases. This study aims to investigate how NPs with different CLL1 targeting peptide density impact cellular uptake. To this end, poly(styrene-alt-maleic anhydride)-b-poly(styrene) NPs are functionalized with cyclized CLL1 binding peptides (cCBP) ranging from 240 ± 12 to 31 000 ± 940 peptides per NP. Unexpectedly, the percentage of cells with internalized NPs is decreased for all cCBP-NP designs regardless of ligand density compared to unmodified NPs. Internalization through CLL1 receptor-mediated processes is further investigated without confounding the effects of NP size and surface charge. Interestingly, high density cCBP-NPs (>7000 cCBP per NP) uptake is dominated by CLL1 receptor-mediated processes while low density cCBP-NPs (≈200 cCBP per NP) and untargeted NP occurred through non-specific clathrin and caveolin-mediated endocytosis. Altogether, these studies show that ligand density and uptake mechanism should be carefully investigated for specific ligand-receptor systems for the design of targeted DDSs to achieve effective drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lectinas Tipo C , Nanopartículas , Molécula 1 de Adesão Celular/química , Molécula 1 de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Ligantes , Nanopartículas/química , Nanopartículas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Polímeros/química , Polímeros/farmacocinética
19.
Biochem Biophys Res Commun ; 529(4): 930-935, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819601

RESUMO

With significantly decreased light scattering and tissue autofluorescence, fluorescence imaging in the second near infrared (NIR-II, 1000-1700 nm) region has been heavily explored in biomedical field recently. Silver sulfide quantum dots (Ag2S QDs) with unique optical properties were one of the most classic NIR-II imaging probes. However, the Ag2S QDs for in vivo purpose were mainly obtain by oil phase-based high-temperature route at present. Here, we proposed a mild aqueous route to prepare NIR-II emissive Ag2S QDs for in vivo tumor imaging. Original Ag2S QDs was obtained by mixing sodium sulfide and silver nitrate in a thiol-terminated polyethylene glycol (mPEG-SH) solution. Treating the original Ag2S QDs with extra mPEG-SH ligands produced highly PEGyalted Ag2S QDs. These re-PEGylated Ag2S QDs exhibited much better blood circulation and tumor accumulation in vivo comparing with the original ones, which can serve as excellent tumor imaging probes. The whole-body blood vessel imaging of living mice was achieved with high resolution, the bio-distribution of these QDs were studied by NIR-II imaging as well. This work also highlighted the importance of ligand density for tumor targeting.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hepatoblastoma/diagnóstico por imagem , Imagem Óptica/métodos , Polietilenoglicóis/química , Pontos Quânticos/química , Animais , Feminino , Células Hep G2 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pontos Quânticos/administração & dosagem , Nitrato de Prata/química , Sulfetos/química
20.
ACS Appl Mater Interfaces ; 12(36): 39967-39978, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786242

RESUMO

Monoclonal antibodies are key molecules in medicine and pharmaceuticals. A potentially crucial drawback for faster advances in research here is their high price due to the extremely expensive antibody purification process, particularly the affinity capture step. Affinity chromatography materials have to demonstrate the high binding capacity and recovery efficiency as well as superior chemical and mechanical stability. Low-cost materials and robust, faster processes would reduce costs and enhance industrial immunoglobulin purification. Therefore, exploring the use of alternative materials is necessary. In this context, we conduct the first comparison of the performance of magnetic nanoparticles with commercially available chromatography resins and magnetic microparticles with regard to immobilizing Protein G ligands and recovering immunoglobulin G (IgG). Simultaneously, we demonstrate the suitability of bare as well as silica-coated and epoxy-functionalized magnetite nanoparticles for this purpose. All materials applied have a similar specific surface area but differ in the nature of their matrix and surface accessibility. The nanoparticles are present as micrometer agglomerates in solution. The highest Protein G density can be observed on the nanoparticles. IgG adsorbs as a multilayer on all materials investigated. However, the recovery of IgG after washing indicates a remaining monolayer, which points to the specificity of the IgG binding to the immobilized Protein G. One important finding is the impact of the ligand-binding stoichiometry (Protein G surface coverage) on IgG recovery, reusability, and the ability to withstand long-term sanitization. Differences in the materials' performances are attributed to mass transfer limitations and steric hindrance. These results demonstrate that nanoparticles represent a promising material for the economical and efficient immobilization of proteins and the affinity purification of antibodies, promoting innovation in downstream processing.


Assuntos
Resinas Epóxi/química , Imunoglobulina G/química , Nanopartículas de Magnetita/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...