Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Adv Sci (Weinh) ; : e2400586, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984490

RESUMO

Electrical conductivity is a pivotal biophysical factor for neural interfaces, though optimal values remain controversial due to challenges isolating this cue. To address this issue, conductive substrates made of carbon nanotubes and graphene oxide nanoribbons, exhibiting a spectrum of conductivities from 0.02 to 3.2 S m-1, while controlling other surface properties is designed. The focus is to ascertain whether varying conductivity in isolation has any discernable impact on neural lineage specification. Remarkably, neural-tissue-like low conductivity (0.02-0.1 S m-1) prompted neural stem/progenitor cells to exhibit a greater propensity toward neuronal lineage specification (neurons and oligodendrocytes, not astrocytes) compared to high supraphysiological conductivity (3.2 S m-1). High conductivity instigated the apoptotic process, characterized by increased apoptotic fraction and decreased neurogenic morphological features, primarily due to calcium overload. Conversely, cells exposed to physiological conductivity displayed epigenetic changes, specifically increased chromatin openness with H3acetylation (H3ac) and neurogenic-transcription-factor activation, along with a more balanced intracellular calcium response. The pharmacological inhibition of H3ac further supported the idea that such epigenetic changes might play a key role in driving neuronal specification in response to neural-tissue-like, not supraphysiological, conductive cues. These findings underscore the necessity of optimal conductivity when designing neural interfaces and scaffolds to stimulate neuronal differentiation and facilitate the repair process.

2.
Cell Rep ; 43(6): 114309, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38848215

RESUMO

Glioblastomas are the most common malignant brain tumors in adults; they are highly aggressive and heterogeneous and show a high degree of plasticity. Here, we show that methyltransferase-like 7B (METTL7B) is an essential regulator of lineage specification in glioblastoma, with an impact on both tumor size and invasiveness. Single-cell transcriptomic analysis of these tumors and of cerebral organoids derived from expanded potential stem cells overexpressing METTL7B reveal a regulatory role for the gene in the neural stem cell-to-astrocyte differentiation trajectory. Mechanistically, METTL7B downregulates the expression of key neuronal differentiation players, including SALL2, via post-translational modifications of histone marks.


Assuntos
Diferenciação Celular , Linhagem da Célula , Glioblastoma , Metiltransferases , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Linhagem da Célula/genética , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Linhagem Celular Tumoral , Astrócitos/metabolismo , Astrócitos/patologia , Organoides/metabolismo , Organoides/patologia
3.
Hum Reprod ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926157

RESUMO

In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.

4.
Mater Today Bio ; 26: 101050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654935

RESUMO

Periodontal ligament (PDL) cells play a crucial role in maintaining periodontal integrity and function by providing cell sources for ligament regeneration. While biophysical stimulation is known to regulate cell behaviors and functions, its impact on epigenetics of PDL cells has not yet been elucidated. Here, we aimed to investigate the cytoskeletal changes, epigenetic modifications, and lineage commitment of PDL cells following the application of stretch stimuli to PDL. PDL cells were subjected to stretching (0.1 Hz, 10 %). Subsequently, changes in focal adhesion, tubulin, and histone modification were observed. The survival ability in inflammatory conditions was also evaluated. Furthermore, using a rat hypo-occlusion model, we verified whether these phenomena are observed in vivo. Stretched PDL cells showed maximal histone 3 acetylation (H3Ace) at 2 h, aligning perpendicularly to the stretch direction. RNA sequencing revealed stretching altered gene sets related to mechanotransduction, histone modification, reactive oxygen species (ROS) metabolism, and differentiation. We further found that anchorage, cell elongation, and actin/microtubule acetylation were highly upregulated with mechanosensitive chromatin remodelers such as H3Ace and histone H3 trimethyl lysine 9 (H3K9me3) adopting euchromatin status. Inhibitor studies showed mechanotransduction-mediated chromatin modification alters PDL cells behaviors. Stretched PDL cells displayed enhanced survival against bacterial toxin (C12-HSL) or ROS (H2O2) attack. Furthermore, cyclic stretch priming enhanced the osteoclast and osteoblast differentiation potential of PDL cells, as evidenced by upregulation of lineage-specific genes. In vivo, PDL cells from normally loaded teeth displayed an elongated morphology and higher levels of H3Ace compared to PDL cells with hypo-occlusion, where mechanical stimulus is removed. Overall, these data strongly link external physical forces to subsequent mechanotransduction and epigenetic changes, impacting gene expression and multiple cellular behaviors, providing important implications in cell biology and tissue regeneration.

5.
Cell Rep ; 43(5): 114136, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38643480

RESUMO

Embryos, originating from fertilized eggs, undergo continuous cell division and differentiation, accompanied by dramatic changes in transcription, translation, and metabolism. Chromatin regulators, including transcription factors (TFs), play indispensable roles in regulating these processes. Recently, the trophoblast regulator TFAP2C was identified as crucial in initiating early cell fate decisions. However, Tfap2c transcripts persist in both the inner cell mass and trophectoderm of blastocysts, prompting inquiry into Tfap2c's function in post-lineage establishment. In this study, we delineate the dynamics of TFAP2C during the mouse peri-implantation stage and elucidate its collaboration with the key lineage regulators CDX2 and NANOG. Importantly, we propose that de novo formation of H3K9me3 in the extraembryonic ectoderm during implantation antagonizes TFAP2C binding to crucial developmental genes, thereby maintaining its lineage identity. Together, these results highlight the plasticity of the chromatin environment in designating the genomic binding of highly adaptable lineage-specific TFs and regulating embryonic cell fates.


Assuntos
Fator de Transcrição CDX2 , Linhagem da Célula , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição AP-2 , Animais , Cromatina/metabolismo , Camundongos , Linhagem da Célula/genética , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição CDX2/metabolismo , Fator de Transcrição CDX2/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Blastocisto/metabolismo , Blastocisto/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Feminino , Histonas/metabolismo , Diferenciação Celular/genética , Ectoderma/metabolismo , Ectoderma/citologia , Desenvolvimento Embrionário/genética
6.
Biol Reprod ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408205

RESUMO

Profiling bovine blastocyst transcriptome at the single-cell level has enabled us to reveal the first cell lineage segregation, during which the inner cell mass (ICM), trophectoderm (TE), and an undefined population of transitional cells were identified. By comparing the transcriptome of blastocysts derived in vivo (IVV), in vitro from a conventional culture medium (IVC), and in vitro from an optimized reduced nutrient culture medium (IVR), we found a delay of the cell fate commitment to ICM in the IVC and IVR embryos. Developmental potential differences between IVV, IVC, and IVR embryos were mainly contributed by ICM and transitional cells. Pathway analysis of these non-TE cells between groups revealed highly active metabolic and biosynthetic processes, reduced cellular signaling, and reduced transmembrane transport activities in IVC embryos that may lead to reduced developmental potential. IVR embryos had lower activities in metabolic and biosynthetic processes but increased cellular signaling and transmembrane transport, suggesting these cellular mechanisms may contribute to improved blastocyst development compared to IVC embryos. However, the IVR embryos had compromised development compared to IVV embryos with notably over-active transmembrane transport activities that impaired ion homeostasis.

7.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220236, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37778387

RESUMO

During mammalian embryo development, pluripotent epiblast cells diversify into the three primary germ layers, which will later give rise to all fetal and adult tissues. These processes involve profound transcriptional and epigenetic changes that require precise coordination. Peptidylarginine deiminase IV (PADI4) is a transcriptional regulator that is strongly associated with inflammation and carcinogenesis but whose physiological roles are less well understood. We previously found that Padi4 expression is associated with pluripotency. Here, we examined the role of PADI4 in maintaining the multi-lineage differentiation potential of mouse embryonic stem (ES) cells. Using bulk and single-cell transcriptomic analyses of embryoid bodies (EBs) derived from Padi4 knock-out (Padi4-KO) mouse ES cells, we find that PADI4 loss impairs mesoderm diversification and differentiation of cardimyocytes and endothelial cells. Additionally, Padi4 deletion leads to concerted downregulation of genes associated with polarized growth, sterol metabolism and the extracellular matrix (ECM). This study indicates a requirement for Padi4 in the specification of the mesodermal lineage and reports the Padi4 associated transcriptome, providing a platform for understanding the physiological functions of Padi4 in development and homeostasis. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Assuntos
Células Endoteliais , Proteína-Arginina Desiminase do Tipo 4 , Transcriptoma , Animais , Camundongos , Diferenciação Celular , Células-Tronco Embrionárias , Proteína-Arginina Desiminase do Tipo 4/genética
8.
Genetics ; 225(4)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37847877

RESUMO

The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Fatores de Transcrição/metabolismo
9.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37746871

RESUMO

The stem/progenitor cell pool is indispensable for the development, homeostasis and regeneration of the gastric epithelium, owing to its defining ability to self-renew whilst supplying the various functional epithelial lineages needed to digest food efficiently. A detailed understanding of the intricacies and complexities surrounding the behaviours and roles of these stem cells offers insights, not only into the physiology of gastric epithelial development and maintenance, but also into the pathological consequences following aberrations in stem cell regulation. Here, we provide an insightful synthesis of the existing knowledge on gastric epithelial stem cell biology, including the in vitro and in vivo experimental techniques that have advanced such studies. We highlight the contributions of stem/progenitor cells towards patterning the developing stomach, specification of the differentiated cell lineages and maintenance of the mature epithelium during homeostasis and following injury. Finally, we discuss gaps in our understanding and identify key research areas for future work.


Assuntos
Células-Tronco , Estômago , Homeostase , Diferenciação Celular , Linhagem da Célula
10.
Dev Cell ; 58(18): 1627-1642.e7, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37633271

RESUMO

Mammalian specification of mesoderm and definitive endoderm (DE) is instructed by the two related Tbx transcription factors (TFs) Eomesodermin (Eomes) and Brachyury sharing partially redundant functions. Gross differences in mutant embryonic phenotypes suggest specific functions of each TF. To date, the molecular details of separated lineage-specific gene regulation by Eomes and Brachyury remain poorly understood. Here, we combine mouse embryonic and stem-cell-based analyses to delineate the non-overlapping, lineage-specific transcriptional activities. On a genome-wide scale, binding of both TFs overlaps at promoters of target genes but shows specificity for distal enhancer regions that is conferred by differences in Tbx DNA-binding motifs. The unique binding to enhancer sites instructs the specification of anterior mesoderm (AM) and DE by Eomes and caudal mesoderm by Brachyury. Remarkably, EOMES antagonizes BRACHYURY gene regulatory functions in coexpressing cells during early gastrulation to ensure the proper sequence of early AM and DE lineage specification followed by posterior mesoderm derivatives.


Assuntos
Gastrulação , Proteínas com Domínio T , Camundongos , Animais , Gastrulação/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Mesoderma/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismo
11.
Anim Biosci ; 36(12): 1905-1917, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641830

RESUMO

OBJECTIVE: Nanog homeobox (NANOG) is a core transcription factor that contributes to pluripotency along with octamer binding transcription factor-4 (OCT4) and sex determining region-Y box-2 (SOX2). It is an epiblast lineage marker in mammalian pre-implantation embryos and exhibits a species-specific expression pattern. Therefore, it is important to understand the lineage of NANOG, the trophectoderm, and the primitive endoderm in the pig embryo. METHODS: A loss- and gain-of-function analysis was done to determine the role of NANOG in lineage specification in parthenogenetic porcine blastocysts. We analyzed the relationship between NANOG and pluripotent core transcription factors and other lineage makers. RESULTS: In NANOG-null late blastocysts, OCT4-, SOX2-, and SOX17-positive cells were decreased, whereas GATA binding protein 6 (GATA6)-positive cells were increased. Quantitative real-time polymerase chain reaction revealed that the expression of SOX2 was decreased in NANOG-null blastocysts, whereas that of primitive endoderm makers, except SOX17, was increased. In NANOG-overexpressing blastocysts, caudal type homeobox 2 (CDX2-), SOX17-, and GATA6-positive cells were decreased. The results indicated that the expression of primitive endoderm markers and trophectoderm-related genes was decreased. CONCLUSION: Taken together, the results demonstrate that NANOG is involved in the epiblast and primitive endoderm differentiation and is essential for maintaining pluripotency within the epiblast.

12.
Dev Biol ; 502: 39-49, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437860

RESUMO

As the source of embryonic stem cells (ESCs), inner cell mass (ICM) can form all tissues of the embryo proper, however, its role in early human lineage specification remains controversial. Although a stepwise differentiation model has been proposed suggesting the existence of ICM as a distinct developmental stage, the underlying molecular mechanism remains unclear. In the present study, we perform an integrated analysis on the public human preimplantation embryonic single-cell transcriptomic data and apply a trajectory inference algorithm to measure the cell plasticity. In our results, ICM population can be clearly discriminated on the dimension-reduced graph and confirmed by compelling evidences, thus validating the two-step hypothesis of lineage commitment. According to the branch probabilities and differentiation potential, we determine the precise time points for two lineage segregations. Further analysis on gene expression dynamics and regulatory network indicates that transcription factors including GSC, PRDM1, and SPIC may underlie the decisions of ICM fate. In addition, new human ICM marker genes, such as EPHA4 and CCR8 are discovered and validated by immunofluorescence. Given the potential clinical applications of ESCs, our analysis provides a further understanding of human ICM cells and facilitates the exploration of more unique characteristics in early human development.


Assuntos
Blastocisto , Transcriptoma , Humanos , Transcriptoma/genética , Linhagem da Célula/genética , Blastocisto/metabolismo , Embrião de Mamíferos , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento
13.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333292

RESUMO

Profiling transcriptome at single cell level of bovine blastocysts derived in vivo (IVV), in vitro from conventional culture medium (IVC), and reduced nutrient culture medium (IVR) has enabled us to reveal cell lineage segregation, during which forming inner cell mass (ICM), trophectoderm (TE), and an undefined population of transitional cells. Only IVV embryos had well-defined ICM, indicating in vitro culture may delay the first cell fate commitment to ICM. Differences between IVV, IVC and IVR embryos were mainly contributed by ICM and transitional cells. Pathway analysis by using the differentially expressed genes of these non-TE cells between groups pointed to highly active metabolic and biosynthetic processes, with reduced cellular signaling and membrane transport in IVC embryos, which may lead to reduced developmental potential. IVR embryos had lower activities in metabolic and biosynthetic processes, but increased cellular signaling and membrane transport, suggesting these cellular mechanisms may contribute to the improved blastocyst development compared to IVC embryos. However, the IVR embryos had compromised development when compared to IVV embryos with notably over-active membrane transport activities that led to impaired ion homeostasis.

14.
Genes (Basel) ; 14(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37372324

RESUMO

Pluripotent embryonic stem cells have a unique and characteristic epigenetic profile, which is critical for differentiation to all embryonic germ lineages. When stem cells exit the pluripotent state and commit to lineage-specific identities during the process of gastrulation in early embryogenesis, extensive epigenetic remodelling mediates both the switch in cellular programme and the loss of potential to adopt alternative lineage programmes. However, it remains to be understood how the stem cell epigenetic profile encodes pluripotency, or how dynamic epigenetic regulation helps to direct cell fate specification. Recent advances in stem cell culture techniques, cellular reprogramming, and single-cell technologies that can quantitatively profile epigenetic marks have led to significant insights into these questions, which are important for understanding both embryonic development and cell fate engineering. This review provides an overview of key concepts and highlights exciting new advances in the field.


Assuntos
Epigênese Genética , Gastrulação , Animais , Gastrulação/genética , Linhagem da Célula/genética , Diferenciação Celular/genética , Reprogramação Celular/genética , Mamíferos/genética
15.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36971487

RESUMO

Our understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown. Here, we have examined the evolutionary conservation of Hippo signalling, which is thought to function downstream of aPKC activity, in four different mammalian species: mouse, rat, cow and human. In all four species, inhibition of the Hippo pathway by targeting LATS kinases is sufficient to drive ectopic TE initiation and downregulation of SOX2. However, the timing and localisation of molecular markers differ across species, with rat embryos more closely recapitulating human and cow developmental dynamics, compared with the mouse. Our comparative embryology approach uncovered intriguing differences as well as similarities in a fundamental developmental process among mammals, reinforcing the importance of cross-species investigations.


Assuntos
Via de Sinalização Hippo , Transdução de Sinais , Bovinos , Humanos , Feminino , Gravidez , Camundongos , Ratos , Animais , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Blastocisto/metabolismo , Placenta/metabolismo , Mamíferos/metabolismo , Linhagem da Célula
16.
Pigment Cell Melanoma Res ; 36(2): 232-245, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478412

RESUMO

Understanding pigmentation regulations taking into account the original skin color type is important to address pigmentary disorders. Biological models including adult melanocytes from different phenotypes allow to perform fine-tuned explorative studies and support discovery of treatments adapted to populations' skin color. However, technical challenges arise when trying to not only isolate but also amplify melanocytes from highly pigmented adult skin. To bypass the initial isolation and growth of cutaneous melanocytes, we harvested and expanded fibroblasts from light and dark skin donors and reprogrammed them into iPSC, which were then differentiated into melanocytes. The resulting melanocyte populations displayed high purity, genomic stability, and strong proliferative capacity, the latter being a critical parameter for dark skin cells. The iPSC-derived melanocyte strains expressed lineage-specific markers and could be successfully integrated into reconstructed skin equivalent models, revealing pigmentation status according to the native phenotype. In both monolayer cultures and 3D skin models, the induced melanocytes demonstrated responsiveness to promelanogenic stimuli. The data demonstrate that the iPSC-derived melanocytes with high proliferative capacity maintain their pigmentation genotype and phenotypic properties up to a proper integration into 3D skin equivalents, even for highly pigmented cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pele , Melanócitos , Pigmentação da Pele , Diferenciação Celular
17.
Mol Reprod Dev ; 90(2): 98-108, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528861

RESUMO

As a highly conserved DNA polymerase (Pol), Pol δ plays crucial roles in chromosomal DNA synthesis and various DNA repair pathways. However, the function of POLD2, the second small subunit of DNA Pol δ (p50 subunit), has not been characterized in vivo during mammalian development. Here, we report for the first time, the essential role of subunit POLD2 during early murine embryogenesis. Although Pold2 mutant mouse embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at gastrulation stages. Outgrowth assays reveal that mutant blastocysts cannot hatch from the zona pellucida, indicating impaired blastocyst function. Notably, these phenotypes can be recapitulated by small interfering RNA (siRNA)-mediated knockdown, which also exhibit slowed cellular proliferation together with skewed primitive endoderm and epiblast allocation during the second cell lineage specification. In summary, our study demonstrates that POLD2 is essential for the earliest steps of mammalian development, and the retarded proliferation and embryogenesis may also alter the following cell lineage specifications in the mouse blastocyst embryos.


Assuntos
Blastocisto , DNA Polimerase III , Desenvolvimento Embrionário , Animais , Camundongos , Blastocisto/metabolismo , Linhagem da Célula , Endoderma/metabolismo , Camadas Germinativas , Mamíferos , DNA Polimerase III/metabolismo
18.
Methods Mol Biol ; 2580: 51-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374450

RESUMO

Innate lymphoid cells (ILCs) are transcriptionally and functionally similar to T cells but lack adaptive antigen receptors. They play critical roles in early defense against pathogens. In this review, we summarize recent discoveries of ILC progenitors and discuss possible mechanisms that separate ILCs from T cells. We consider mechanisms of lineage specification in early ILC development and also examine whether differences exist between adult and fetal ILC development.


Assuntos
Imunidade Inata , Linfócitos , Linfócitos T
19.
Yale J Biol Med ; 96(4): 481-494, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38161584

RESUMO

Proper formation of the blastocyst, including the specification of the first embryonic cellular lineages, is required to ensure healthy embryo development and can significantly impact the success of assisted reproductive technologies (ARTs). However, the regulatory role of microRNAs in early development, particularly in the context of preimplantation lineage specification, remains largely unknown. Taking a cross-species approach, this review aims to summarize the expression dynamics and functional significance of microRNAs in the differentiation and maintenance of lineage identity in both the mouse and the human. Findings are consolidated from studies conducted using in vitro embryonic stem cell models representing the epiblast, trophectoderm, and primitive endoderm lineages (modeled by naïve embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm stem cells, respectively) to provide insight on what may be occurring in the embryo. Additionally, studies directly conducted in both mouse and human embryos are discussed, emphasizing similarities to the stem cell models and the gaps in our understanding, which will hopefully lead to further investigation of these areas. By unraveling the intricate mechanisms by which microRNAs regulate the specification and maintenance of cellular lineages in the blastocyst, we can leverage this knowledge to further optimize stem cell-based models such as the blastoids, enhance embryo competence, and develop methods of non-invasive embryo selection, which can potentially increase the success rates of assisted reproductive technologies and improve the experiences of those receiving fertility treatments.


Assuntos
MicroRNAs , Animais , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Embrião de Mamíferos/metabolismo , Diferenciação Celular/genética
20.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326003

RESUMO

Stem cell-derived three-dimensional (3D) gastruloids show a remarkable capacity of self-organisation and recapitulate many aspects of gastrulation stage mammalian development. Gastruloids can be rapidly generated and offer several experimental advantages, such as scalability, observability and accessibility for manipulation. Here, we present approaches to further expand the experimental potency of murine 3D gastruloids by using functional genetics in mouse embryonic stem cells (mESCs) to generate chimeric gastruloids. In chimeric gastruloids, fluorescently labelled cells of different genotypes harbouring inducible gene expression or loss-of-function alleles are combined with wild-type cells. We showcase this experimental approach in chimeric gastruloids of mESCs carrying homozygous deletions of the Tbx transcription factor brachyury or inducible expression of Eomes. Resulting chimeric gastruloids recapitulate reported Eomes and brachyury functions, such as instructing cardiac fate and promoting posterior axial extension, respectively. Additionally, chimeric gastruloids revealed previously unrecognised phenotypes, such as the tissue sorting preference of brachyury deficient cells to endoderm and the cell non-autonomous effects of brachyury deficiency on Wnt3a patterning along the embryonic axis, demonstrating some of the advantages of chimeric gastruloids as an efficient tool for studies of mammalian gastrulation.


Assuntos
Gastrulação , Mamíferos , Animais , Camundongos , Endoderma , Células-Tronco Embrionárias Murinas , Alelos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...