Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.217
Filtrar
1.
Front Mol Med ; 4: 1389456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086433

RESUMO

Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.

2.
ADMET DMPK ; 12(3): 431-462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091900

RESUMO

Background and purpose: Hair loss is a prevalent problem affecting millions of people worldwide, necessitating innovative and efficient regrowth approaches. Nanostructured lipid carriers (NLCs) have become a hopeful option for transporting bioactive substances to hair follicles because of their compatibility with the body and capability to improve drug absorption. Review approach: Recently, surface modification techniques have been used to enhance hair regeneration by improving the customization of NLCs. These techniques involve applying polymers, incorporating targeting molecules, and modifying the surface charge. Key results: The conversation focuses on how these techniques enhance stability, compatibility with the body, and precise delivery to hair follicles within NLCs. Moreover, it explains how surface-modified NLCs can improve the bioavailability of hair growth-promoting agents like minoxidil and finasteride. Furthermore, information on how surface-modified NLCs interact with hair follicles is given, uncovering their possible uses in treating hair loss conditions. Conclusion: This review discusses the potential of altering the surface of NLCs to customize them for enhanced hair growth. It offers important information for upcoming studies on hair growth.

3.
Food Chem ; 460(Pt 2): 140577, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39094341

RESUMO

Egg yolk production processed after separating egg white is a common method to shorten cycle, but its taste quality will change even the vitelline membrane is intact. This might be related to the slight non-destructive deformation causing redistribution and fusion of protein-lipid assemblies within the egg yolk spheres. We investigated the mechanism of the change in thermal gel properties under slight deformation. The results of microscopic structural morphology revealed that the whole boiled egg yolk (WEY) underwent a transition in protein-lipid assembly morphology within yolk spheres, which changed from local aggregation to disordered fusion in shaken boiled egg yolks (SEYs). The spectroscopic and physicochemical properties analysis demonstrated that the redistribution of protein-lipid assemblies gave rise to marked changes in water migration, texture properties, molecular interactions, and oral sensation simulation of egg yolk thermal gels. This is benefit to guide the regulation of the taste quality egg yolk products in industry.

4.
Lipids Health Dis ; 23(1): 237, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090671

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a respiratory disorder of obscure etiology and limited treatment options, possibly linked to dysregulation in lipid metabolism. While several observational studies suggest that lipid-lowering agents may decrease the risk of IPF, the evidence is inconsistent. The present Mendelian randomization (MR) study aims to determine the association between circulating lipid traits and IPF and to assess the potential influence of lipid-modifying medications for IPF. METHODS: Summary statistics of 5 lipid traits (high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, apolipoprotein A, and apolipoprotein B) and IPF were sourced from the UK Biobank and FinnGen Project Round 10. The study's focus on lipid-regulatory genes encompassed PCSK9, NPC1L1, ABCG5, ABCG8, HMGCR, APOB, LDLR, CETP, ANGPTL3, APOC3, LPL, and PPARA. The primary effect estimates were determined using the inverse-variance-weighted method, with additional analyses employing the contamination mixture method, robust adjusted profile score, the weighted median, weighted mode methods, and MR-Egger. Summary-data-based Mendelian randomization (SMR) was used to confirm significant lipid-modifying drug targets, leveraging data on expressed quantitative trait loci in relevant tissues. Sensitivity analyses included assessments of heterogeneity, horizontal pleiotropy, and leave-one-out methods. RESULTS: There was no significant effect of blood lipid traits on IPF risk (all P>0.05). Drug-target MR analysis indicated that genetic mimicry for inhibitor of NPC1L1, PCSK9, ABCG5, ABCG8, and APOC3 were associated with increased IPF risks, with odds ratios (ORs) and 95% confidence intervals (CIs) as follows: 2.74 (1.05-7.12, P = 0.039), 1.36 (1.02-1.82, P = 0.037), 1.66 (1.12-2.45, P = 0.011), 1.68 (1.14-2.48, P = 0.009), and 1.42 (1.20-1.67, P = 3.17×10-5), respectively. The SMR method identified a significant association between PCSK9 gene expression in whole blood and reduced IPF risk (OR = 0.71, 95% CI: 0.50-0.99, P = 0.043). Sensitivity analyses showed no evidence of bias. CONCLUSIONS: Serum lipid traits did not significantly affect the risk of idiopathic pulmonary fibrosis. Drug targets MR studies examining 12 lipid-modifying drugs indicated that PCSK9 inhibitors could dramatically increase IPF risk, a mechanism that may differ from their lipid-lowering actions and thus warrants further investigation.


Assuntos
HDL-Colesterol , LDL-Colesterol , Fibrose Pulmonar Idiopática , Análise da Randomização Mendeliana , Pró-Proteína Convertase 9 , Triglicerídeos , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/sangue , Pró-Proteína Convertase 9/genética , Triglicerídeos/sangue , LDL-Colesterol/sangue , HDL-Colesterol/sangue , Apolipoproteínas B/genética , Apolipoproteínas B/sangue , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Membrana Transportadoras/genética , Hipolipemiantes/uso terapêutico , Proteínas Semelhantes a Angiopoietina/genética , Proteína 3 Semelhante a Angiopoietina , Proteínas de Transferência de Ésteres de Colesterol/genética , Polimorfismo de Nucleotídeo Único , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Feminino , Lipase Lipoproteica , Apolipoproteína B-100 , Hidroximetilglutaril-CoA Redutases , Receptores de LDL , Apolipoproteína C-III
5.
J Agric Food Chem ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093148

RESUMO

Some consumers are replacing cow's milk with plant-based milk alternatives (PBMAs). The present study aimed to characterize the lipid profiles of cow's milk (n = 60) and PBMA types (soya, oat, rice, almond, coconut, and hazelnut; n = 10 per type). Significant differences were found in the fatty acid (FA) profiles of PBMAs and milk, particularly in FA diversity (15 FAs in PBMAs vs 54 FAs in milk) and the proportion of prime FA groups. The FA profile of coconut was dominated by saturated FAs (SFA), whereas monounsaturated FAs (MUFA) or polyunsaturated FAs (PUFA) were dominant in the remaining PBMA types. Cholesterol was not detected in any PBMA type. The FA profile of milk FAs was dominated by SFA; however, different individual SFA have varying health outcomes. Additionally, milk contains some FA groups with health-promoting properties, such as methyl-branched-chain FAs (BCFA) and conjugated linoleic acid (CLA), both of which are absent in PBMAs.

6.
J Colloid Interface Sci ; 677(Pt A): 314-323, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39096701

RESUMO

HYPOTHESIS: Antimicrobial resistance (AMR) is a pressing global health concern. ESKAPEE pathogens, such as Methicillin-resistant Staphylococcus aureus (MRSA) are notable of concern in healthcare settings due to their resistance to critical antibiotics. To combat AMR, the development of alternatives such as bacterial membrane-active agents is crucial. Fatty acids (FAs) have emerged as a sustainable, antibiotic-free solution with inherent antibacterial activity. However, long chain saturated fatty acids (LCFAs) sodium soaps exhibit poorly antibacterial properties in comparison to short chain FAs, believed to be linked to limited solubility in aqueous media. EXPERIMENTS: We employed choline as a chaotropic organic counter-ion to enhance the solubility of LCFAs and investigated their antibacterial effects against MRSA. The optimal medium conditions for micelle formation for LCFAs was first investigated. Then, we determined the critical micelle concentration (CMC), micellar morphology, and aggregation number through surface tension measurements and small angle neutron scattering experiments. Antimicrobial activity was assessed using minimum bactericidal concentration (MBC) assays and time-kill experiments. FINDINGS: We have identified conditions where LCFAs are effective against MRSA for the first time, providing valuable insights for developing new antibacterial agents to fight AMR. LCFAs need to be used above their Krafft temperatures and CMC to exhibit antibacterial efficacy.

7.
Int Immunopharmacol ; 140: 112795, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096873

RESUMO

Acne is a chronic inflammatory skin disease with wide-ranging effects, involving factors such as Propionibacterium acnes (P. acnes) infection and sebum hypersecretion. Current acne treatments are challenged by drug resistance. 5-aminolaevulinic acid (ALA) -based photodynamic therapy (PDT) has been widely used in the clinical treatment of acne, however, the mechanism of its action remains to be elucidated. In this study, by constructing a mice ears model of P. acnes infection, we found that ALA-PDT inhibited the proliferation of P. acnes in vivo and in vitro, significantly ameliorated ear swelling, and blocked the chronic inflammatory process. In vitro, ALA-PDT inhibited lipid secretion and regulated the expression of lipid synthesis and metabolism-related genes in SZ95 cells. Further, we found that ALA-PDT led to DNA damage and apoptosis in SZ95 cells by inducing mitochondrial stress and oxidative stress. Altogether, our study demonstrated the great advantages of ALA-PDT for the treatment of acne and revealed that the mechanism may be related to the blockade of chronic inflammation and the suppression of lipid secretion by ALA-PDT.

8.
J Colloid Interface Sci ; 677(Pt A): 244-249, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39094485

RESUMO

Sulfur-containing amino acids have been proposed as drugs for lipid oxidation associated with diseases for a long time, but the molecular-level mechanism on the effectiveness of sulfur-containing amino acids against lipid oxidation remains elusive. In this work, with the interfacial sensitivity mass spectrometry method, oxidation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), a widely used model lipid, was significantly inhibited on hung droplet surface in presence of sulfur-containing amino acids, such as cysteine (Cys) and methionine (Met). Both the Cys and Met showed a self-sacrificing protection. The amino acids with -S-R tails (R referring to methyl or t-butyl group) showed more effective against POPG oxidation than those with -SH tails, and this process was not related to the conformations of amino acids. The low effectiveness of Cys during the interfacial chemistry was proved to arise from the formation of disulfide bond. This study extends the current understanding of chemistry of sulfur-containing amino acids and provides insights to aid the sulfur-containing amino acids against cell oxidation.

9.
Prog Lipid Res ; : 101290, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094698

RESUMO

Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.

10.
J Lipid Res ; : 100611, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094773

RESUMO

Mitochondrial fatty acid oxidation serves as an essential process for cellular survival, differentiation, proliferation, and energy metabolism. Numerous studies have utilized etomoxir (ETO) for the irreversible inhibition of carnitine palmitoylcarnitine transferase 1 (CPT1) which catalyzes the rate-limiting step for mitochondrial long-chain fatty acid ß-oxidation to examine the bioenergetic roles of mitochondrial fatty acid metabolism in many tissues in multiple diverse disease states. Herein, we demonstrate that intact mitochondria robustly metabolize etomoxir to etomoxir-carnitine (ETO-carnitine) prior to nearly complete etomoxir-mediated inhibition of CPT1. The novel pharmaco-metabolite, ETO-carnitine, was conclusively identified by accurate mass, fragmentation patterns, and isotopic fine structure. On the basis of these data, ETO-carnitine was successfully differentiated from isobaric structures (e.g., 3-hydroxy-C18:0 carnitine and 3-hydroxy-C18:1 carnitine). Mechanistically, generation of ETO-carnitine from mitochondria required exogenous Mg2+, ATP or ADP, CoASH, and L-carnitine indicating that thioesterification by long-chain acyl-CoA synthetase to form ETO-CoA precedes its conversion to ETO-carnitine by CPT1. CPT1-dependent generation of ETO-carnitine was substantiated by an orthogonal approach using ST1326 (a CPT1 inhibitor) which effectively inhibits mitochondrial ETO-carnitine production. Surprisingly, purified ETO-carnitine potently inhibited calcium-independent PLA2γ and PLA2ß as well as mitochondrial respiration independent of CPT1. Robust production and release of ETO-carnitine from HepG2 cells incubated in the presence of ETO was also demonstrated. Collectively, this study identifies the chemical mechanism for the biosynthesis of a novel pharmaco-metabolite of etomoxir, ETO-carnitine, that is generated by CPT1 in mitochondria and likely impacts multiple downstream (non-CPT1 related) enzymes and processes in multiple subcellular compartments.

11.
JVS Vasc Sci ; 5: 100211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101011

RESUMO

Background: High lipoprotein (a) [Lp(a)] is associated with adverse limb events in patients undergoing lower extremity revascularization. Lp(a) levels are genetically pre-determined, with LPA gene encoding for two apolipoprotein (a) [apo(a)] isoforms. Isoform size variations are driven by the number of kringle IV type 2 (KIV-2) repeats. Lp(a) levels are inversely correlated with isoform size. In this study, we examined the role of Lp(a) levels, apo(a) size, and inflammatory markers with lower extremity revascularization outcomes. Methods: Twenty-five subjects with chronic peripheral arterial disease (PAD) underwent open or endovascular lower extremity revascularization (mean age, 66.7 ± 9.7 years; Female = 12; Male = 13; Black = 8; Hispanic = 5; and White = 12). Pre- and postoperative medical history, self-reported symptoms, ankle-brachial indices (ABIs), and lower extremity duplex ultrasounds were obtained. Plasma Lp(a), apoB100, lipid panel, and pro-inflammatory markers (IL-6, IL-18, hs-CRP, TNFα) were assayed preoperatively. Isoform size was estimated using gel electrophoresis and weighted isoform size (wIS) calculated based on % isoform expression. Firth logistic regression was used to examine the relationship between Lp(a) levels and wIS with procedural outcomes: symptoms (better/worse), early primary patency at 2 to 4 weeks, ABIs, and reintervention within 3 to 6 months. We controlled for age, sex, history of diabetes, smoking, statin, antiplatelet, and anticoagulation use. Results: Median plasma Lp(a) level was 108 (interrquartile range, 44-301) nmol/L. The mean apoB100 level was 168.0 ± 65.8 mg/dL. These values were not statistically different among races. We found no association between Lp(a) levels and wIS with measured plasma pro-inflammatory markers. However, smaller apo(a) wIS was associated with occlusion of the treated lesion(s) in the postoperative period (odds ratio, 1.97; 95% confidence interval, 1.01-3.86; P < .05). The relationship of smaller apo(a) wIS with reintervention was not as strong (odds ratio, 1.57; 95% confidence interval, 0.96-2.56; P = .07). We observed no association between wIS with patient reported symptoms or change in ABIs. Conclusions: In this small study, subjects with smaller apo(a) isoform size undergoing peripheral arterial revascularization were more likely to experience occlusion in the postoperative period and/or require reintervention. Larger cohort studies identifying the mechanism and validating these preliminary data are needed to improve understanding of long-term peripheral vascular outcomes.

12.
Front Public Health ; 12: 1398396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100956

RESUMO

Accumulating research suggested that long-term exposure to fine particulate matter (PM2.5) is related to cardiovascular disease (CVD). However, evidence regarding the relationship between PM2.5 and CVD risk factors remains inconsistent. We hypothesized that this association may be partially modified by socioeconomic status (SES). To investigate the relationships and to test the modifying effect of SES, we included baseline data for 21,018 adults from September 2017 to May 2018. PM2.5 concentrations were determined by employing an amalgamation of linear measurements obtained from monitoring stations located near the participants' residential and workplace addresses. We assessed SES across several domains, including income, education, and occupation levels, as well as through a composite SES index. The results indicated that for every 10 µg/m3 increase in PM2.5 exposure, the risk of hypercholesterolemia, hyperbetalipoproteinemia, diabetes, and hyperhomocysteinemia (HHcy) increased by 7.7% [Odds ratio (OR) = 1.077, 95% Confidence Interval (CI) = 1.011, 1.146], 19.6% (OR = 1.196, 95% CI = 1.091, 1.312), 4.2% (OR = 1.042, 95% CI = 1.002, 1.084), and 17.1% (OR = 1.171, 95% CI = 1.133, 1.209), respectively. Compared to the high SES group, those with low SES are more prone to hypercholesterolemia, hyperbetalipoproteinemia, diabetes, and HHcy. Notably, the disparities in SES appear significant in the relationship between PM2.5 exposure and hypercholesterolemia as well as hyperbetalipoproteinemia. But for diabetes and HHcy, the modification effect of SES on PM2.5 shows an inconsistent pattern. In conclusion, the results confirm the association between PM2.5 and cardiovascular risk factors and low SES significantly amplified the adverse PM2.5 effect on dyslipidemia. It is crucial to emphasize a need to improve the socioeconomic inequality among adults in Beijing and contribute to the understanding of the urgency in protecting the health of vulnerable groups.


Assuntos
Doenças Cardiovasculares , Exposição Ambiental , Fatores de Risco de Doenças Cardíacas , Material Particulado , Classe Social , Humanos , Material Particulado/análise , Masculino , Feminino , Estudos Transversais , Pequim/epidemiologia , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Adulto , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Fatores de Risco , Poluição do Ar/efeitos adversos
13.
Sci Rep ; 14(1): 17927, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095501

RESUMO

Plant-based diets have gained attention for their potential benefits on both human health and environmental sustainability. The objective of this study was to investigate the association of plant-based dietary patterns with the endogenous metabolites of healthy individuals and identify metabolites that may act as mediators of the associations between dietary intake and modifiable disease risk factors. Adherence to plant-based dietary patterns was assessed for 170 healthy adults using plant-based diet indexes (PDI). Individuals with higher healthful PDI had lower BMI and fasting glucose and higher HDL-C, while those with higher unhealthful PDI had higher BMI, triacylglycerol and fasting glucose and lower HDL-C. Unhealthful PDI was associated with higher levels of several amino acids and biogenic amines previously associated with cardiometabolic diseases and an opposite pattern was observed for healthful PDI. Furthermore, healthful PDI was associated with higher levels of glycerophosphocholines containing very long-chain fatty acids. Glutamate, isoleucine, proline, tyrosine, α-aminoadipate and kynurenine had a statistically significant mediation effect on the associations between PDI scores and LDL-C, HDL-C and fasting glucose. These findings contribute to the growing evidence supporting the role of plant-based diets in promoting metabolic health and shed light on the potential mechanisms explaining their beneficial health effects.


Assuntos
Dieta Vegetariana , Metabolômica , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Metabolômica/métodos , Metaboloma , Índice de Massa Corporal , Glicemia/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , HDL-Colesterol/sangue , Dieta Baseada em Plantas
14.
J Biol Chem ; : 107631, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098525

RESUMO

The ability for cells to localize and activate peripheral membrane binding proteins is critical for signal transduction. Ubiquitously important in these signaling processes are phosphatidylinositol phosphate (PIP) lipids, which are dynamically phosphorylated by PIP lipid kinases on intracellular membranes. Functioning primarily at the plasma membrane, phosphatidylinositol-4-phosphate 5-kinases (PIP5K) catalyzes the phosphorylation of PI(4)P to generate most of the PI(4,5)P2 lipids found in eukaryotic plasma membrane. Recently, we determined that PIP5K displays a positive feedback loop based on membrane-mediated dimerization and cooperative binding to its product, PI(4,5)P2. Here, we examine how two motifs contribute to PI(4,5)P2 recognition to control membrane association and catalysis of PIP5K. Using a combination of single molecule TIRF microscopy and kinetic analysis of PI(4)P lipid phosphorylation, we map the sequence of steps that allow PIP5K to cooperatively engage PI(4,5)P2. We find that the specificity loop regulates the rate of PIP5K membrane association and helps orient the kinase to more effectively bind PI(4,5)P2 lipids. After correctly orienting on the membrane, PIP5K transitions to binding PI(4,5)P2 lipids near the active site through a motif previously referred to as the substrate or PIP binding motif (PIPBM). The PIPBM has broad specificity for anionic lipids and serves a role in regulating membrane association in vitro and in vivo. Overall, our data supports a two-step membrane binding model where the specificity loop and PIPBM act in concert to help PIP5K orient and productively engage anionic lipids to drive the positive feedback during PI(4,5)P2 production.

15.
J Lipid Res ; : 100614, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098585

RESUMO

Ischemic stroke remains a leading cause of mortality and long-term disability worldwide, necessitating efforts to identify biomarkers for diagnosis, prognosis, and treatment monitoring. The present study aimed to identify novel plasma biomarkers of neurodegeneration and inflammation in a mouse model of stroke induced by distal middle cerebral artery (MCA) occlusion. Using targeted lipidomic and global untargeted metabolomic profiling of plasma collected from aged male mice 24 hours after stroke and weekly thereafter for 7 weeks, we discovered distinct acute and chronic signatures. In the acute phase, we observed elevations in myelin-associated lipids, including sphingomyelin (SM) and hexosylceramide (HCER) lipid species, indicating brain lipid catabolism. In the chronic phase, we identified 12-hydroxyeicosatetraenoic acid (12-HETE) as a putative biomarker of prolonged inflammation, consistent with our previous observation of a biphasic pro-inflammatory response to ischemia in the mouse brain. These results provide insight into the metabolic alterations detectable in the plasma after stroke and highlight the potential of myelin degradation products and arachidonic acid derivatives as biomarkers of neurodegeneration and inflammation, respectively. These discoveries lay the groundwork for further validation in human studies and may improve stroke management strategies.

16.
BMC Nephrol ; 25(1): 216, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971750

RESUMO

The contribution of chronic kidney disease (CKD) towards the risk of developing cardiovascular disease (CVD) is magnified with co-existing type 1 or type 2 diabetes. Lipids are a modifiable risk factor and good lipid management offers improved outcomes for people with diabetic kidney disease (DKD).The primary purpose of this guideline, written by the Association of British Clinical Diabetologists (ABCD) and UK Kidney Association (UKKA) working group, is to provide practical recommendations on lipid management for members of the multidisciplinary team involved in the care of adults with DKD.


Assuntos
Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/terapia , Adulto , Reino Unido/epidemiologia , Doenças Cardiovasculares/terapia , Lipídeos/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico
17.
Angew Chem Int Ed Engl ; : e202405868, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977413

RESUMO

Consequences of intramolecular ionic interactions in determining the reactivity of functional groups are of interest because they provide insights into how nature deploys seemingly reactive functionalities to be rather ubiquitous. Of specific interest are the quaternary ammonium ions in lipids. In this work, we investigate the effect of intramolecular electrostatic interactions in zwitterionic functionalities by judiciously incorporating them as leaving groups at the α-position of an α,ß-unsaturated ester-based lipid headgroup. We find that electrostatic stabilization indeed plays a critical role in both the reaction kinetics with nucleophiles and the thermodynamics of lipid formation. We further leverage these findings to fabricate both triggerable assembly and disassembly of liposomal supramolecular assemblies in the presence of nucleophiles.

18.
Methods Mol Biol ; 2816: 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977583

RESUMO

The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.


Assuntos
Metabolismo dos Lipídeos , Doenças Musculoesqueléticas , Transdução de Sinais , Animais , Humanos , Osso e Ossos/metabolismo , Eicosanoides/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculoesqueléticas/metabolismo , Fosfolipídeos/metabolismo , Esfingolipídeos/metabolismo
19.
Methods Mol Biol ; 2829: 13-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951324

RESUMO

The success of using the insect cell-baculovirus expression technology (BEST) relies on the efficient construction of recombinant baculovirus with genetic stability and high productivity, ideally within a short time period. Generation of recombinant baculoviruses requires the transfection of insect cells, harvesting of recombinant baculovirus pools, isolation of plaques, and the expansion of baculovirus stocks for their use for recombinant protein production. Moreover, many options exist for selecting the genetic elements to be present in the recombinant baculovirus. This chapter describes the most commonly used homologous recombination systems for the production of recombinant baculoviruses, as well as strategies to maximize generation efficiency and recombinant protein or baculovirus production. The key steps for generating baculovirus stocks and troubleshooting strategies are described.


Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Animais , Proteínas Recombinantes/genética , Vetores Genéticos/genética , Transfecção/métodos , Recombinação Homóloga , Células Sf9 , Linhagem Celular , Spodoptera/virologia , Insetos/genética , Insetos/virologia
20.
Hypertens Res ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951678

RESUMO

Pregnancy-induced hypertension (PIH), a prominent determinant of maternal mortality and morbidity worldwide, is hindered by the absence of efficacious biomarkers for early diagnosis, contributing to suboptimal outcomes. Here, we explored potential causal relationships between blood metabolites and the risk of PIH using Mendelian randomization (MR). We employed a two-sample univariable MR approach to empirically estimate the causal relationships between 249 circulating metabolites and PIH. Inverse variance weighted, MR-egger, weight median, simple mode, and weighted mode methods were used for causal estimates. The exposure-to-outcome directionality was confirmed with the MR Steiger test. The Bayesian model averaging MR (MR-BMA) method was applied to detect the predominant causal metabolic traits with alignment for pleiotropy effects. In the primary analysis, analyzing 249 metabolites, we identified 25 causally linked to PIH, including 11 lipid-related traits and 6 associated with fatty acid (un)saturation. Importantly, MR-BMA analyses corroborated the total concentration of branched-chain amino acids(total-BCAA) to be the highest rank causal metabolite, followed by leucine (Leu), phospholipids to total lipids ratio in medium LDL (M-LDL-PL-pct), and Val (all P < 0.05). The directionality of causality predicted by univariable MR and MR-BMA for these metabolites remained consistent. This study highlights the causal connection between metabolites and PIH risk. It highlighted BCAAs as the strongest causal candidates warranting further investigation. Since PIH typically occurs in the second and third trimesters, extending these findings could inform earlier strategies to reduce its risk. Directed acyclic graph of the MR framework investigating the causal relationship between metabolites and PIH. MR: Mendelian randomization; GIVs: genetic instrument variables; SNPs: single-nucleotide polymorphism; IVW: inverse variance weighted; WM: weighted median; PIH: pregnancy-induced hypertension; SM: significant metabolite; MR-BMA: Bayesian model averaging MR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...