Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Cell Rep ; 43(7): 114445, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968073

RESUMO

Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.

2.
Methods Enzymol ; 700: 77-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971613

RESUMO

The biophysical drivers of membrane lateral heterogeneity, often termed lipid rafts, have been largely explored using synthetic liposomes or mammalian plasma membrane-derived giant vesicles. Yeast vacuoles, an organelle comparable to mammalian lysosomes, is the only in vivo system that shows stable micrometer scale phase separation in unperturbed cells. The ease of manipulating lipid metabolism in yeast makes this a powerful system for identifying lipids involved in the onset of vacuole membrane heterogeneity. Vacuole domains are induced by stationary stage growth and nutritional starvation, during which they serve as a docking and internalization site for lipid droplet energy stores. Here we describe methods for characterizing vacuole phase separation, its physiological function, and its lipidic drivers. First, we detail methodologies for robustly inducing vacuole domain formation and quantitatively characterizing during live cell imaging experiments. Second, we detail a new protocol for biochemical isolation of stationary stage vacuoles, which allows for lipidomic dissection of membrane phase separation. Third, we describe biochemical techniques for analyzing lipid droplet internalization in vacuole domains. When combined with genetic or chemical perturbations to lipid metabolism, these methods allow for systematic dissection of lipid composition in the structure and function of ordered membrane domains in living cells.


Assuntos
Metabolismo dos Lipídeos , Saccharomyces cerevisiae , Vacúolos , Vacúolos/metabolismo , Saccharomyces cerevisiae/metabolismo , Microdomínios da Membrana/metabolismo , Gotículas Lipídicas/metabolismo , Membrana Celular/metabolismo , Lipidômica/métodos
3.
Front Pharmacol ; 15: 1406784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978979

RESUMO

The global prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is increasing, now affecting 25%-30% of the population worldwide. MASLD, characterized by hepatic steatosis, results from an imbalance in lipid metabolism, leading to oxidative stress, lipoperoxidation, and inflammation. The activation of autophagy, particularly lipophagy, alleviates hepatic steatosis by regulating intracellular lipid levels. Lutein, a carotenoid with antioxidant and anti-inflammatory properties, protects against liver damage, and individuals who consume high amounts of lutein have a lower risk of developing MASLD. Evidence suggests that lutein could modulate autophagy-related signaling pathways, such as the transcription factor EB (TFEB). TFEB plays a crucial role in regulating lipid homeostasis by linking autophagy to energy metabolism at the transcriptional level, making TFEB a potential target against MASLD. STARD3, a transmembrane protein that binds and transports cholesterol and sphingosine from lysosomes to the endoplasmic reticulum and mitochondria, has been shown to transport and bind lutein with high affinity. This protein may play a crucial role in the uptake and transport of lutein in the liver, contributing to the decrease in hepatic steatosis and the regulation of oxidative stress and inflammation. This review summarizes current knowledge on the role of lutein in lipophagy, the pathways it is involved in, its relationship with STARD3, and its potential as a pharmacological strategy to treat hepatic steatosis.

4.
Exp Ther Med ; 28(2): 328, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38979020

RESUMO

There has been interest in the connection between cardiovascular diseases and osteoporosis, both of which share hyperlipidemia as a common pathological basis. Osteoporosis is a progressive metabolic bone disease characterized by reduced bone mass, deteriorated bone microstructure, increased bone fragility and heightened risk of bone fractures. Dysfunction of osteoblastic cells, vital for bone formation, is induced by excessive internalization of lipids under hyperlipidemic conditions, forming the crux of hyperlipidemia-associated osteoporosis. Autophagy, a process fundamental to cell self-regulation, serves a critical role in osteoblastic cell function and bone formation. When activated by lipids, lipophagy inhibits osteoblastic cell differentiation in response to elevated lipid concentrations, resulting in reduced bone mass and osteoporosis. However, an in-depth understanding of the precise roles and mechanisms of lipophagy in the regulation of osteoblastic cell function is required. Study of the molecular mechanisms governing osteoblastic cell response to excessive lipids can result in a clearer understanding of osteoporosis; therefore, potential strategies for preventing hyperlipidemia-induced osteoporosis can be developed. The present review discusses recent progress in elucidating the molecular mechanisms of lipophagy in the regulation of osteoblastic cell function, offering insights into hyperlipidemia-induced osteoporosis.

5.
J Biol Chem ; : 107549, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002673

RESUMO

Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry (IP-MS) analysis. The interaction between ACADM and NSP4 was subsequently corroborated through co-immunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid ß-oxidation affected PEDV replication for the first time, inhibition of fatty acid ß-oxidation reduced PEDV replication. ACADM decreased PEDV-induced ß-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid (FFA) levels and subsequent ß-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.

6.
Front Pharmacol ; 15: 1437161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011508

RESUMO

Ovarian clear cell carcinoma (OCCC) is a histological subtype that constitutes approximately 20% of epithelial ovarian cancer cases in Asian countries, but has a relatively low incidence in Western countries. Meanwhile, clear cell renal cell carcinoma (ccRCC) is a major subtype of kidney cancer. OCCC and ccRCC resemble one another histologically and have clear cytoplasmic appearances. Studies have revealed some genetic similarities between OCCC and ccRCC. However, information regarding common biological background factors between these cancers remains scarce. For example, accumulation of cellular lipid droplets was shown to play a crucial role in ccRCC progression, while similar information is lacking for OCCC. In this perspective article, we propose that lipid droplets may be candidates for future exploration to better understand the common biological backgrounds between OCCC and ccRCC, potentially leading to subtype-specific treatment strategies. We further discuss the relationship between poly ADP-ribose polymerase inhibition treatment and lipid metabolism because this therapeutic strategy has attracted considerable attention as a treatment for epithelial ovarian cancer.

7.
Viruses ; 16(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38932215

RESUMO

BACKGROUND: Lipids, as a fundamental cell component, play an regulating role in controlling the different cellular biological processes involved in viral infections. A notable feature of coronavirus disease 2019 (COVID-19) is impaired lipid metabolism. The function of lipophagy-related genes in COVID-19 is unknown. The present study aimed to investigate biomarkers and drug targets associated with lipophagy and lipophagy-based therapeutic agents for COVID-19 through bioinformatics analysis. METHODS: Lipophagy-related biomarkers for COVID-19 were identified using machine learning algorithms such as random forest, Support Vector Machine-Recursive Feature Elimination, Generalized Linear Model, and Extreme Gradient Boosting in three COVID-19-associated GEO datasets: scRNA-seq (GSE145926) and bulk RNA-seq (GSE183533 and GSE190496). The cMAP database was searched for potential COVID-19 medications. RESULTS: The lipophagy pathway was downregulated, and the lipid droplet formation pathway was upregulated, resulting in impaired lipid metabolism. Seven lipophagy-related genes, including ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2, were used as biomarkers and drug targets for COVID-19. Moreover, lipophagy may play a role in COVID-19 pathogenesis. As prospective drugs for treating COVID-19, seven potential downregulators (phenoxybenzamine, helveticoside, lanatoside C, geldanamycin, loperamide, pioglitazone, and trichostatin A) were discovered. These medication candidates showed remarkable binding energies against the seven biomarkers. CONCLUSIONS: The lipophagy-related genes ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2 can be used as biomarkers and drug targets for COVID-19. Seven potential downregulators of these seven biomarkers may have therapeutic effects for treating COVID-19.


Assuntos
Antivirais , Biomarcadores , Tratamento Farmacológico da COVID-19 , COVID-19 , Metabolismo dos Lipídeos , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , COVID-19/virologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/farmacologia , Biologia Computacional/métodos , Aprendizado de Máquina , Lactamas Macrocíclicas/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico
8.
Autophagy ; : 1-3, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38909316

RESUMO

Mutations in the DDHD2 (DDHD domain containing 2) gene cause autosomal recessive spastic paraplegia type 54 (SPG54), a rare neurodegenerative disorder characterized by the early childhood onset of progressive spastic paraplegia. DDHD2 is reported as the principal brain triacylglycerol (TAG) lipase whose dysfunction causes massive lipid droplet (LD) accumulation in the brains of SPG54 patients. However, the precise functions of DDHD2 in regulating LD catabolism are not yet fully understood. In a recent study, we demonstrate that DDHD2 interacts with multiple members of the Atg8-family proteins (MAP1LC3/LC3s, GABARAPs), which play crucial roles in lipophagy. DDHD2 possesses two LC3-interacting region (LIR) motifs that contribute to its LD-eliminating activity. Moreover, DDHD2 enhances the colocalization between LC3B and LDs to promote lipophagy. LD·ATTEC, a compound that tethers LC3 to LDs to enhance their macroautophagic/autophagic clearance, effectively counteracts DDHD2 deficiency-induced LD accumulation. These findings provide insights into the dual functions of DDHD2 as a TAG lipase and cargo receptor for lipophagy in neuronal LD catabolism, and also suggest a potential therapeutic approach for treating SPG54 patients.

9.
J Hazard Mater ; 476: 134878, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38897115

RESUMO

Micro- and nanoplastic pollution has emerged as a significant global concern due to their extensive presence in the environment and potential adverse effects on human health. Nanoplastics can enter the human circulatory system and accumulate in the liver, disrupting hepatic metabolism and causing hepatotoxicity. However, the precise mechanism remains uncertain. Lipophagy is an alternative mechanism of lipid metabolism involving autophagy. This study aims to explore how polystyrene nanoplastics (PSNPs) influence lipid metabolism in hepatocytes via lipophagy. Initially, it was found that PSNPs were internalized by human hepatocytes, resulting in decreased cell viability. PSNPs were found to induce the accumulation of lipid droplets (LDs), with autophagy inhibition exacerbating this accumulation. Then, PSNPs were proved to activate lipophagy by recruiting LDs into autophagosomes and block the lipophagic flux by impairing lysosomal function, inhibiting LD degradation. Ultimately, PSNPs were shown to activate lipophagy through the AMPK/ULK1 pathway, and knocking down AMPK exacerbated lipid accumulation in hepatocytes. Overall, these results indicated that PSNPs triggered lipophagy via the AMPK/ULK1 pathway and blocked lipophagic flux, leading to lipid accumulation in hepatocytes. Thus, this study identifies a novel mechanism underlying nanoplastic-induced lipid accumulation, providing a foundation for the toxicity study and risk assessments of nanoplastics.

10.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909243

RESUMO

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Assuntos
Autofagia , Catepsina B , Doenças Desmielinizantes , Gotículas Lipídicas , Lisofosfatidilcolinas , Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Microglia/patologia , Camundongos , Gotículas Lipídicas/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Catepsina B/metabolismo , Catepsina B/genética , Lisofosfatidilcolinas/metabolismo , Modelos Animais de Doenças , Masculino , Regulação da Expressão Gênica , Linhagem Celular
11.
Aging Cell ; : e14256, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898632

RESUMO

Hepatic steatosis, the first step in the development of nonalcoholic fatty liver disease (NAFLD), is frequently observed in the aging population. However, the underlying molecular mechanism remains largely unknown. In this study, we first employed GSEA enrichment analysis to identify short-chain acyl-CoA dehydrogenase (SCAD), which participates in the mitochondrial ß-oxidation of fatty acids and may be associated with hepatic steatosis in elderly individuals. Subsequently, we examined SCAD expression and hepatic triglyceride content in various aged humans and mice and found that triglycerides were markedly increased and that SCAD was upregulated in aged livers. Our further evidence in SCAD-ablated mice suggested that SCAD deletion was able to slow liver aging and ameliorate aging-associated fatty liver. Examination of the molecular pathways by which the deletion of SCAD attenuates steatosis revealed that the autophagic degradation of lipid droplets, which was not detected in elderly wild-type mice, was maintained in SCAD-deficient old mice. This was due to the decrease in the production of acetyl-coenzyme A (acetyl-CoA), which is abundant in the livers of old wild-type mice. In conclusion, our findings demonstrate that the suppression of SCAD may prevent age-associated hepatic steatosis by promoting lipophagy and that SCAD could be a promising therapeutic target for liver aging and associated steatosis.

12.
Adv Sci (Weinh) ; : e2401676, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837607

RESUMO

Diabetic cardiomyopathy (DbCM) is characterized by diastolic dysfunction, which progresses into heart failure and aberrant electrophysiology in diabetic patients. Dyslipidemia in type 2 diabetic patients leads to the accumulation of lipid droplets (LDs) in cardiomyocytes and results in lipid toxicity which has been suggested to drive DbCM. It is aimed to explore potential pathways that may boost LDs degradation in DbCM and restore cardiac function. LDs accumulation resulted in an increase in lipid toxicity in DbCM hearts is confirmed. Microlipophagy pathway, rather than traditional macrolipophagy, is activated in DbCM hearts. RNA-Seq data and Rab7-CKO mice implicate that Rab7 is a major modulator of the microlipophagy pathway. Mechanistically, Rab7 is phosphorylated at Tyrosine 183, which allows the recruitment of Rab-interacting lysosome protein (Rilp) to proceed LDs degradation by lysosome. Treating DbCM mice with Rab7 activator ML-098 enhanced Rilp level and rescued the observed cardiac dysfunction. Overall, Rab7-Rilp-mediated microlipophagy may be a promising target in the treatment of lipid toxicity in DbCM is suggested.

13.
3 Biotech ; 14(6): 171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828099

RESUMO

Diosgenin (DG), a well-known steroidal sapogenin, is abundantly found in the plants of the Dioscoreaceae family and exhibits diverse pharmacological properties. In our previous study, we demonstrated that DG supplementation protected Caenorhabditis elegans from high glucose-induced lipid deposition, oxidative damage, and lifespan reduction. Nevertheless, the precise biological mechanisms underlying the beneficial effects of DG have not yet been described. In this context, the present study aims to elucidate how DG reduces molecular and cellular declines induced by high glucose, using the powerful genetics of the C. elegans model. Treatment with DG significantly (p < 0.01) prevented fat accumulation and extended lifespan under high-glucose conditions without affecting physiological functions. DG-induced lifespan extension was found to rely on longevity genes daf-2, daf-16, skn-1, glp-1, eat-2, let-363, and pha-4. Specifically, DG regulates lipophagy, the autophagy-mediated degradation of lipid droplets, in C. elegans, thereby inhibiting fat accumulation. Furthermore, DG treatment did not alter the triglyceride levels in the fat-6 and fat-7 single mutants and fat-6;fat-7 double mutants, indicating the significant role of stearoyl-CoA desaturase genes in mediating the reduction of fat deposition by DG. Our results provide new insight into the fat-reducing mechanisms of DG, which might develop into a multitarget drug for preventing obesity and associated health complications; however, preclinical studies are required to investigate the effect of DG on higher models. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04017-3.

14.
Front Physiol ; 15: 1352766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725570

RESUMO

Autophagy is a cellular degradation pathway mediated by highly conserved autophagy-related genes (Atgs). In our previous work, we showed that inhibiting autophagy under starvation conditions leads to significant physiological changes in the insect vector of Chagas disease Rhodnius prolixus; these changes include triacylglycerol (TAG) retention in the fat body, reduced survival and impaired locomotion and flight capabilities. Herein, because it is known that autophagy can be modulated in response to various stimuli, we further investigated the role of autophagy in the fed state, following blood feeding. Interestingly, the primary indicator for the presence of autophagosomes, the lipidated form of Atg8 (Atg8-II), displayed 20%-50% higher autophagic activation in the first 2 weeks after feeding compared to the third week when digestion was complete. Despite the elevated detection of autophagosomes, RNAi-mediated suppression of RpAtg6 and RpAtg8 did not cause substantial changes in TAG or protein levels in the fat body or the flight muscle during blood digestion. We also found that knockdown of RpAtg6 and RpAtg8 led to modest modulations in the gene expression of essential enzymes involved in lipid metabolism and did not significantly stimulate the expression of the chaperones BiP and PDI, which are the main effectors of the unfolded protein response. These findings indicate that impaired autophagy leads to slight disturbances in lipid metabolism and general cell proteostasis. However, the ability of insects to fly during forced flight until exhaustion was reduced by 60% after knockdown of RpAtg6 and RpAtg8. This change was accompanied by TAG and protein increases as well as decreased ATP levels in the fat body and flight muscle, indicating that autophagy during digestion, i.e., under fed conditions, is necessary to sustain high-performance activity.

15.
Phytomedicine ; 129: 155703, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723527

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH), the inflammatory subtype in the progression of non-alcoholic fatty liver disease, is becoming a serious burden threatening human health, but no approved medication is available to date. Mononoside is a natural active substance derived from Cornus officinalis and has been confirmed to have great potential in regulating lipid metabolism in our previous studies. However, its effect and mechanism to inhibit the progression of NASH remains unclear. PURPOSE: Our work aimed to explore the action of mononoside in delaying the progression of NASH and its regulatory mechanisms from the perspective of regulating lipophagy. METHODS AND RESULTS: Male C57BL/6 mice were fed with a high-fat and high-fructose diet for 16 weeks to establish a NASH mouse model. After 8 weeks of high-fat and high-fructose feeding, these mice were administrated with different doses of morroniside. H&E staining, ORO staining, Masson staining, RNA-seq, immunoblotting, and immunofluorescence were performed to determine the effects and molecular mechanisms of morroniside in delaying the progression of NASH. In this study, we found that morroniside is effective in attenuating hepatic lipid metabolism disorders and inflammatory response activation, thereby limiting the progression from simple fatty liver to NASH in high-fat and high-fructose diet-fed mice. Mechanistically, we identified AMPK signaling as the key molecular pathway for the positive efficacy of morroniside by transcriptome sequencing. Our results revealed that morroniside maintained hepatic lipid metabolism homeostasis and inhibited NLRP3 inflammasome activation by promoting AMPKα phosphorylation-mediated lipophagy and fatty acid oxidation. Consistent results were observed in palmitic acid-treated cell models. Of particular note, silencing AMPKα both in vivo and in vitro reversed morroniside-induced lipophagy flux enhancement and NLRP3 inflammasome inhibition, emphasizing the critical role of AMPKα activation in the effect of morroniside in inhibiting NASH progression. CONCLUSION: In summary, the present study provides strong evidence for the first time that morroniside inhibits NASH progression by promoting AMPK-dependent lipophagy and inhibiting NLRP3 inflammasome activation, suggesting that morroniside is expected to be a potential molecular entity for the development of therapeutic drugs for NASH.


Assuntos
Proteínas Quinases Ativadas por AMP , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Cornus/química , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Frutose , Glicosídeos/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
16.
Clin Mol Hepatol ; 30(3): 515-538, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38726504

RESUMO

BACKGROUND/AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is an unmet clinical challenge due to the rapid increased occurrence but lacking approved drugs. Autophagy-related protein 16-like 1 (ATG16L1) plays an important role in the process of autophagy, which is indispensable for proper biogenesis of the autophagosome, but its role in modulating macrophage-related inflammation and metabolism during MASH has not been documented. Here, we aimed to elucidate the role of ATG16L1 in the progression of MASH. METHODS: Expression analysis was performed with liver samples from human and mice. MASH models were induced in myeloid-specific Atg16l1-deficient and myeloid-specific Atg16l1-overexpressed mice by high-fat and high-cholesterol diet or methionine- and choline-deficient diet to explore the function and mechanism of macrophage ATG16L1 in MASH. RESULTS: Macrophage-specific Atg16l1 knockout exacerbated MASH and inhibited energy expenditure, whereas macrophage-specific Atg16l1 transgenic overexpression attenuated MASH and promotes energy expenditure. Mechanistically, Atg16l1 knockout inhibited macrophage lipophagy, thereby suppressing macrophage ß-oxidation and decreasing the production of 4-hydroxynonenal, which further inhibited stimulator of interferon genes(STING) carbonylation. STING palmitoylation was enhanced, STING trafficking from the endoplasmic reticulum to the Golgi was promoted, and downstream STING signaling was activated, promoting proinflammatory and profibrotic cytokines secretion, resulting in hepatic steatosis and hepatic stellate cells activation. Moreover, Atg16l1-deficiency enhanced macrophage phagosome ability but inhibited lysosome formation, engulfing mtDNA released by pyroptotic hepatocytes. Increased mtDNA promoted cGAS/STING signaling activation. Moreover, pharmacological promotion of ATG16L1 substantially blocked MASH progression. CONCLUSION: ATG16L1 suppresses MASH progression by maintaining macrophage lipophagy, restraining liver inflammation, and may be a promising therapeutic target for MASH management.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Macrófagos , Proteínas de Membrana , Animais , Camundongos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Humanos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Progressão da Doença , Camundongos Knockout , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Fígado/metabolismo , Fígado/patologia , Transdução de Sinais , Camundongos Endogâmicos C57BL
17.
Autophagy ; 20(8): 1697-1699, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735055

RESUMO

Lipophagy, a form of autophagy specific to the degradation of lipid droplets (LDs), plays an important role in the maintenance of cellular homeostasis and metabolic processes. A recent study has identified ATG14 (autophagy related 14) as a molecule that targets LDs and marks them for degradation via lipophagy; a process that is inhibited by the binding of STX18 (syntaxin 18) to ATG14 in mammalian cells. The exact mechanism of regulation of lipophagy, and subsequently of cellular LD levels, is still under investigation; however, dysregulation of this process has been linked to a number of disease phenotypes. An imbalance of lipid levels can result in a wide variety of conditions depending on the cell/tissue type in which they occur. In cells of the retinal pigment epithelium, lipid accumulation can result in dry age-related macular degeneration, in hepatocytes it can result in nonalcoholic fatty liver diseases and in neural cells it can result in the pathogenesis of neurodegenerative conditions such as Alzheimer and Parkinson diseases. Based upon its wide range of implications in diseases, modulation of lipophagy is currently being further investigated for its potential as a treatment for a variety of conditions ranging from viral infection to developmental illnesses.


Assuntos
Gotículas Lipídicas , Animais , Humanos , Proteínas Adaptadoras de Transporte Vesicular , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos
18.
Adv Sci (Weinh) ; 11(26): e2309907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696589

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is the leading cause of irreversible myocardial damage. A pivotal pathogenic factor is ischemia/reperfusion (I/R)-induced cardiomyocyte ferroptosis, marked by iron overload and lipid peroxidation. However, the impact of lipid droplet (LD) changes on I/R-induced cardiomyocyte ferroptosis is unclear. In this study, an aggregation-induced emission probe, TPABTBP is developed that is used for imaging dynamic changes in LD during myocardial I/R-induced ferroptosis. TPABTBP exhibits excellent LD-specificity, superior capability for monitoring lipophagy, and remarkable photostability. Molecular dynamics (MD) simulation and super-resolution fluorescence imaging demonstrate that the TPABTBP is specifically localized to the phospholipid monolayer membrane of LDs. Imaging LDs in cardiomyocytes and myocardial tissue in model mice with MIRI reveals that the LD accumulation level increase in the early reperfusion stage (0-9 h) but decrease in the late reperfusion stage (>24 h) via lipophagy. The inhibition of LD breakdown significantly reduces the lipid peroxidation level in cardiomyocytes. Furthermore, it is demonstrated that chloroquine (CQ), an FDA-approved autophagy modulator, can inhibit ferroptosis, thereby attenuating MIRI in mice. This study describes the dynamic changes in LD during myocardial ischemia injury and suggests a potential therapeutic target for early MIRI intervention.


Assuntos
Modelos Animais de Doenças , Ferroptose , Gotículas Lipídicas , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Gotículas Lipídicas/metabolismo , Masculino , Simulação de Dinâmica Molecular , Peroxidação de Lipídeos
19.
Cell Biol Toxicol ; 40(1): 35, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771546

RESUMO

Neural tube defects (NTDs) represent a prevalent and severe category of congenital anomalies in humans. Cadmium (Cd) is an environmental teratogen known to cause fetal NTDs. However, its underlying mechanisms remain elusive. This study aims to investigate the therapeutic potential of lipophagy in the treatment of NTDs, providing valuable insights for future strategies targeting lipophagy activation as a means to mitigate NTDs.We successfully modeled NTDs by Cd exposure during pregnancy. RNA sequencing was employed to investigate the transcriptomic alterations and functional enrichment of differentially expressed genes in NTD placental tissues. Subsequently, pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. We found that Cd exposure caused NTDs. Further analyzed transcriptomic data from the placentas with NTDs which revealed significant downregulation of low-density lipoprotein receptor associated protein 1(Lrp1) gene expression responsible for positive regulation of low-density lipoprotein cholesterol (LDL-C) transport. Correspondingly, there was an increase in maternal serum/placenta/amniotic fluid LDL-C content. Subsequently, we have discovered that Cd exposure activated placental lipophagy. Pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. Furthermore, our findings demonstrate that activation of placental lipophagy effectively counteracts the Cd-induced elevation in LDL-C levels. Lipophagy serves to mitigate Cd-induced NTDs by reducing LDL-C levels within mouse placentas.


Assuntos
Cádmio , LDL-Colesterol , Defeitos do Tubo Neural , Placenta , Feminino , Animais , Gravidez , Placenta/metabolismo , Placenta/efeitos dos fármacos , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/metabolismo , Camundongos , Cádmio/toxicidade , LDL-Colesterol/sangue , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Contact (Thousand Oaks) ; 7: 25152564241255782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808280

RESUMO

One means by which cells reutilize neutral lipids stored in lipid droplets is to degrade them by autophagy. This process involves spartin, mutations of which cause the rare inherited disorder Troyer syndrome (or spastic paraplegia-20, SPG20). A recently published paper from the team led by Karin Reinsich (Yale) suggests that the molecular function of spartin and its unique highly conserved "senescence" domain is as a lipid transfer protein. Spartin binds to and transfers all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters. This lipid transfer activity correlates with spartin's ability to sustain lipid droplet turnover. The senescence domain poses an intriguing question around the wide range of its cargoes, but intriguingly it has yet to yield up its secrets because attempts at crystallization failed and AlphaFold's prediction is unconvincing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...