Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892206

RESUMO

Sulfated marine polysaccharides, so-called fucoidans, have been shown to exhibit anti-inflammatory and immunomodulatory activities in retinal pigment epithelium (RPE). In this study, we tested the effects of different fucoidans (and of fucoidan-treated RPE cells) on retinal microglia to investigate whether its anti-inflammatory effect can be extrapolated to the innate immune cells of the retina. In addition, we tested whether fucoidan treatment influenced the anti-inflammatory effect of RPE cells on retinal microglia. Three fucoidans were tested (FVs from Fucus vesiculosus, Fuc1 and FucBB04 from Laminaria hyperborea) as well as the supernatant of primary porcine RPE treated with fucoidans for their effects on inflammatory activated (using lipopolysaccharide, LPS) microglia cell line SIM-A9 and primary porcine retinal microglia. Cell viability was detected with a tetrazolium assay (MTT), and morphology by Coomassie staining. Secretion of tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1ß) and interleukin 8 (IL8) was detected with ELISA, gene expression (NOS2 (Nitric oxide synthase 2), and CXCL8 (IL8)) with qPCR. Phagocytosis was detected with a fluorescence assay. FucBB04 and FVs slightly reduced the viability of SIM-A9 and primary microglia, respectively. Treatment with RPE supernatants increased the viability of LPS-treated primary microglia. FVs and FucBB04 reduced the size of LPS-activated primary microglia, indicating an anti-inflammatory phenotype. RPE supernatant reduced the size of LPS-activated SIM-A9 cells. Proinflammatory cytokine secretion and gene expression in SIM-A9, as well as primary microglia, were not significantly affected by fucoidans, but RPE supernatants reduced the secretion of LPS-induced proinflammatory cytokine secretion in SIM-A9 and primary microglia. The phagocytosis ability of primary microglia was reduced by FucBB04. In conclusion, fucoidans exhibited only modest effects on inflammatorily activated microglia by maintaining their cell size under stimulation, while the anti-inflammatory effect of RPE cells on microglia irrespective of fucoidan treatment could be confirmed, stressing the role of RPE in regulating innate immunity in the retina.


Assuntos
Sobrevivência Celular , Microglia , Polissacarídeos , Epitélio Pigmentado da Retina , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Polissacarídeos/farmacologia , Suínos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Sobrevivência Celular/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/citologia , Linhagem Celular , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo
2.
Foods ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928786

RESUMO

Terpinen-4-ol (T-4-O) is an important component of tea tree oil and has anti-inflammatory effects. Currently, there are very few studies on the mechanisms by which T-4-O improves lipopolysaccharide (LPS)-induced macrophage inflammation. In this study, LPS-stimulated mouse RAW264.7 macrophages were used as a model to analyze the effects of T-4-O on macrophage inflammatory factors and related metabolic pathways in an inflammatory environment. The results showed that T-4-O significantly decreased the expression levels of inflammatory cytokines induced by LPS. Cellular metabolism results showed that T-4-O significantly decreased the ratio of the extracellular acidification rate and oxygen consumption rate. Non-targeted metabolomics results showed that T-4-O mainly affected glutamine and glutamate metabolism and glycine, serine, and threonine metabolic pathways. qPCR results showed that T-4-O increased the transcript levels of GLS and GDH and promoted glutamine catabolism. Western blotting results showed that T-4-O inhibited the mTOR and IκB, thereby decreasing NF-κB activity. The overall results showed that T-4-O inhibited mTOR phosphorylation to promote glutamine metabolism and increased cell oxidative phosphorylation levels, thereby inhibiting the expression of LPS-induced inflammatory cytokines.

3.
Antioxidants (Basel) ; 13(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38929149

RESUMO

Scutellarein is a key active constituent present in many plants, especially in Scutellaria baicalensis Georgi and Erigeron breviscapus (vant.) Hand-Mazz which possesses both anti-inflammatory and anti-oxidative activities. It also is the metabolite of scutellarin, with the ability to relieve LPS-induced acute lung injury (ALI), strongly suggesting that scutellarein could suppress respiratory inflammation. The present study aimed to investigate the effects of scutellarein on lung inflammation by using LPS-activated BEAS-2B cells (a human bronchial epithelial cell line) and LPS-induced ALI mice. The results showed that scutellarein could reduce intracellular reactive oxygen species (ROS) accumulation through inhibiting the activation of NADPH oxidases, markedly downregulating the transcription and translation of pro-inflammatory cytokines, including interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine ligand (CXCL) 8 in LPS-activated BEAS-2B cells. The mechanism study revealed that it suppressed the phosphorylation and degradation of IκBα, consequently hindering the translocation of p65 from the cytoplasm to the nucleus and its subsequent binding to DNA, thereby decreasing NF-κB-regulated gene transcription. Notably, scutellarein had no impact on the activation of AP-1 signaling. In LPS-induced ALI mice, scutellarein significantly decreased IL-6, CCL2, and tumor necrosis factor-α (TNF-α) levels in the bronchoalveolar lavage fluid, attenuated lung injury, and inhibited neutrophil infiltration. Our findings suggest that scutellarein may be a beneficial agent for the treatment of infectious pneumonia by virtue of its anti-oxidative and anti-inflammatory activities.

4.
Int J Pharm ; 660: 124318, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852750

RESUMO

Avian influenza virus subtype H9N2 has the ability to infect birds and humans, further causing significant losses to the poultry industry and even posing a great threat to human health. Oral vaccine received particular interest for preventing majority infection due to its ability to elicit both mucosal and systemic immune responses, but their development is limited by the bad gastrointestinal (GI) environment, compact epithelium and mucus barrier, and the lack of effective mucosal adjuvants. Herein, we developed the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) as an adjuvant for H9N2 vaccine. Encouragingly, CDP-DFNS facilitated the proliferation of T and B cells, and further induced the activation of T lymphocytes in vitro. Moreover, CDP-DFNS/H9N2 significantly promoted the antigen-specific antibodies levels in serum and intestinal mucosal of chickens, indicating the good ability to elicit both systemic and mucosal immunity. Additional, CDP-DFNS facilitate the activation of CD4 + and CD8 + T cells both in spleen and intestinal mucosal, and the indexes of immune organs. This study suggested that CDP-DFNS may be a new avenue for development of oral vaccine against pathogens that are transmitted via mucosal route.

5.
Front Immunol ; 15: 1396827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855102

RESUMO

Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.


Assuntos
Macrófagos , Mitocôndrias , Fagocitose , Piroptose , Fatores de Transcrição , Animais , Mitocôndrias/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Imunomodulação , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Glucocorticoides/farmacologia , Camundongos Endogâmicos C57BL , Salmonella typhimurium/imunologia , Escherichia coli/imunologia
6.
Front Cell Dev Biol ; 12: 1371323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915444

RESUMO

Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.

7.
Front Pediatr ; 12: 1401090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745834

RESUMO

Introduction: Necrotizing enterocolitis (NEC) is a life-threatening inflammatory disease. Its onset might be triggered by Toll-Like Receptor 4 (TLR4) activation via bacterial lipopolysaccharide (LPS). We hypothesize that a deficiency of intestinal alkaline phosphatase (IAP), an enzyme secreted by enterocytes that dephosphorylates LPS, may contribute to NEC development. Methods: In this prospective pilot study, we analyzed intestinal resection specimens from surgical NEC patients, and from patients undergoing Roux-Y reconstruction for hepatobiliary disease as controls. We assessed IAP activity via enzymatic stainings and assays and explored IAP and TLR4 co-localization through immunofluorescence. Results: The study population consisted of five NEC patients (two Bell's stage IIb and three-stage IIIb, median (IQR) gestational age 25 (24-28) weeks, postmenstrual age at diagnosis 28 (26-31) weeks) and 11 controls (unknown age). There was significantly lower IAP staining in NEC resection specimens [49 (41-50) U/g of protein] compared to controls [115 (76-144), P = 0.03]. LPS-dephosphorylating activity was also lower in NEC patients [0.06 (0-0.1)] than in controls [0.3 (0.2-0.5), P = 0.003]. Furthermore, we observed colocalization of IAP and TLR4 in NEC resection specimens. Conclusion: This study suggests a significantly lower IAP level in resection specimens of NEC patients compared to controls. This lower IAP activity suggests a potential role of IAP as a protective agent in the gut, which needs further confirmation in larger cohorts.

8.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675427

RESUMO

Cannabis contains over 500 different compounds, including cannabinoids, terpenoids, and flavonoids. Cannabidiol (CBD) is a non-psychoactive constituent, whereas beta-caryophyllene (BCP) is one of most the well-known terpenoids of Cannabis sativa. In recent years, there has been an emerging idea that the beneficial activities of these compounds are greater when they are combined. The aim of this study was to evaluate the anti-inflammatory effect of CBD and BCP using the in vitro model of lipopolysaccharide (LPS)-stimulated human keratinocytes (HaCaT) cells. The vitality of the cells was quantified using LDH and MTT assays. The levels of the following pro-inflammatory proteins and genes were quantified: IL-1ß, COX-2, and phospho-NF-κB p65 (p-p65) through Western blotting (WB) and interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) through quantitative real-time polymerase chain reaction (RT-qPCR). When present in the incubation medium, CBD and BCP reduced the increased levels of pro-inflammatory proteins (IL-1ß, COX-2, and p-NF-kB) induced by LPS. The anti-inflammatory effects of CBD were blocked by a PPARγ antagonist, whereas a CB2 antagonist was able to revert the effects of BCP. Selected concentrations of CBD and BCP were able to revert the increases in the expression of pro-inflammatory genes (IL-1ß, IL-6, and TNFα), and these effects were significant when the drugs were used in combination. Our results suggest that CBD and BCP work in concert to produce a major anti-inflammatory effect with good safety profiles.

9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612596

RESUMO

A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).


Assuntos
Antígenos de Grupos Sanguíneos , Ácidos Nucleicos Livres , Armadilhas Extracelulares , Volvo Intestinal , Traumatismo por Reperfusão , Sepse , Animais , Camundongos , Modelos Animais de Doenças , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Sepse/complicações , Prótons , Isquemia
10.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38590254

RESUMO

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Assuntos
Doença de Alzheimer , Canabidiol , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Eixo Encéfalo-Intestino , Cognição , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças
11.
J Virol ; 98(5): e0036324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661384

RESUMO

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Vírion , Humanos , Quimiocina CCL5/metabolismo , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/virologia , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vírion/metabolismo
12.
Tissue Cell ; 88: 102346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460354

RESUMO

AIM: To explore the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) and their conditioned medium (MSC-CM) in repairing the endometritis mouse model in vivo. METHODS: Lipopolysaccharide (LPS) was used to induce acute inflammation in endometritis mouse model. Mice were treated in six groups: control group (PBS), model group (LPS), LPS+MSC-CM (6 h) group, LPS+MSC-CM (12 h) group, LPS+MSCs (6 h) group and LPS+MSCs (12 h) group. Morphological and histological changes of mouse uterus were observed, and mouse uterine inflammation index myeloperoxidase (MPO) and related immune index TNF-α, IL-6 and IL-1ß levels were detected by ELISA. RESULTS: There exist remarkable inflammatory response and an obvious increase in the value of MPO, TNF-α, IL-1ß and IL-6 in the endometritis mouse model compared with the control group. Morphological and histological appearances were relieved after treated with hUC-MSCs and MSC-CM. Besides, the value of MPO, TNF-α, IL-1ß and IL-6 showed different degrees of decline. In comparison with LPS+MSC-CM (12 h) and LPS+MSCs (12 h) group, there was significant decrease in inflammatory indicators in LPS+MSC-CM (6 h) and LPS+MSCs (6 h) group. CONCLUSIONS: Intrauterine infusion of hUC-MSCs and MSC-CM can alleviate LPS induced endometritis.


Assuntos
Modelos Animais de Doenças , Endometrite , Lipopolissacarídeos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cordão Umbilical , Animais , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Lipopolissacarídeos/toxicidade , Humanos , Endometrite/induzido quimicamente , Endometrite/patologia , Endometrite/terapia , Camundongos , Cordão Umbilical/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Peroxidase/metabolismo
13.
Exp Anim ; 73(3): 336-346, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38508727

RESUMO

Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel, is a receptor for vanilloids on sensory neurons and is also activated by capsaicin, heat, protons, arachidonic acid metabolites, and inflammatory mediators on neuronal or non-neuronal cells. However, the role of the TRPV1 receptor in pro-inflammatory cytokine secretion and its potential regulatory mechanisms in lipopolysaccharide (LPS)-induced inflammation has yet to be entirely understood. To investigate the role and regulatory mechanism of the TRPV1 receptor in regulating LPS-induced inflammatory responses, bone marrow-derived macrophages (BMDMs) harvested from wild-type (WT) and TRPV1 deficient (Trpv1-/-) mice were used as the cell model. In WT BMDMs, LPS induced an increase in the levels of tumor necrosis factor-α, IL-1ß, inducible nitric oxide synthase, and nitric oxide, which were attenuated in Trpv1-/- BMDMs. Additionally, the phosphorylation of inhibitor of nuclear factor kappa-Bα and mitogen-activated protein kinases, as well as the translocation of nuclear factor kappa-B and activator protein 1, were all decreased in LPS-treated Trpv1-/- BMDMs. Immunoprecipitation assay revealed that LPS treatment increased the formation of TRPV1-Toll-like receptor 4 (TLR4)-cluster of differentiation 14 (CD14) complex in WT BMDMs. Genetic deletion of TRPV1 in BMDMs impaired the LPS-triggered immune-complex formation of TLR4, myeloid differentiation protein 88, and interleukin-1 receptor-associated kinase, all of which are essential regulators in LPS-induced activation of the TLR4 signaling pathway. Moreover, genetic deletion of TRPV1 prevented the LPS-induced lethality and pro-inflammatory production in mice. In conclusion, the TRPV1 receptor may positively regulate the LPS-mediated inflammatory responses in macrophages by increasing the interaction with the TLR4-CD14 complex and activating the downstream signaling cascade.


Assuntos
Inflamação , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Macrófagos , Transdução de Sinais , Canais de Cátion TRPV , Receptor 4 Toll-Like , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , Macrófagos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Receptores de Lipopolissacarídeos/genética , Inflamação/metabolismo , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Masculino
14.
Res Vet Sci ; 171: 105231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513460

RESUMO

Intestinal disorders can affect pigs of any age, especially when animals are young and more susceptible to infections and environmental stressors. For instance, pathogenic E. coli can alter intestinal functions, thus leading to altered nutrient adsorption by interacting with local cells through lipopolysaccharide (LPS). Among several compounds studied to counteract the negative effects on the intestine, short-chain fatty acids (SCFA) were demonstrated to exert beneficial effects on gut epithelial cells and resident immune cells. In this study, acetate and propionate were tested for their beneficial effects in a co-culture model of IPEC-J2 and porcine PBMC pre-stimulated with LPS from E. coli 0111:B4 aimed at mimicking the interaction between intestinal cells and immune cells in an inflammatory/activated status. IPEC-J2 viability was partially reduced when co-cultured with activated PBMC and nitric oxide concentration increased. IPEC-J2 up-regulated innate and inflammatory markers, namely BD-1, TLR-4, IL-8, TNF-α, NF-κB, and TGF-ß. Acetate and propionate positively modulated the inflammatory condition by sustaining cell viability, reducing the oxidative stress, and down-regulating the expression of inflammatory mediators. TNF-α expression and secretion showed an opposite effect in IPEC-J2 depending on the extent of LPS stimulation of PBMC and TGF-ß modulation. Therefore, SCFA proved to mediate a differential effect depending on the degree and duration of inflammation. The expression of the tight junction proteins (TJp) claudin-4 and zonula occludens-1 was up-regulated by LPS while SCFA influenced TJp with a different kinetics depending on PBMC stimulation. The co-culture model of IPEC-J2 and LPS-activated PBMC proved to be feasible to address the modulation of markers related to anti-bacterial immunity and inflammation, and intestinal epithelial barrier integrity, which are involved in the in vivo responsiveness and plasticity to infections.


Assuntos
Escherichia coli , Doenças dos Suínos , Animais , Suínos , Escherichia coli/metabolismo , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Propionatos , Leucócitos Mononucleares/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis , Acetatos , Fator de Crescimento Transformador beta , Inflamação/veterinária , Mucosa Intestinal/metabolismo
15.
J Biophotonics ; 17(6): e202300541, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531619

RESUMO

The aim of this study is to reveal the molecular changes accompanying the neuronal hyper-excitability during lipopolysaccharide (LPS)-induced systemic inflammation on rat hippocampus using Fourier transform infrared (FTIR) spectroscopy. For this aim, the body temperature of Wistar albino rats administered LPS or saline was recorded by radiotelemetry. The animals were decapitated when their body temperature began to decrease by 0.5°C after LPS treatment and the hippocampi of them were examined by FTIR spectroscopy. The results indicated that systemic inflammation caused lipid peroxidation, an increase in the amounts of lipids, proteins and nucleic acids, a decrease in membrane order, an increase in membrane dynamics and changes in the secondary structure of proteins. Principal component analysis successfully separated control and LPS-treated groups. In conclusion, significant structural, compositional and functional alterations occur in the hippocampus during systemic inflammation and these changes may have specific characteristics which can lead to neuronal hyper-excitability.


Assuntos
Hipocampo , Inflamação , Lipopolissacarídeos , Ratos Wistar , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Lipopolissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Ratos , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Peroxidação de Lipídeos/efeitos dos fármacos
16.
Arch Toxicol ; 98(5): 1415-1436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436694

RESUMO

In vitro and in vivo models of lipopolysaccharide (LPS)-induced pulmonary injury, quercetin-3-glucuronide (Q3G) has been previously revealed the lung-protective potential via downregulation of inflammation, pyroptotic, and apoptotic cell death. However, the upstream signals mediating anti-pulmonary injury of Q3G have not yet been clarified. It has been reported that concerted dual activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) and autophagy may prove to be a better treatment strategy in pulmonary injury. In this study, the effect of Q3G on antioxidant and autophagy were further investigated. Noncytotoxic doses of Q3G abolished the LPS-caused cell injury, and reactive oxygen species (ROS) generation with inductions in Nrf2-antioxidant signaling. Moreover, Q3G treatment repressed Nrf2 ubiquitination, and enhanced the association of Keap1 and p62 in the LPS-treated cells. Q3G also showed potential in inducing autophagy, as demonstrated by formation of acidic vesicular organelles (AVOs) and upregulation of autophagy factors. Next, the autolysosomes formation and cell survival were decreased by Q3G under pre-treatment with a lysosome inhibitor, chloroquine (CQ). Furthermore, mechanistic assays indicated that anti-pulmonary injury effects of Q3G might be mediated via Nrf2 signaling, as confirmed by the transfection of Nrf2 siRNA. Finally, Q3G significantly alleviated the development of pulmonary injury in vivo, which may result from inhibiting the LPS-induced lung dysfunction and edema. These findings emphasize a toxicological perspective, providing new insights into the mechanisms of Q3G's protective effects on LPS-induced pulmonary injury and highlighting its role in dual activating Nrf2 and autophagy pathways.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Quercetina , Humanos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Antioxidantes/farmacologia , Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Quercetina/análogos & derivados
17.
Viruses ; 16(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543837

RESUMO

SARS-CoV-2 infection has claimed just over 1.1 million lives in the US since 2020. Globally, the SARS-CoV-2 respiratory infection spread to 771 million people and caused mortality in 6.9 million individuals to date. Much of the early literature showed that SARS-CoV-2 immunity was defective in the early stages of the pandemic, leading to heightened and, sometimes, chronic inflammatory responses in the lungs. This lung-associated 'cytokine storm' or 'cytokine release syndrome' led to the need for oxygen supplementation, respiratory distress syndrome, and mechanical ventilation in a relatively high number of people. In this study, we evaluated circulating PBMC from non-hospitalized, male and female, COVID-19+ individuals over the course of infection, from the day of diagnosis (day 0) to one-week post diagnosis (day 7), and finally 4 weeks after diagnosis (day 28). In our early studies, we included hospitalized and critically care patient PBMC; however, most of these individuals were lymphopenic, which limited our assessments of their immune integrity. We chose a panel of 30 interferon-stimulated genes (ISG) to evaluate by PCR and completed flow analysis for immune populations present in those PBMC. Lastly, we assessed immune activation by stimulating PBMC with common TLR ligands. We identified changes in innate cells, primarily the innate lymphoid cells (ILC, NK cells) and adaptive immune cells (CD4+ and CD8+ T cells) over this time course of infection. We found that the TLR-7 agonist, Resiquimod, and the TLR-4 ligand, LPS, induced significantly better IFNα and IFNγ responses in the later phase (day 28) of SARS-CoV-2 infection in those non-hospitalized COVID-19+ individuals as compared to early infection (day 0 and day 7). We concluded that TLR-7 and TLR-4 agonists may be effective adjuvants in COVID-19 vaccines for mounting immunity that is long-lasting against SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Masculino , Feminino , SARS-CoV-2/genética , Pandemias , Imunidade Inata , Vacinas contra COVID-19 , Receptor 4 Toll-Like/genética , Leucócitos Mononucleares , Receptor 7 Toll-Like , Linfócitos , Interferons , Síndrome da Liberação de Citocina
18.
Brain Behav Immun ; 117: 356-375, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320681

RESUMO

Both exogenous gaseous and liquid forms of formaldehyde (FA) can induce depressive-like behaviors in both animals and humans. Stress and neuronal excitation can elicit brain FA generation. However, whether endogenous FA participates in depression occurrence remains largely unknown. In this study, we report that midbrain FA derived from lipopolysaccharide (LPS) is a direct trigger of depression. Using an acute depressive model in mice, we found that one-week intraperitoneal injection (i.p.) of LPS activated semicarbazide-sensitive amine oxidase (SSAO) leading to FA production from the midbrain vascular endothelium. In both in vitro and in vivo experiments, FA stimulated the production of cytokines such as IL-1ß, IL-6, and TNF-α. Strikingly, one-week microinfusion of FA as well as LPS into the midbrain dorsal raphe nucleus (DRN, a 5-HT-nergic nucleus) induced depressive-like behaviors and concurrent neuroinflammation. Conversely, NaHSO3 (a FA scavenger), improved depressive symptoms associated with a reduction in the levels of midbrain FA and cytokines. Moreover, the chronic depressive model of mice injected with four-week i.p. LPS exhibited a marked elevation in the levels of midbrain LPS accompanied by a substantial increase in the levels of FA and cytokines. Notably, four-week i.p. injection of FA as well as LPS elicited cytokine storm in the midbrain and disrupted the blood-brain barrier (BBB) by activating microglia and reducing the expression of claudin 5 (CLDN5, a protein with tight junctions in the BBB). However, the administration of 30 nm nano-packed coenzyme-Q10 (Q10, an endogenous FA scavenger), phototherapy (PT) utilizing 630-nm red light to degrade FA, and the combination of PT and Q10, reduced FA accumulation and neuroinflammation in the midbrain. Moreover, the combined therapy exhibited superior therapeutic efficacy in attenuating depressive symptoms compared to individual treatments. Thus, LPS-derived FA directly initiates depression onset, thereby suggesting that scavenging FA represents a promising strategy for depression treatment.


Assuntos
Depressão , Lipopolissacarídeos , Humanos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Depressão/tratamento farmacológico , Doenças Neuroinflamatórias , Citocinas/metabolismo , Mesencéfalo/metabolismo , Formaldeído
19.
Aging (Albany NY) ; 16(3): 2978-2988, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345562

RESUMO

Acute lung injury (ALI) is one of the most common high-risk diseases associated with a high mortality rate and is still a challenge to treat effectively. Netrin-1 (NT-1) is a novel peptide with a wide range of biological functions, however, its effects on ALI have not been reported before. In this study, an ALI model was constructed using lipopolysaccharide (LPS) and treated with NT-1. Pulmonary function and lung wet to dry weight ratio (W/D) were detected. The expressions of pro-inflammatory cytokines and chemokines interleukin-8 (IL-8), interleukin-1ß (IL-1ß), and chemokine (C-X-C motif) ligand 2 (CXCL2) were measured using real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). We found that the levels of NT-1 were reduced in the LPS-induced ALI mice model. Administration of NT-1 improved histopathological changes of lung tissues and lung function in LPS-challenged ALI mice. We also report that NT-1 decreased Myeloperoxidase (MPO) activity and ameliorated pulmonary edema. Additionally, treatment with NT-1 reduced the levels of pro-inflammatory cytokines and chemokines such as IL-8, IL-1ß, and CXCL2 in lung tissues of LPS-challenged ALI mice. Importantly, NT-1 reduced cell count in BALF and mitigated oxidative stress (OS) by reducing the levels of MDA and increasing the levels of GSH. Mechanistically, it is shown that NT-1 reduced the levels of Toll-like receptor 4 (TLR4) and prevented nuclear translocation of nuclear factor-κB (NF-κB) p65. Our findings indicate that NT-1 is a promising agent for the treatment of ALI through inhibiting TLR4/NF-κB signaling.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Interleucina-8 , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Netrina-1 , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo
20.
Inflammopharmacology ; 32(2): 1159-1169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372849

RESUMO

OBJECTIVES: Chronic neuroinflammation has become one of the important causes of common neurodegeneration disease. Therefore, the target of this study was to explore the protective action of glabridin on lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro and its mechanism. METHODS: The neuroinflammation model was established by LPS-induced BV2 cells. The cell viability with various concentrations of glabridin was determined by MTT assay, and the content of NO in each group was detected. A neuroinflammatory model was established in male C57BL/6J mice for a water maze test. Subsequently, NF-κB and SOD indices were measured by ELISA, GFAP and IBA-1 indices were measured by immunofluorescence, and Nissl staining was used to explore the Nissl bodies in the hippocampus of mice. RESULTS: In vitro experiments, our results expressed that glabridin could markedly increase the cell activity of LPS-induced BV2 cells and reduce the NO expression in cells. It indicated that glabridin had a remarkable impact on the neuroinflammation of LPS-induced BV2 cell protection. In vivo neuroinflammation experiments, mice treated with different doses of glabridin showed significantly improved ability of memory compared with the LPS group in the Morris water maze test. The levels of NF-κB, GFAP, and the number of positive cells in Nissl staining were decreased. High-dose glabridin significantly increased the SOD content in the brain tissue and decreased the IBA-1 levels. CONCLUSION: Glabridin can significantly reduce or even reverse LPS-induced neuroinflammation, which may be related to the fact that glabridin can reduce the NO expression, NF-κB, IBA-1, GFAP, and other inflammatory mediators, upregulate the expression of SOD to relieve oxidative stress of brain and inhibit the activation of gliocyte in brain tissue.


Assuntos
Isoflavonas , NF-kappa B , Fenóis , Transdução de Sinais , Camundongos , Animais , Masculino , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo , Microglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...