RESUMO
TiO2/C nanocomposite films were applied on water treatment. Expanded graphite nanosheets (EG) were obtained by UVC-assisted liquid-phase exfoliation technique, without the addition of acids, surfactants, or aggressive oxidizing agents, which characterizes the process as an eco-friendly method. The carbon nanosheets were synthesized directly from graphite bulk at different times and deposited on TiO2 films surface by airbrush spray coating method, forming a TiO2/C heterojunction. The increase in the exfoliation time promoted a more efficient photocatalytic dye removal under visible light. Morphological modifications, changes in the electronic structure, and wide range of light absorption were observed from the TiO2/C heterojunction formation. The results showed that hybrid TiO2/C supported photocatalyst is a promise alternative for practical photocatalytic applications under sunlight.
Assuntos
Grafite , Nanocompostos , Grafite/química , Titânio/química , Luz Solar , Nanocompostos/químicaRESUMO
Colombia is one of the world's leading exporters of coal and coke, with significant reserves of high-quality coal. Most of the coal exported from Colombia is used for power generation, but there is also a class of coal that is suitable for making coke. Coke is a raw material required for making steel, and it is produced by heating coal to high temperatures in the absence of air. Colombia is the third-largest global exporter of coke, with a significant portion of its exports going to the steel industry in countries such as Brazil, Mexico, and the United States. The country's high-quality coal reserves and proximity to major markets make it an important player in the global coal and coke trade. On the other hand, graphene and its derivative Graphene Oxide (GO) have unique properties that make them suitable for a wide range of commercial applications. Graphene has exceptional mechanical strength and high electrical conductivity, which make it an attractive material for a variety of electronic and structural applications. For example, graphene-based materials are being developed for use in flexible electronic devices, sensors, and high-strength composites. GO, on the other hand, is highly resistive but still retains exceptional mechanical strength. This makes it useful in applications where electrical conductivity is not necessary but mechanical strength and durability are important. Graphene production using current techniques can be expensive and inefficient, which limits its widespread adoption for commercial applications. However, new production methods, such as Liquid Phase Exfoliation (LPE), are being developed to address these challenges. LPE is a method for producing graphene and graphene oxide that involves using a liquid solvent to break apart graphite into individual graphene sheets. This method is more efficient and cost-effective than traditional methods such as mechanical exfoliation and chemical vapor deposition. In recent years, there has been increasing interest in using high-rank coal from Colombia as a raw material for graphene production using LPE. This is because high-rank coal from Colombia is known to have a high carbon content and low impurity levels, which makes it an ideal raw material for graphene production. Researchers have successfully produced GO using the LPE method and high-rank coal from Boavita, Colombia. This has the potential to significantly increase the supply of graphene and graphene oxide, making it more accessible for commercial applications. Additionally, using coal as a raw material for graphene production has the potential to create a new market for coal, which could benefit the Colombian economy. In order to synthesize GO, it is important to establish a suitable protocol for the grinding procedure and particle size selection. (i. more than 0.15 mm, ii. 0.15 mm to 0.05 mm, and iii. less than 0.05 mm) were defined. To compare the yield, the mineral matter removal procedure was carried out with a basic leaching bath. Coal oxidation was performed using the modified Hummers process, and GO was then obtained using LPE. This method has the following advantages:â¢It is feasible to produce GO from high-rank coal with acceptable quality and particulate size smaller than 0.15 mm, yields that are close to 5%, and flakes with fewer than 15 layers.â¢This approach also could eliminate dependence on graphite as the carbon feedstock for graphene production.â¢It is an alternative to manufacture GO from coal dust collected from mines.
RESUMO
Industrial applications of nanomaterials require large-scale production methods, such as liquid phase exfoliation (LPE). Regarding this, it is imperative to characterize the obtained materials to tailor parameters such as exfoliation medium, duration, and mechanical energy source to the desired applications. This work presents results of statistical analyses of talc flakes obtained by LPE in four different media. Talc is a phyllosilicate that can be exfoliated into nanoflakes with great mechanical properties. Sodium cholate at two different concentrations (below and at the critical micelar concentration), butanone, and Triton-X100 were employed as exfoliation medium for talc. Using recent published statistical analysis methods based on atomic force microscopy images of thousands of flakes, the shape and size distribution of nanotalc obtained using the four different media are compared. This comparison highlights the strengths and weaknesses of the media tested and hopefully will facilitate the choice of the medium for applications that have specific requirements.
RESUMO
A simple, efficient, environmentally friendly, and inexpensive synthesis route was developed to obtain a magnetic nano-hybrid (GH) based on graphene and cobalt ferrite. Water with a high content of natural organic matter (NOM) was used as solvent and a source of carbon. The presence of NOM in the composition of GH was confirmed by FTIR and Raman spectroscopy, which evidenced the formation of graphene, as also corroborated by XRD analyses. The diffractograms and TEM images showed the formation of a hybrid nanomaterial composed of graphene and cobalt ferrite, with crystallite and particle sizes of 0.83 and 4.0 nm, respectively. The heterogeneous electro-Fenton process (EF-GH) achieved 100% degradation of bisphenol A (BPA) in 50 min, with 80% mineralization in 7 h, at pH 7, using a current density of 33.3 mA cm-2. The high catalytic performance was achieved at neutral pH, enabling substantial reduction of the costs of treatment processes. This work contributes to understanding the role of NOM in the synthesis of a magnetic nano-hybrid based on graphene and cobalt ferrite, for use in heterogeneous catalysis. This nano-hybrid has excellent potential for application in the degradation of persistent organic pollutants found in aquatic environments.
Assuntos
Grafite , Poluentes Químicos da Água , Compostos Benzidrílicos , Catálise , Cobalto , Compostos Férricos , Peróxido de Hidrogênio , Ferro , Oxirredução , Fenóis , Poluentes Químicos da Água/análiseRESUMO
Abstract There is a great interest to use carbon-based material like graphene and graphene oxide in biomedical applications due to its flexibility to be functionalized with bio-active molecules. Herein, graphene and graphene-based nanocomposites were biosynthesized by liquid-phase exfoliation of graphite using aqueous extract of Parthenium hysterophorous (P-H) as a surfactant. A set of five thin film samples of graphene was prepared from graphene suspension by vacuum filtration method. Samples were characterized by UV-vis spectroscopy, Raman spectroscopy, SEM, and XRD, which revealed successful synthesis of graphene. Graphene/P-H(G/P-H) nanocomposites comprising varied ratios of graphene and P-H were prepared and their antibacterial activity was investigated by agar well diffusion method. The experimental results indicated that G/P-H nanocomposite have higher antibacterial activity than graphene alone, and bioactivity of G/P-H nanocomposite was found to be controlled by the fraction of graphene in the composite.
RESUMO
Herein we describe a successful protocol for graphite exfoliation using a biphasic liquid system (water/dichloromethane, DCM) containing ionic liquids (ILs; 1,3-dibenzylimidazolium benzoate- and 1-naphthoate). The use of (surface active) IL and sonication led to stable DCM/water (O/W) emulsion, which enhanced graphene formation, suppressed its re-aggregation and decreased shear/cavitation damage. The O/W emulsion stabilization by the ILs was studied by dynamic light scattering (DLS), whereas their interaction with the graphene sheets were described by Density Functional Theory (DFT) calculations. Moreover, a comprehensive investigation on cavitation-based exfoliation in the O/W systems was performed to assess the importance of operational parameters, including, the type of ultrasound processor, ultrasound power and insonation, and the influence of the exfoliation medium.