Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1279827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089475

RESUMO

Purpose: The effectiveness of altitude training on haematological adaptations is largely dependent on iron metabolism. Hepcidin and erythroferrone (ERFE) are key iron-regulating hormones, yet their response to altitude training is poorly understood. The aim of this study was to analyze changes in hepcidin and ERFE under the influence of 3 weeks of the Live High-Train Low (LH-TL) method. Methods: Twenty male trained cyclists completed a 3-week training program under normoxic conditions (NORM) or with passive exposure to normobaric hypoxia (LH-TL; FiO2 = 16.5%, ∼2000 m; 11-12 h/day). Hepcidin, ERFE, hypoxia inducible factor-2 (HIF-2), ferroportin (Fpn), erythropoietin (EPO), serum iron (Fe) and hematological variables were assessed at baseline (S1), then immediately after (S2) and 3 days after (S3) intervention. Results: In the LH-TL group, hepcidin decreased by 13.0% (p < 0.001) in S2 and remained at a reduced level in S3. ERFE decreased by 28.7% (p < 0.05) in S2 and returned to baseline in S3. HIF-2α decreased gradually, being lower by 25.3% (p < 0.05) in S3. Fpn decreased between S1 and S2 by 18.9% (p < 0.01) and remained lower during S3 (p < 0.01). In the NORM group, in turn, hepcidin levels increased gradually, being higher by 73.9% (p < 0.05) in S3 compared to S1. No statistically significant differences in EPO were observed in both groups. Conclusion: Three weeks of LH-TL suppresses resting hepcidin and ERFE levels in endurance athletes. We found no association between hepcidin and ERFE after LH-TL. Probably, ERFE is not the only factor that suppresses hepcidin expression in response to moderate hypoxia, especially in later stages of hepcidin downregulation. With the cessation of hypoxia, favorable conditions for increasing the availability of iron cease.

2.
Int J Sports Physiol Perform ; 18(6): 563-572, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116895

RESUMO

BACKGROUND: Altitude training is often regarded as an indispensable tool for the success of elite endurance athletes. Historically, altitude training emerged as a key strategy to prepare for the 1968 Olympics, held at 2300 m in Mexico City, and was limited to the "Live High-Train High" method for endurance athletes aiming for performance gains through improved oxygen transport. This "classical" intervention was modified in 1997 by the "Live High-Train Low" (LHTL) model wherein athletes supplemented acclimatization to chronic hypoxia with high-intensity training at low altitude. PURPOSE: This review discusses important considerations for successful implementation of LHTL camps in elite athletes based on experiences, both published and unpublished, of the authors. APPROACH: The originality of our approach is to discuss 10 key "lessons learned," since the seminal work by Levine and Stray-Gundersen was published in 1997, and focusing on (1) optimal dose, (2) individual responses, (3) iron status, (4) training-load monitoring, (5) wellness and well-being monitoring, (6) timing of the intervention, (7) use of natural versus simulated hypoxia, (8) robustness of adaptative mechanisms versus performance benefits, (9) application for a broad range of athletes, and (10) combination of methods. Successful LHTL strategies implemented by Team USA athletes for podium performance at Olympic Games and/or World Championships are presented. CONCLUSIONS: The evolution of the LHTL model represents an essential framework for sport science, in which field-driven questions about performance led to critical scientific investigation and subsequent practical implementation of a unique approach to altitude training.


Assuntos
Distinções e Prêmios , Esportes , Humanos , Hipóxia , Altitude , Aclimatação/fisiologia , Consumo de Oxigênio/fisiologia
3.
Nutrients ; 16(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38201906

RESUMO

The aim of this study was to evaluate the effects of D-aspartic acid (DAA) supplementation during a simulated altitude protocol on the hormonal and hematological responses in athletes. We hypothesized that DAA supplementation would contribute to an increase in the luteinizing hormone (LH), free, and testosterone and a greater increase in hematological variables. Sixteen male boxers participated; they were randomly assigned to an experimental group (DAA) or a control group (C) and underwent 14 days of supplementation, 6 g/day of DAA. Both DAA and C participants were exposed to normobaric hypoxia (FiO2 = 15.5%; 2500 m) for 10-12 h a day over a period of 11 days. The results showed that DAA had no significant effect on resting, LH, or the testosterone/cortisol ratio during the training camp. Hypoxic exposure significantly (p < 0.05) increased red blood cell and reticulocyte counts as well as hemoglobin and hematocrit concentrations in both groups, but DAA had no significant effect on these changes. In conclusion, we found that DAA supplementation at a dose of 6 g/day for 14 days does not affect the testosterone, cortisol, or hematological responses of athletes during.


Assuntos
Ácido D-Aspártico , Testosterona , Humanos , Masculino , Ácido Aspártico , Suplementos Nutricionais , Hidrocortisona , Hipóxia , Hormônio Luteinizante
4.
Biol Sport ; 35(1): 39-48, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30237660

RESUMO

The aim of the study was to compare the effect of intermittent hypoxic training (IHT) and the live high, train low strategy on aerobic capacity and sports performance in off-road cyclists in normoxia. Thirty off-road cyclists were randomized to three groups and subjected to 4-week training routines. The participants from the first experimental group were exposed to normobaric hypoxia conditions (FiO2 = 16.3%) at rest and during sleep (G-LH-TL; n=10; age: 20.5 ± 2.9 years; body height 1.81 ± 0.04 m; body mass: 69.6 ± 3.9 kg). Training in this group was performed under normoxic conditions. In the second experimental group, study participants followed an intermittent hypoxic training (IHT, three sessions per week, FiO2 = 16.3%) routine (G-IHT; n=10; age: 20.7 ± 3.1 years; body height 1.78 ± 0.05 m; body mass: 67.5 ± 5.6 kg). Exercise intensity was adjusted based on the lactate threshold (LT) load determined in hypoxia. The control group lived and trained under normoxic conditions (G-C; n=10; age: 21.8 ± 4.0 years; body height 1.78 ± 0.03 m; body mass: 68.1 ± 4.7 kg; body fat content: 8.4 ± 2.4%). The evaluations included two research series (S1, S2). Between S1 and S2, athletes from all groups followed a similar training programme for 4 weeks. In each research series a graded ergocycle test was performed in order to measure VO2max and determine the LT and a simulated 30 km individual time trial. Significant (p<0.05) improvements in VO2max, VO2LT, WRmax and WRLT were observed in the G-IHT (by 3.5%, 9.1%, 6.7% and 7.7% respectively) and G-LH-TL groups (by 4.8%, 6.7%, 5.9% and 4.8% respectively). Sports performance (TT) was also improved (p<0.01) in both groups by 3.6% in G-LH-TL and 2.5% in G-IHT. Significant changes (p<0.05) in serum EPO levels and haematological variables (increases in RBC, HGB, HCT and reticulocyte percentage) were observed only in G-LH-TL. Normobaric hypoxia has been demonstrated to be an effective ergogenic aid that can enhance the exercise capacity of cyclists in normoxia. Both LH-TL and IHT lead to improvements in aerobic capacity. The adaptations induced by both approaches are likely to be caused by different mechanisms. The evaluations included two research series (S1, S2). Between S1 and S2, athletes from all groups followed a similar training programme for 4 weeks. In each research series a graded ergocycle exercise test was performed in order to measure VO2max and determine the lactate threshold as well as a simulated 30 km individual time trial.

5.
J Appl Physiol (1985) ; 123(2): 387-393, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522767

RESUMO

The purpose of this research was to compare individual hemoglobin mass (Hbmass) changes following a live high-train low (LHTL) altitude training camp under either normobaric hypoxia (NH) or hypobaric hypoxia (HH) conditions in endurance athletes. In a crossover design with a one-year washout, 15 male triathletes randomly performed two 18-day LHTL training camps in either HH or NH. All athletes slept at 2,250 meters and trained at altitudes <1,200 meters. Hbmass was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre) and immediately after (post) each 18-day training camp. Hbmass increased similarly in HH (916-957 g, 4.5 ± 2.2%, P < 0.001) and in NH (918-953 g, 3.8 ± 2.6%, P < 0.001). Hbmass changes did not differ between HH and NH (P = 0.42). There was substantial interindividual variability among subjects to both interventions (i.e., individual responsiveness or the individual variation in the response to an intervention free of technical noise): 0.9% in HH and 1.7% in NH. However, a correlation between intraindividual ΔHbmass changes (%) in HH and in NH (r = 0.52, P = 0.048) was observed. HH and NH evoked similar mean Hbmass increases following LHTL. Among the mean Hbmass changes, there was a notable variation in individual Hbmass response that tended to be reproducible.NEW & NOTEWORTHY This is the first study to compare individual hemoglobin mass (Hbmass) response to normobaric and hypobaric live high-train low using a same-subject crossover design. The main findings indicate that hypobaric and normobaric hypoxia evoked a similar mean increase in Hbmass following 18 days of live high-train low. Notable variability and reproducibility in individual Hbmass responses between athletes was observed, indicating the importance of evaluating individual Hbmass response to altitude training.


Assuntos
Hemoglobinas/metabolismo , Adulto , Altitude , Atletas , Desempenho Atlético/fisiologia , Estudos Cross-Over , Exercício Físico/fisiologia , Humanos , Hipóxia/metabolismo , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
6.
High Alt Med Biol ; 18(2): 93-101, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28453305

RESUMO

Constantini, Keren, Daniel P. Wilhite, and Robert F. Chapman. A clinician guide to altitude training for optimal endurance exercise performance at sea level. High Alt Med Biol. 18:93-101, 2017.-For well over 50 years, endurance athletes have been utilizing altitude training in an effort to enhance performance in sea level competition. This brief review will offer the clinician a series of evidence-based best-practice guidelines on prealtitude and altitude training considerations, which can ultimately maximize performance improvement outcomes.


Assuntos
Aclimatação/fisiologia , Altitude , Desempenho Atlético/fisiologia , Resistência Física/fisiologia , Treinamento Resistido/métodos , Desempenho Atlético/normas , Humanos , Consumo de Oxigênio/fisiologia , Guias de Prática Clínica como Assunto , Fatores de Tempo
7.
J Appl Physiol (1985) ; 120(10): 1151-8, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968028

RESUMO

For sea level based endurance athletes who compete at low and moderate altitudes, adequate time for acclimatization to altitude can mitigate performance declines. We asked whether it is better for the acclimatizing athlete to live at the specific altitude of competition or at a higher altitude, perhaps for an increased rate of physiological adaptation. After 4 wk of supervised sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m) where they resided for 4 wk. Daily training for all subjects was completed at a common altitude from 1,250 to 3,000 m. Subjects completed 3,000-m performance trials on the track at sea level, 28 and 6 days before departure, and at 1,780 m on days 5, 12, 19, and 26 of the altitude camp. Groups living at 2,454 and 2,800 m had a significantly larger slowing of performance vs. the 1,780-m group on day 5 at altitude. The 1,780-m group showed no significant change in performance across the 26 days at altitude, while the groups living at 2,085, 2,454, and 2,800 m showed improvements in performance from day 5 to day 19 at altitude but no further improvement at day 26 The data suggest that an endurance athlete competing acutely at 1,780 m should live at the altitude of the competition and not higher. Living ∼300-1,000 m higher than the competition altitude, acute altitude performance may be significantly worse and may require up to 19 days of acclimatization to minimize performance decrements.


Assuntos
Exercício Físico/fisiologia , Resistência Física/fisiologia , Corrida/fisiologia , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Altitude , Atletas , Feminino , Humanos , Hipóxia/fisiopatologia , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
8.
Clin Hemorheol Microcirc ; 64(2): 115-123, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26890244

RESUMO

The aim of the present study was to investigate the effects of manipulating hematocrit by different methods (acute exercise, training or isovolumic hemodilution) on blood viscosity in high-level aerobic endurance athletes. We hypothesized than increasing hematocrit does not always cause a rise in blood viscosity.Sixteen endurance athletes underwent maximal exercise before and after 4 weeks of training with (LHTL; n = 10) or without (placebo; n = 6) Live High-Train Low modalities. Total hemoglobin mass was measured before and after training by a carbon monoxide rebreathing technique. After training, subjects performed two maximal exercise bouts separated by isovolumic hemodilution (phlebotomy and/or plasma volume expander) to readjust red blood cell volume and plasma volume to baseline values. Blood samples were obtained before and after exercise to assess hematocrit and blood and plasma viscosity.Training session (LHTL and placebo) increased hematocrit (Hct) in all subjects but without any significant change in blood viscosity. The decrease in plasma viscosity in all groups may explain this result. Isovolumic hemodilution caused a drop of Hct without any significant change in blood viscosity at rest. Maximal exercise increased Hct, blood and plasma viscosities in both groups, regardless of isovolumic hemodilution. However, peak hemorheological values after exercise were lower after isovolumic hemodilution.In conclusion, while acute increase in Hct during exercise caused an increase of blood viscosity, the chronic increase of Hct induced by training session did not result in a rise in blood viscosity. The lowering of plasma viscosity during training may compensate for the increase of Hct, hence limiting its impact on blood viscosity.


Assuntos
Atletas , Viscosidade Sanguínea/imunologia , Exercício Físico/fisiologia , Hematócrito/métodos , Hemodiluição/métodos , Adulto , Feminino , Humanos , Masculino
9.
J Sports Sci Med ; 14(4): 776-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26664274

RESUMO

This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities) on haemoglobin mass (Hbmass), maximum oxygen consumption (VO2max), time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10) or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night(-1) at a simulated altitude of 3000 m using hypoxic tents; n = 8). A control group (CON; n = 10) lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p < 0.05. There was a 3.7% increase in Hbmass in lowHH+NHnight compared with CON (p = 0.02). In comparison to baseline, Hbmass increased by 1.2% (±1.4%) in the lowHH group, 2.6% (±1.8%) in lowHH+NHnight, and there was a decrease of 0.9% (±4.9%) in CON. VO2max increased by ~4% within both experimental conditions but was not significantly greater than the 1% increase in CON. There was a ~9% difference in pre and post-intervention values in time to exhaustion after lowHH+NH-night (p = 0.03) and a ~8% pre to post-intervention difference (p = 0.006) after lowHH only. We recommend low altitude (1380 m) combined with sleeping in altitude tents (3000 m) as one effective alternative to traditional altitude training methods, which can improve Hbmass. Key pointsIn some countries, it may not be possible to perform classical altitude training effectively, due to the low elevation at altitude training venues. An additional hypoxic stimulus can be provided by simulating higher altitudes overnight, using altitude tents.Three weeks of combined (living and training at 1380 m) and simulated altitude exposure (at 3000 m) can improve haemoglobin mass by over 3% in comparison to control values, and can also improve time to exhaustion by ~9% in comparison to baseline.We recommend that, in the context of an altitude training camp at low altitudes (~1400 m) the addition of a relatively short exposure to simulated altitudes of 3000 m can elicit physiological and performance benefits, without compromise to training intensity or competition preparation. However, the benefits will not be greater than conducting a traditional altitude training camp at low altitudes.

10.
J Sports Sci Med ; 13(3): 666-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25177197

RESUMO

Traditionally, Live High-Train High (LHTH) interventions were adopted when athletes trained and lived at altitude to try maximising the benefits offered by hypoxic exposure and improving sea level performance. Nevertheless, scientific research has proposed that the possible benefits of hypoxia would be offset by the inability to maintain high training intensity at altitude. However, elite athletes have been rarely recruited as an experimental sample, and training intensity has almost never been monitored during altitude research. This case study is an attempt to provide a practical example of successful LHTH interventions in two Olympic gold medal athletes. Training diaries were collected and total training volumes, volumes at different intensities, and sea level performance recorded before, during and after a 3-week LHTH camp. Both athletes successfully completed the LHTH camp (2090 m) maintaining similar absolute training intensity and training volume at high-intensity (> 91% of race pace) compared to sea level. After the LHTH intervention both athletes obtained enhancements in performance and they won an Olympic gold medal. In our opinion, LHTH interventions can be used as a simple, yet effective, method to maintain absolute, and improve relative training intensity in elite endurance athletes. Key PointsElite endurance athletes, with extensive altitude training experience, can maintain similar absolute intensity during LHTH compared to sea level.LHTH may be considered as an effective method to increase relative training intensity while maintaining the same running/walking pace, with possible beneficial effects on sea level performance.Training intensity could be the key factor for successful high-level LHTH camp.

11.
J Appl Physiol (1985) ; 116(7): 837-43, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24336885

RESUMO

While a number of published studies exist to guide endurance athletes with the best practices regarding implementation of altitude training, a key unanswered question concerns the proper timing of return to sea level prior to major competitions. Evidence reviewed here suggests that, altogether, the deacclimatization responses of hematological, ventilatory, and biomechanical factors with return to sea level likely interact to determine the best timing for competitive performance.


Assuntos
Aclimatação , Altitude , Hipóxia/fisiopatologia , Músculo Esquelético/fisiopatologia , Condicionamento Físico Humano/métodos , Resistência Física , Comportamento Competitivo , Humanos , Hipóxia/metabolismo , Pulmão/fisiopatologia , Contração Muscular , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ventilação Pulmonar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA