Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neural Circuits ; 16: 747910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034337

RESUMO

Epilepsy is one of the most common neurological disorders worldwide. Recent findings suggest that the brain is a complex system composed of a network of neurons, and seizure is considered an emergent property resulting from its interactions. Based on this perspective, network physiology has emerged as a promising approach to explore how brain areas coordinate, synchronize and integrate their dynamics, both under perfect health and critical illness conditions. Therefore, the objective of this paper is to present an application of (Dynamic) Bayesian Networks (DBN) to model Local Field Potentials (LFP) data on rats induced to epileptic seizures based on the number of arcs found using threshold analytics. Results showed that DBN analysis captured the dynamic nature of brain connectivity across ictogenesis and a significant correlation with neurobiology derived from pioneering studies employing techniques of pharmacological manipulation, lesion, and modern optogenetics. The arcs evaluated under the proposed approach achieved consistent results based on previous literature, in addition to demonstrating robustness regarding functional connectivity analysis. Moreover, it provided fascinating and novel insights, such as discontinuity between forelimb clonus and generalized tonic-clonic seizure (GTCS) dynamics. Thus, DBN coupled with threshold analytics may be an excellent tool for investigating brain circuitry and their dynamical interplay, both in homeostasis and dysfunction conditions.


Assuntos
Epilepsia , Animais , Ratos , Teorema de Bayes , Encéfalo , Convulsões
2.
Front Behav Neurosci ; 16: 970083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620858

RESUMO

Episodic memory depends on the recollection of spatial and temporal aspects of past experiences in which the hippocampus plays a critical role. Studies on hippocampal lesions in rodents have shown that dentate gyrus (DG) and CA3 are necessary to detect object displacement in memory tasks. However, the understanding of real-time oscillatory activity underlying memory discrimination of subtle and pronounced displacements remains elusive. Here, we chronically implanted microelectrode arrays in adult male Wistar rats to record network oscillations from DG, CA3, and CA1 of the dorsal hippocampus while animals executed an object recognition task of high and low spatial displacement tests (HD: 108 cm, and LD: 54 cm, respectively). Behavioral analysis showed that the animals discriminate between stationary and displaced objects in the HD but not LD conditions. To investigate the hypothesis that theta and gamma oscillations in different areas of the hippocampus support discrimination processes in a recognition memory task, we compared epochs of object exploration between HD and LD conditions as well as displaced and stationary objects. We observed that object exploration epochs were accompanied by strong rhythmic activity in the theta frequency (6-12 Hz) band in the three hippocampal areas. Comparison between test conditions revealed higher theta band power and higher theta-gamma phase-amplitude coupling in the DG during HD than LD conditions. Similarly, direct comparison between displaced and stationary objects within the HD test showed higher theta band power in CA3 during exploration of displaced objects. Moreover, the discrimination index between displaced and stationary objects directly correlated with CA1 gamma band power in epochs of object exploration. We thus conclude that theta and gamma oscillations in the dorsal hippocampus support the successful discrimination of object displacement in a recognition memory task.

3.
Eur J Neurosci ; 55(2): 549-565, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852183

RESUMO

How vocal communication signals are represented in the cortex is a major challenge for behavioural neuroscience. Beyond a descriptive code, it is relevant to unveil the dynamical mechanism responsible for the neural representation of auditory stimuli. In this work, we report evidence of synchronous neural activity in nucleus HVC, a telencephalic area of canaries (Serinus canaria), in response to auditory playback of the bird's own song. The rhythmic features of canary song allowed us to show that this large-scale synchronization was locked to defined features of the behaviour. We recorded neural activity in a brain region where sensorimotor integration occurs, showing the presence of well-defined oscillations in the local field potentials, which are locked to song rhythm. We also show a correspondence between local field potentials, multiunit activity and single unit activity within the same brain region. Overall, our results show that the rhythmic features of the vocal behaviour are represented in a telencephalic region of canaries.


Assuntos
Canários , Vocalização Animal , Animais , Encéfalo/fisiologia , Canários/fisiologia , Córtex Cerebral , Telencéfalo/fisiologia , Vocalização Animal/fisiologia
4.
Front Mol Neurosci ; 14: 727025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658784

RESUMO

Microtubules (MTs) are important structures of the cytoskeleton in neurons. Mammalian brain MTs act as biomolecular transistors that generate highly synchronous electrical oscillations. However, their role in brain function is largely unknown. To gain insight into the MT electrical oscillatory activity of the brain, we turned to the honeybee (Apis mellifera) as a useful model to isolate brains and MTs. The patch clamp technique was applied to MT sheets of purified honeybee brain MTs. High resistance seal patches showed electrical oscillations that linearly depended on the holding potential between ± 200 mV and had an average conductance in the order of ~9 nS. To place these oscillations in the context of the brain, we also explored local field potential (LFP) recordings from the Triton X-permeabilized whole honeybee brain unmasking spontaneous oscillations after but not before tissue permeabilization. Frequency domain spectral analysis of time records indicated at least two major peaks at approximately ~38 Hz and ~93 Hz in both preparations. The present data provide evidence that MT electrical oscillations are a novel signaling mechanism implicated in brain wave activity observed in the insect brain.

5.
Eur J Neurosci ; 48(8): 2663-2673, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28833629

RESUMO

The synchronization of neuronal oscillations has been suggested as a mechanism to coordinate information flow between distant brain regions. In particular, the olfactory bulb (OB) and the hippocampus (HPC) have been shown to exhibit oscillations in the beta frequency range (10-20 Hz) that are likely to support communication between these structures. Here, we further characterize features of beta oscillations in OB and HPC of rats anesthetized with urethane. We find that beta oscillations simultaneously appear in HPC and OB and phase-lock across structures. Moreover, Granger causality analysis reveals that OB beta activity drives HPC beta. The laminar voltage profile of beta in HPC shows the maximum amplitude in the dentate gyrus (DG), spatially coinciding with olfactory inputs to this region. Finally, we also find that the respiratory cycle and respiration-coupled field potential rhythms (1-2 Hz)-but not theta oscillations (3-5 Hz)-modulate beta amplitude in OB and HPC. In all, our results support the hypothesis that beta activity mediates the communication between olfactory and hippocampal circuits in the rodent brain.


Assuntos
Ritmo beta/fisiologia , Hipocampo/fisiologia , Bulbo Olfatório/fisiologia , Mecânica Respiratória/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Wistar
6.
Front Syst Neurosci ; 11: 95, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326562

RESUMO

Neuromodulations are an important component of extracellular electrical potentials (EEP), such as the Electroencephalogram (EEG), Electrocorticogram (ECoG) and Local Field Potentials (LFP). This spatially temporal organized multi-frequency transient (phasic) activity reflects the multiscale spatiotemporal synchronization of neuronal populations in response to external stimuli or internal physiological processes. We propose a novel generative statistical model of a single EEP channel, where the collected signal is regarded as the noisy addition of reoccurring, multi-frequency phasic events over time. One of the main advantages of the proposed framework is the exceptional temporal resolution in the time location of the EEP phasic events, e.g., up to the sampling period utilized in the data collection. Therefore, this allows for the first time a description of neuromodulation in EEPs as a Marked Point Process (MPP), represented by their amplitude, center frequency, duration, and time of occurrence. The generative model for the multi-frequency phasic events exploits sparseness and involves a shift-invariant implementation of the clustering technique known as k-means. The cost function incorporates a robust estimation component based on correntropy to mitigate the outliers caused by the inherent noise in the EEP. Lastly, the background EEP activity is explicitly modeled as the non-sparse component of the collected signal to further improve the delineation of the multi-frequency phasic events in time. The framework is validated using two publicly available datasets: the DREAMS sleep spindles database and one of the Brain-Computer Interface (BCI) competition datasets. The results achieve benchmark performance and provide novel quantitative descriptions based on power, event rates and timing in order to assess behavioral correlates beyond the classical power spectrum-based analysis. This opens the possibility for a unifying point process framework of multiscale brain activity where simultaneous recordings of EEP and the underlying single neuron spike activity can be integrated and regarded as marked and simple point processes, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA