Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.102
Filtrar
1.
Genes Dis ; 11(5): 101042, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38966041

RESUMO

A long noncoding RNA (lncRNA) is longer than 200 bp. It regulates various biological processes mainly by interacting with DNA, RNA, or protein in multiple kinds of biological processes. Adenosine monophosphate-activated protein kinase (AMPK) is activated during nutrient starvation, especially glucose starvation and oxygen deficiency (hypoxia), and exposure to toxins that inhibit mitochondrial respiratory chain complex function. AMPK is an energy switch in organisms that controls cell growth and multiple cellular processes, including lipid and glucose metabolism, thereby maintaining intracellular energy homeostasis by activating catabolism and inhibiting anabolism. The AMPK signalling pathway consists of AMPK and its upstream and downstream targets. AMPK upstream targets include proteins such as the transforming growth factor ß-activated kinase 1 (TAK1), liver kinase B1 (LKB1), and calcium/calmodulin-dependent protein kinase ß (CaMKKß), and its downstream targets include proteins such as the mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1), hepatocyte nuclear factor 4α (HNF4α), and silencing information regulatory 1 (SIRT1). In general, proteins function relatively independently and cooperate. In this article, a review of the currently known lncRNAs involved in the AMPK signalling pathway is presented and insights into the regulatory mechanisms involved in human ageing and age-related diseases are provided.

2.
Pharmgenomics Pers Med ; 17: 319-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952778

RESUMO

Background: Lung cancer is the leading cause of cancer deaths worldwide, primarily due to lung adenocarcinoma (LUAD). However, the heterogeneity of programmed cell death results in varied prognostic and predictive outcomes. This study aimed to develop an LUAD evaluation marker based on cuproptosis-related lncRNAs. Methods: First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate, LASSO, and multivariate Cox regression analyses were conducted to construct cuproptosis-associated lncRNA models. LUAD patients were categorized into high-risk and low-risk groups using prognostic risk values. Kaplan-Meier analysis, PCA, GSEA, and nomograms were employed to evaluate and validate the results. Results: 7 cuproptosis-related lncRNAs were identified, and a risk model was created. High-risk tumors exhibited cuproptosis-related gene alterations in 95.54% of cases, while low-risk tumors showed alterations in 85.65% of cases, mainly involving TP53. The risk value outperformed other clinical variables and tumor mutation burden as a predictor of 1-, 3-, and 5-year overall survival. The cuproptosis-related lncRNA-based risk model demonstrated high validity for LUAD evaluation, potentially influencing individualized treatment approaches. Expression analysis of four candidate cuproptosis-related lncRNAs (AL606834.1, AL161431.1, AC007613.1, and LINC02835) in LUAD tissues and adjacent normal tissues revealed significantly higher expression levels of AL606834.1 and AL161431.1 in LUAD tissues, positively correlating with tumor stage, lymph node metastasis, and histopathological grade. Conversely, AC007613.1 and LINC02835 exhibited lower expression levels, negatively correlating with these factors. High expression of AL606834.1 and AL161431.1 indicated poor prognosis, while low expression of AC007613.1 and LINC02835 was associated with unfavorable outcomes. Univariate and multivariate analyses confirmed these lncRNAs as independent risk factors for LUAD prognosis. Conclusion: The 4 cuproptosis-related (lncRNAsAL606834.1, AL161431.1, AC007613.1, and LINC02835) can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.

3.
J Clin Lab Anal ; : e25086, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958113

RESUMO

BACKGROUND: The importance of long noncoding RNAs (lncRNAs) in various biological processes has been increasingly recognized in recent years. This study investigated how gene polymorphism in HOX transcript antisense RNA (HOTAIR) lncRNA affects the predisposition to chronic kidney disease (CKD). METHODS: This study comprised 150 patients with CKD and 150 healthy controls. A PCR-RFLP and ARMS-PCR techniques were used for genotyping the five target polymorphisms. RESULTS: According to our findings, rs4759314 confers strong protection against CKD in allelic, dominant, and codominant heterozygote genetic patterns. Furthermore, rs3816153 decreased CKD risk by 78% when TT versus GG, 55% when GG+GT versus TT, and 74% when GT versus TT+GG. In contrast, the CC+CT genotype [odds ratio (OR) = 1.66, 95% confidence intervals (CIs) = 1.05-2.63] and the T allele (OR = 1.50, 95% CI = 1.06-2.11) of rs12826786, as well as the TT genotype (OR = 2.52, 95% CI = 1.06-5.98) of rs3816153 markedly increased the risk of CKD in the Iranian population. Although no linkage disequilibrium was found between the studied variants, the Crs12826786Trs920778Grs1899663Grs4759314Grs3816153 haplotype was associated with a decreased risk of CKD by 86% (OR = 0.14, 95% CI = 0.03-0.66). CONCLUSION: The rs920778 was not correlated with CKD risk, whereas the HOTAIR rs4759314, rs12826786, rs1899663, and rs3816153 polymorphisms affected the risk of CKD in our population. It seems essential to conduct repeated studies across various ethnic groups to explore the link between HOTAIR variants and their impact on the disease outcome.

4.
Front Genet ; 15: 1437522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948359
5.
Plant Commun ; : 101037, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971972

RESUMO

N6-methyladenosine (m6A) is the most abundant modification observed in eukaryotic mRNAs. Following advancements in transcriptome-wide m6A mapping and sequencing technologies, several conserved motifs, including RRACH (R = A/G and H = A/C/U) and UGUAW (W = U or A) motifs, have been identified in plants. However, the mechanisms underlying the deposition of the m6A marks at a specific position in the conserved motif in each transcript are primarily known. Evidence has emerged in plant and animal studies to suggest that the m6A writer or eraser components are recruited to the specific genomic loci by interacting with particular transcription factors, 5mC DNA methylation marks, and histone marks. In addition, recent studies in animal cells have shown that microRNAs play a role in depositing m6A marks at a specific site in a transcript via a base-pairing mechanism. Furthermore, m6A affects the biogenesis and function of chromatin-associated regulatory RNAs and long noncoding RNAs. Although our understanding of a link between m6A modification and epigenetic factors in plants is lower than the increased knowledge in animals, recent progress in identifying the proteins that interact with the m6A writer or eraser components has expanded insights into the crosstalk between m6A modification and epigenetic factors that play a crucial role in transcript-specific methylation and regulation of m6A in plants.

6.
Curr Med Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990449

RESUMO

OBJECTIVE: This study aimed to investigate the role of the long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in the epithelial-mesenchymal transition (EMT) of bladder cancer cells and the potential mechanisms. METHODS: Cell invasion, migration, and wound healing assays were conducted to assess the effects of MEG3 on the invasive and migratory capabilities of bladder cancer cells. The expression levels of E-cadherin were measured using Western blotting, RT-qPCR, and dual luciferase reporter assays. RNA immunoprecipitation and pull-down assays were performed to investigate the interactions between MEG3 and its downstream targets. RESULTS: MEG3 suppressed the invasion and migration of bladder cancer cells and modulated the transcription of E-cadherin. The binding of MEG3 to the zinc finger region of the transcription factor Snail prevented its ability to transcriptionally repress E-cadherin. Additionally, MEG3 suppressed the phosphorylation of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and P38, thereby decreasing the expression of Snail and stimulating the expression of E-cadherin. CONCLUSION: MEG3 plays a vital role in suppressing the EMT in bladder cancer cells, indicating its potential as a promising therapeutic target for the treatment of bladder cancer.

7.
MedComm (2020) ; 5(7): e632, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988491

RESUMO

Long non-coding RNA RP11-64B16.4 (myocardial infarction protection-related lncRNA [MIPRL]) is among the most abundant and the most upregulated lncRNAs in ischemic human hearts. However, its role in ischemic heart disease is unknown. We found MIPRL was conserved between human and mouse and its expression was increased in mouse hearts after acute myocardial infarction (AMI) and in cultured human and mouse cardiomyocytes after hypoxia. The infarcted size, cardiac cell apoptosis, cardiac dysfunction, and cardiac fibrosis were aggravated in MIPRL knockout mice after AMI. The above adverse results could be reversed by re-expression of MIPRL via adenovirus expressing MIPRL. Both in vitro and in vivo, we identified that heat shock protein beta-8 (HSPB8) was a target gene of MIPRL, which was involved in MIPRL-mediated anti-apoptotic effects on cardiomyocytes. We further discovered that MIPRL could combine with the messenger RNA (mRNA) of HSPB8 and increase its expression in cardiomyocytes by enhancing the stability of HSPB8 mRNA. In summary, we have found for the first time that the ischemia-enhanced lncRNA MIPRL protects against AMI via its target gene HSPB8. MIPRL might be a novel promising therapeutic target for ischemic heart diseases such as AMI.

8.
Transl Cancer Res ; 13(6): 3142-3155, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988912

RESUMO

Background and Objective: Long noncoding RNAs (lncRNAs) are involved in a wide variety of physiological and pathological processes in organisms. LncRNAs play a significant role as oncogenic or tumour-suppressing factors in various biological processes associated with malignant tumours and are closely linked to the occurrence and development of malignancies. Lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) is a recently discovered lncRNA. It is upregulated in various malignant tumours and is associated with pathological characteristics such as tumour size, tumour node metastasis (TNM) staging, lymph node metastasis, and tumour prognosis. LOXL1-AS1 exerts its oncogenic role by competitively binding with multiple microRNAs (miRs), thereby regulating the expression of downstream target genes and controlling relevant signalling pathways. This article aims to explore the structure and the function of LOXL1-AS1, and the relationship between LOXL1-AS1 and the occurrence and development of human malignant tumours to provide a reference for further clinical research. Methods: English literature on LOXL1-AS1 in the occurrence and development of various malignant tumours was searched in PubMed. The main search terms were "LOXL1-AS1", "tumour". Key Content and Findings: This article mainly summarizes the biological processes in which LOXL1-AS1 is involved in various human malignant tumours and the ways in which this lncRNA affects malignant biological behaviours such as proliferation, metastasis, invasion, and apoptosis of tumour cells through different molecular regulatory mechanisms. This article also explores the potential clinical significance and application prospects of LOXL1-AS1, aiming to provide a theoretical basis and reference for the clinical diagnosis, treatment, and screening of prognostic markers for malignant tumours. Conclusions: LOXL1-AS1 acts as a competing endogenous RNA (ceRNA), binding to miRs to regulate downstream target genes and exert its oncogenic effects. LOXL1-AS1 may become a novel molecular biomarker for cancer diagnosis and treatment in humans, and it may also serve as an independent prognostic indicator.

9.
Clin Chim Acta ; 561: 119840, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950693

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as promising diagnostic biomarkers. Here, we investigated the cardiac-expressed and plasma-detectable lncRNA PDE4DIPP6 as a biomarker for non-ST-segment elevation myocardial infarction (NSTEMI), specifically assessing its potential to enhance the diagnostic efficacy of high-sensitivity cardiac troponin (hs-cTnT). METHODS AND RESULTS: The study enrolled individuals presenting with suspected acute coronary syndrome (ACS). LncRNA quantification was performed in plasma samples using RT-qPCR. The discriminatory performance was assessed by calculating the Area Under the Curve (AUC). Reclassification metrics, including the Integrated Discrimination Improvement (IDI) and Net Reclassification Improvement (NRI) indexes, were utilized to evaluate enhancements in diagnostic accuracy. Among the 252 patients with suspected ACS, 50.8 % were diagnosed with ACS, and 13.9 % with NSTEMI. Initially, the association of lncRNA PDE4DIPP6 with ACS was investigated. Elevated levels of this lncRNA were observed in ACS patients compared to non-ACS subjects. No association was found between lncRNA PDE4DIPP6 levels and potential confounding factors, nor was a significant correlation with hs-cTnT levels (rho = 0.071). The inclusion of lncRNA PDE4DIPP6 on top of hs-cTnT significantly improved the discrimination and classification of ACS patients, as reflected by an enhanced AUC of 0.734, an IDI of 0.066 and NRI of 0.471. Subsequently, the lncRNA PDE4DIPP6 was evaluated as biomarker of NSTEMI. Elevated levels of the lncRNA were observed in NSTEMI patients compared to patients without NSTEMI. Consistent with previous findings, the addition of lncRNA PDE4DIPP6 to hs-cTnT improved the discrimination and classification of patients, increasing the AUC from 0.859 to 0.944, with an IDI of 0.237 and NRI of 0.658. CONCLUSION: LncRNA PDE4DIPP6 offers additional diagnostic insights beyond hs-cTnT, suggesting its potential to improve the clinical management of patients with NSTEMI.

10.
Mitochondrion ; 78: 101925, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944370

RESUMO

In diabetic retinopathy, mitochondrial DNA (mtDNA) is damaged and mtDNA-encoded genes and long noncoding RNA cytochrome B (LncCytB) are downregulated. LncRNAs lack an open reading frame, but they can regulate gene expression by associating with DNA/RNA/protein. Double stranded mtDNA has promoters on both heavy (HSP) and light (LSP) strands with binding sites for mitochondrial transcription factor A (TFAM) between them. The aim was to investigate the role of LncCytB in mtDNA transcription in diabetic retinopathy. Using human retinal endothelial cells incubated in high glucose, the effect of regulation of LncCytB on TFAM binding at mtDNA promoters was investigated by Chromatin immunoprecipitation, and binding of LncCytB at TFAM by RNA immunoprecipitation and RNA fluorescence in situ hybridization. High glucose decreased TFAM binding at both HSP and LSP, and binding of LncCytB at TFAM. While LncCytB overexpression ameliorated decrease in TFAM binding and transcription of genes encoded by both H- and L- strands, LncCytB-siRNA further downregulated them. Maintenance of mitochondrial homeostasis by overexpressing mitochondrial superoxide dismutase or Sirtuin-1 protected diabetes-induced decrease in TFAM binding at mtDNA and LncCytB binding at TFAM, and mtDNA transcription. Similar results were obtained from mouse retinal microvessels from streptozotocin-induced diabetic mice. Thus, LncCytB facilitates recruitment of TFAM at HSP and LSP, and its downregulation in diabetes compromises the binding, resulting in the downregulation of polypeptides encoded by mtDNA. Regulation of LncCytB, in addition to protecting mitochondrial genomic stability, should also help in maintaining the transcription of mtDNA encoded genes and electron transport chain integrity in diabetic retinopathy.

11.
Plant J ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943483

RESUMO

The diversity in alternative splicing of long noncoding RNAs (lncRNAs) poses a challenge for functional annotation of lncRNAs. Moreover, little is known on the effects of alternatively spliced lncRNAs on crop yield. In this study, we cloned nine isoforms resulting from the alternative splicing of the lncRNA LAIR in rice. The LAIR isoforms are generated via alternative 5'/3' splice sites and different combinations of specific introns. All LAIR isoforms activate the expression of the neighboring LRK1 gene and enhance yield-related rice traits. In addition, there are slight differences in the binding ability of LAIR isoforms to the epigenetic modification-related proteins OsMOF and OsWDR5, which affect the enrichment of H4K16ac and H3K4me3 at the LRK1 locus, and consequently fine-tune the regulation of LRK1 expression and yield-related traits. These differences in binding may be caused by polymorphic changes to the RNA secondary structure resulting from alternative splicing. It was also observed that the composition of LAIR isoforms was sensitive to abiotic stress. These findings suggest that the alternative splicing of LAIR leads to the formation of a functional transcript population that precisely regulates yield-related gene expression, which may be relevant for phenotypic polymorphism-based crop breeding under changing environmental conditions.

12.
Int Dent J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38914506

RESUMO

BACKGROUND AND PURPOSE: Long noncoding RNA (lncRNA) dysregulation has been reported to play a pivotal role in the development of cancers. In this study, we aimed to screen the key lncRNA in oral squamous cell carcinoma (OSCC) via bioinformatics analysis and further validate the function of lncRNA in vitro and in vivo. METHODS: Bioinformatics analysis was conducted to identify differentially expressed lncRNAs between control and OSCC samples. Quantitative real-time-polymerase chain reaction was employed to detect the expression of differentially expressed lncRNAs in human tongue squamous cell carcinoma and human oral keratinocytes cell lines. The biological function of lncRNA and its mechanism were examined via the experimental assessment of the cell lines with the lncRNA overexpressed and silenced. Additionally, to further explore the function of lncRNA in the progression of OSCC, xenograft tumour mouse models were established using 25 mice (5 groups, each with 5 mice). Tumour formation was observed at 2 weeks after the cell injection, and the tumours were resected at 5 weeks post-implantation. RESULTS: Two lncRNAs, LINC00958 and AFAP1-AS1, were found to be correlated with the prognosis of OSCC. The results of the quantitative real-time-polymerase chain reaction indicated that the 2 lncRNAs were highly expressed in OSCC. In combination with the previous literature, we found AFAP1-AS1 to be a potentially important biomarker for OSCC. Thus, we further investigated its biological function and found that AFAP1-AS1 silencing inhibited cell proliferation, migration, and invasion whereas AFAP1-AS1 overexpression reversed the effect of AFAP1-AS1 silencing (P < .05). Mechanism analysis revealed that AFAP1-AS1 regulated the development of OSCC through the ubiquitin-mediated proteolysis pathway. CONCLUSIONS: AFAP1-AS1 is an oncogene that aggravates the development of OSCC via the ubiquitin-mediated proteolysis pathway. It also provides a novel potential therapy for OSCC.

13.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891865

RESUMO

The prevalence of metabolic diseases, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD), is steadily increasing. Although many risk factors, such as obesity, insulin resistance, or hyperlipidemia, as well as several metabolic gene programs that contribute to the development of metabolic diseases are known, the underlying molecular mechanisms of these processes are still not fully understood. In recent years, it has become evident that not only protein-coding genes, but also noncoding genes, including a class of noncoding transcripts referred to as long noncoding RNAs (lncRNAs), play key roles in diet-induced metabolic disorders. Here, we provide an overview of selected lncRNA genes whose direct involvement in the development of diet-induced metabolic dysfunctions has been experimentally demonstrated in suitable in vivo mouse models. We further summarize and discuss the associated molecular modes of action for each lncRNA in the respective metabolic disease context. This overview provides examples of lncRNAs with well-established functions in diet-induced metabolic diseases, highlighting the need for appropriate in vivo models and rigorous molecular analyses to assign clear biological functions to lncRNAs.


Assuntos
Doenças Metabólicas , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Dieta/efeitos adversos , Modelos Animais de Doenças , Regulação da Expressão Gênica
14.
Cell Biol Toxicol ; 40(1): 49, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922500

RESUMO

OBJECTIVE: The primary objective of this investigation is to delve into the involvement of the long noncoding RNA (lncRNA) SPACA6P-AS in breast cancer (BC) development, focusing on its expression pattern, association with clinical-pathological features, impact on prognosis, as well as its molecular and immunological implications. METHODS: Bioinformatics analysis was conducted utilizing RNA sequencing data of 1083 BC patients from the TCGA database. Functional exploration of SPACA6P-AS was carried out through the construction of survival curves, GO and KEGG enrichment analysis, and single-sample gene set enrichment analysis (ssGSEA). Furthermore, its functionality was validated through in vitro cell experiments and in vivo nude mouse model experiments. RESULTS: SPACA6P-AS showed a remarkable increase in expression levels in BC tissues (p < 0.001) and demonstrated a close relationship to poor prognosis (overall survival HR = 1.616, progression-free interval HR = 1.40, disease-specific survival HR = 1.54). Enrichment analysis revealed that SPACA6P-AS could impact biological functions such as protease regulation, endopeptidase inhibitor activity, taste receptor activity, taste transduction, and maturity-onset diabetes of the young pathway. ssGSEA analysis indicated a negative correlation between SPACA6P-AS expression and immune cell infiltration like dendritic cells and neutrophils, while a positive correlation was observed with central memory T cells and T helper 2 cells. Results from in vitro and in vivo experiments illustrated that silencing SPACA6P-AS significantly inhibited the proliferation, migration, and invasion capabilities of BC cells. In vitro experiments also highlighted that dendritic cells with silenced SPACA6P-AS exhibited enhanced capabilities in promoting the proliferation of autologous CD3 + T cells and cytokine secretion. These discoveries elucidate the potential multifaceted roles of SPACA6P-AS in BC, including its potential involvement in modulating immune cell infiltration in the tumor microenvironment. CONCLUSION: The high expression of lncRNA SPACA6P-AS in BC is closely linked to poor prognosis and may facilitate tumor progression by influencing specific biological processes, signaling pathways, and the immune microenvironment. The regulatory role of SPACA6P-AS positions it as a prospective biomarker and target for therapeutic approaches for BC diagnosis and intervention.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , RNA Longo não Codificante , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Camundongos , Linhagem Celular Tumoral , Prognóstico , Proliferação de Células/genética , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Movimento Celular/genética , Biologia Computacional/métodos
15.
J Virol ; : e0073824, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940585

RESUMO

Recently, substantial evidence has demonstrated that pseudogene-derived long noncoding RNAs (lncRNAs) as regulatory RNAs have been implicated in basic physiological processes and disease development through multiple modes of functional interaction with DNA, RNA, and proteins. Here, we report an important role for GBP1P1, the pseudogene of guanylate-binding protein 1, in regulating influenza A virus (IAV) replication in A549 cells. GBP1P1 was dramatically upregulated after IAV infection, which is controlled by JAK/STAT signaling. Functionally, ectopic expression of GBP1P1 in A549 cells resulted in significant suppression of IAV replication. Conversely, silencing GBP1P1 facilitated IAV replication and virus production, suggesting that GBP1P1 is one of the interferon-inducible antiviral effectors. Mechanistically, GBP1P1 is localized in the cytoplasm and functions as a sponge to trap DHX9 (DExH-box helicase 9), which subsequently restricts IAV replication. Together, these studies demonstrate that GBP1P1 plays an important role in antagonizing IAV replication.IMPORTANCELong noncoding RNAs (lncRNAs) are extensively expressed in mammalian cells and play a crucial role as regulators in various biological processes. A growing body of evidence suggests that host-encoded lncRNAs are important regulators involved in host-virus interactions. Here, we define a novel function of GBP1P1 as a decoy to compete with viral mRNAs for DHX9 binding. We demonstrate that GBP1P1 induction by IAV is mediated by JAK/STAT activation. In addition, GBP1P1 has the ability to inhibit IAV replication. Importantly, we reveal that GBP1P1 acts as a decoy to bind and titrate DHX9 away from viral mRNAs, thereby attenuating virus production. This study provides new insight into the role of a previously uncharacterized GBP1P1, a pseudogene-derived lncRNA, in the host antiviral process and a further understanding of the complex GBP network.

16.
Diagn Microbiol Infect Dis ; 110(1): 116383, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38889486

RESUMO

BACKGROUND: The present study aimed to explore the regulatory effects of artesunate on macrophage polarization in sepsis. METHODS: Cell models and mice models were established using lipopolysaccharide (LPS), followed by treatment with various concentrations of artesunate. The phenotype of the macrophages was determined by flow cytometry. RNA immunoprecipitation was used to confirm the binding between MALAT1 and polypyrimidine tract-binding protein 1 (PTBP1), as well as between PTBP1 and interferon-induced helicase C domain-containing protein 1 (IFIH1). RESULTS: Treatment with artesunate inhibited M1 macrophage polarization in Kupffer cells subjected to LPS stimulation by downregulating MALAT1. Furthermore, MALAT1 abolished the inhibitory effect of artesunate on M1 macrophage polarization by recruiting PTBP1 to promote IFIH. In vivo experiments confirmed that artesunate alleviated septic liver injury by affecting macrophage polarization via MALAT1. CONCLUSION: The present study showed that artesunate alleviates LPS-induced sepsis in Kupffer cells by regulating macrophage polarization via the lncRNA MALAT1/PTBP1/IFIH1 axis.

17.
J Transl Med ; 22(1): 569, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877534

RESUMO

Cancer remains a leading cause of mortality and poses a substantial threat to public health. Studies have revealed that Long noncoding RNA DANCR is a cytoplasmic lncRNA whose aberrant expression plays a pivotal role in various cancer types. Within tumour biology, DANCR exerts regulatory control over crucial processes such as proliferation, invasion, metastasis, angiogenesis, inflammatory responses, cellular energy metabolism reprogramming, and apoptosis. By acting as a competitive endogenous RNA for miRNAs and by interacting with proteins and mRNAs at the molecular level, DANCR contributes significantly to cancer progression. Elevated DANCR levels have also been linked to heightened resistance to anticancer drugs. Moreover, the detection of circulating DANCR holds promise as a valuable biomarker for aiding in the clinical differentiation of different cancer types. This article offers a comprehensive review and elucidation of the primary functions and molecular mechanisms through which DANCR influences tumours.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Animais
18.
Discov Oncol ; 15(1): 204, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831187

RESUMO

PURPOSE: Multiple myeloma (MM) is the second most common hematologic malignancy, and there is no cure for this disease. This study aimed to explore the prognostic value of long noncoding RNAs (lncRNAs) in MM and to reveal related immune and chemotherapy resistance mechanisms. METHODS: In this study, lncRNA profiles from the Multiple Myeloma Research Foundation (MMRF) and Gene Expression Omnibus (GEO) databases were analyzed to identify lncRNAs linked to MM patient survival. A risk assessment model stratified patients into high- and low-risk groups, and survival was evaluated. Additionally, a triple-ceRNA (lncRNA-miRNA-mRNA) network was constructed, and functional analysis was performed. The research also involved immune function analysis and chemotherapy drug sensitivity assessment using oncoPredict and the GDSC dataset. RESULTS: We identified 422 lncRNAs significantly associated with overall survival in MM patients and ultimately focused on the 6 with the highest prognostic value. These lncRNAs were used to develop a risk score formula that stratified patients into high- and low-risk groups. Kaplan-Meier analysis revealed shorter survival in high-risk patients. We integrated this lncRNA signature with clinical parameters to construct a nomogram for predicting MM prognosis. Additionally, a triple-ceRNA network was constructed to reveal potential miRNA targets, coding genes related to these lncRNAs and significantly enriched pathways. Immune checkpoint gene expression and immune cell composition were also analyzed in relation to the lncRNA risk score. Finally, using the oncoPredict tool, we observed that high-risk patients exhibited decreased sensitivity to key MM chemotherapeutics, suggesting that lncRNA profiles are linked to chemotherapy resistance.

19.
BMC Med Genomics ; 17(1): 167, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902760

RESUMO

OBJECTIVE: To identify differentially expressed long noncoding RNAs (lncRNAs) in condyloma acuminatum (CA) and to explore their probable regulatory mechanisms by establishing coexpression networks. METHODS: High-throughput RNA sequencing was performed to assess genome-wide lncRNA expression in CA and paired adjacent mucosal tissue. The expression of candidate lncRNAs and their target genes in larger CA specimens was validated using real-time quantitative reverse transcriptase polymerase chain reaction (RT‒qPCR). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for the functional enrichment analysis of these candidate lncRNAs and differential mRNAs. The coexpressed mRNAs of the candidate lncRNAs, calculated by Pearson's correlation coefficient, were also analysed using GO and KEGG analysis. In addition, the interactions among differentially expressed lncRNAs (DElncRNAs)-cis-regulatory transcription factors (cisTFs)-differentially expressed genes (DEGs) were analysed and their network was constructed. RESULTS: A total of 546 lncRNAs and 2553 mRNAs were found to be differentially expressed in CA compared to the paired control. Functional enrichment analysis revealed that the DEGs coexpressed with DElncRNAs were enriched in the terms of cell adhesion and keratinocyte differentiation, and the pathways of ECM-receptor interaction, local adhesion, PI3K/AKT and TGF-ß signaling. We further constructed the network among DElncRNAs-cisTFs-DEGs and found that these 95 DEGs were mainly enriched in GO terms of epithelial development, regulation of transcription or gene expression. Furthermore, the expression of 3 pairs of DElncRNAs and cisTFs, EVX1-AS and HOXA13, HOXA11-AS and EVX1, and DLX6-AS and DLX5, was validated with a larger number of specimens using RT‒qPCR. CONCLUSION: CA has a specific lncRNA profile, and the differentially expressed lncRNAs play regulatory roles in mRNA expression through cis-acting TFs, which provides insight into their regulatory networks. It will be useful to understand the pathogenesis of CA to provide new directions for the prevention, clinical treatment and efficacy evaluation of CA.


Assuntos
Condiloma Acuminado , Redes Reguladoras de Genes , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Condiloma Acuminado/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Masculino , Ontologia Genética , Feminino , Adulto
20.
Discov Oncol ; 15(1): 219, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856786

RESUMO

Zinc finger antisense 1 (ZFAS1), a newly discovered long noncoding RNA, is expressed in various tissues and organs and has been introduced an oncogenic gene in human malignancies. In various cancers, ZFAS1 regulates apoptosis, cell proliferation, the cell cycle, migration, translation, rRNA processing, and spliceosomal snRNP assembly; targets signaling cascades; and interacts with transcription factors via binding to key proteins and miRNAs, with conflicting findings on its effect on these processes. ZFAS1 is elevated in different types of cancer, like colorectal, colon, osteosarcoma, and gastric cancer. Considering the ZFAS1 expression pattern, it also has the potential to be a diagnostic or prognostic marker in various cancers. The current review discusses the mode of action of ZFAS1 in various human cancers and its regulation function related to chemoresistance comprehensively, as well as the potential role of ZFAS1 as an effective and noninvasive cancer-specific biomarker in tumor diagnosis, prognosis, and treatment. We expected that the current review could fill the current scientific gaps in the ZFAS1-related cancer causative mechanisms and improve available biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...