Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.268
Filtrar
1.
Mikrochim Acta ; 191(7): 430, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949666

RESUMO

A pico-injection-aided digital droplet detection platform is presented that integrates loop-mediated isothermal amplification (LAMP) with molecular beacons (MBs) for the ultrasensitive and quantitative identification of pathogens, leveraging the sequence-specific detection capabilities of MBs. The microfluidic device contained three distinct functional units including droplet generation, pico-injection, and droplet counting. Utilizing a pico-injector, MBs are introduced into each droplet to specifically identify LAMP amplification products, thereby overcoming issues related to temperature incompatibility. Our methodology has been validated through the quantitative detection of Escherichia coli, achieving a detection limit as low as 9 copies/µL in a model plasmid containing the malB gene and 3 CFU/µL in a spiked milk sample. The total analysis time was less than 1.5 h. The sensitivity and robustness of this platform further demonstrated the potential for rapid pathogen detection and diagnosis, particularly when integrated with cutting-edge microfluidic technologies.


Assuntos
Escherichia coli , Limite de Detecção , Leite , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Leite/microbiologia , Animais , Técnicas de Diagnóstico Molecular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , DNA Bacteriano/análise , DNA Bacteriano/genética
2.
Mikrochim Acta ; 191(7): 431, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951263

RESUMO

A signal amplification electrochemical biosensor chip was developed to integrate loop-mediated isothermal amplification (LAMP) based on in situ nucleic acid amplification and methyl blue (MB) serving as the hybridization redox indicator for sensitive and selective foodborne pathogen detection without a washing step. The electrochemical biosensor chip was designed by a screen-printed carbon electrode modified with gold nanoparticles (Au NPs) and covered with polydimethylsiloxane membrane to form a microcell. The primers of the target were immobilized on the Au NPs by covalent attachment for in situ amplification. The electroactive MB was used as the electrochemical signal reporter and embedded into the double-stranded DNA (dsDNA) amplicons generated by LAMP. Differential pulse voltammetry was introduced to survey the dsDNA hybridization with MB, which differentiates the specifically electrode-unbound and -bound labels without a washing step. Pyrene as the back-filling agent can further improve response signaling by reducing non-specific adsorption. This method is operationally simple, specific, and effective. The biosensor showed a detection linear range of 102-107 CFU mL-1 with the limit of detection of 17.7 CFU mL-1 within 40 min. This method showed promise for on-site testing of foodborne pathogens and could be integrated into an all-in-one device.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Microbiologia de Alimentos , Ouro , Nanopartículas Metálicas , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Limite de Detecção , Eletrodos , DNA Bacteriano/análise , DNA Bacteriano/genética , Hibridização de Ácido Nucleico
3.
Trop Med Health ; 52(1): 45, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978129

RESUMO

BACKGROUND: Rapid and accurate diagnosis of toxoplasmosis is critical, particularly for immunocompromised patients. Several molecular methods could have value for toxoplasmosis diagnosis, but often require sophisticated and expensive equipment, and as such are impractical for use in resource-limited countries. Our study aimed to develop a new rapid diagnostic test for toxoplasmosis that can be used in developed countries as well as low- or middle-income countries. METHODS: Common primers for conventional loop-mediated isothermal amplification (LAMP) and the new LAMP DNA chromatography method were designed based on a 529-bp repeat present in Toxoplasma gondii genomic DNA. A total of 91 clinical samples from 44 patients suspected of having toxoplasmosis who were treated at several hospitals across Japan were tested using the new LAMP DNA chromatography method, conventional LAMP, and nested PCR and the sensitivity and specificity of the methods was compared. RESULTS: The LAMP DNA chromatography method showed better sensitivity and specificity (68.2% and 100%, respectively) compared with the nested PCR (45.4% and 100%, respectively) and conventional LAMP (63.6% and 100%, respectively) methods for diagnosis of toxoplasmosis in immunocompromised patients. LAMP DNA chromatography also has better sensitivity and specificity (75% and 100%, respectively) than nested PCR (50.0% and 93.5%, respectively) and conventional LAMP (62.5% and 100%, respectively) to diagnose toxoplasma encephalitis using CSF samples. CONCLUSION: We developed a LAMP DNA chromatography method to detect T. gondii DNA in clinical samples. This method also successfully detected T. gondii DNA in CSF from patients with toxoplasma encephalitis. This newly developed method can be a valuable rapid diagnostic test for toxoplasmosis in a range of settings, including resource-limited areas like those in low- or middle-income countries.

4.
Expert Rev Mol Diagn ; : 1-16, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973430

RESUMO

INTRODUCTION: Suitable sample collection and preparation methods are essential to enable nucleic acid amplification testing at the point of care (POC). Strategies that allow direct isothermal nucleic acid amplification testing (iNAAT) of crude sample lysate without the need for nucleic acid extraction minimize time to result as well as the need for operator expertise and costly infrastructure. AREAS COVERED: The authors review research to understand how sample matrix and preparation affect the design and performance of POC iNAATs. They focus on approaches where samples are directly combined with liquid reagents for preparation and amplification via iNAAT strategies. They review factors related to the type and method of sample collection, storage buffers, and lysis strategies. Finally, they discuss RNA targets and relevant regulatory considerations. EXPERT OPINION: Limitations in sample preparation methods are a significant technical barrier preventing implementation of nucleic acid testing at the POC. The authors propose a framework for co-designing sample preparation and amplification steps for optimal performance with an extraction-free paradigm by considering a sample matrix and lytic strategy prior to an amplification assay and readout. In the next 5 years, the authors anticipate increasing priority on the co-design of sample preparation and iNAATs.

5.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985204

RESUMO

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Assuntos
Galinhas , Ouro , Metapneumovirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Infecções por Paramyxoviridae , Doenças das Aves Domésticas , Sensibilidade e Especificidade , Metapneumovirus/genética , Metapneumovirus/isolamento & purificação , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/economia , Galinhas/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economia , Infecções por Paramyxoviridae/diagnóstico , Infecções por Paramyxoviridae/veterinária , Infecções por Paramyxoviridae/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Ouro/química , Perus , Nanopartículas Metálicas/química , Limite de Detecção , Colorimetria/métodos , DNA Viral/genética
6.
Emerg Infect Dis ; 30(9)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985536

RESUMO

Spread of the Anopheles stephensi mosquito, an invasive malaria vector, threatens to put an additional 126 million persons per year in Africa at risk for malaria. To accelerate the early detection and rapid response to this mosquito species, confirming its presence and geographic extent is critical. However, existing molecular species assays require specialized laboratory equipment, interpretation, and sequencing confirmation. We developed and optimized a colorimetric rapid loop-mediated isothermal amplification assay for molecular An. stephensi species identification. The assay requires only a heat source and reagents and can be used with or without DNA extraction, resulting in positive color change in 30-35 minutes. We validated the assay against existing PCR techniques and found 100% specificity and analytical sensitivity down to 0.0003 nanograms of genomic DNA. The assay can successfully amplify single mosquito legs. Initial testing on samples from Marsabit, Kenya, illustrate its potential as an early vector detection and malaria mitigation tool.

7.
Infect Drug Resist ; 17: 2451-2462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915320

RESUMO

Purpose: Accurate detection and identification of pathogens and their associated resistance mechanisms are essential prerequisites for implementing precision medicine in the management of Carbapenem-resistant Enterobacterales (CRE). Among the various resistance mechanisms, the production of KPC carbapenemase is the most prevalent worldwide. Consequently, this study aims to develop a convenient and precise nucleic acid detection platform specifically for the blaKPC gene. Methods: The initial phase of our research methodology involved developing a CRISPR/Cas12a detection framework, which was achieved by designing highly specific single-guide RNAs (sgRNAs) targeting the blaKPC gene. To enhance the sensitivity of this system, we incorporated three distinct amplification techniques-polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA)-into the CRISPR/Cas12a framework. Subsequently, we conducted a comparative analysis of the sensitivity and specificity of these three amplification methods when used in combination with the CRISPR/Cas12a system. Additionally, we assessed the clinical applicability of the methodologies by evaluating fluorescence readouts from 80 different clinical isolates. Furthermore, we employed lateral flow assay technology to provide a visual representation of the results, facilitating point-of-care testing. Results: Following a comparative analysis of the sensitivity and specificity of the three methods, we identified the RPA-Cas12a approach as the optimal detection technique. Our findings demonstrated that the limit of detection (LoD) of the RPA-Cas12a platform was 1 aM (~1 copy/µL) for plasmid DNA and 5 × 10³ fg/µL for genomic DNA. Furthermore, both the sensitivity and specificity of the platform achieved 100% upon validation with 80 clinical isolates. Conclusion: These findings suggest that the developed RPA-Cas12a platform represents a promising tool for the cost-effective, convenient, and accurate detection of the blaKPC gene.

8.
Int J Biol Macromol ; 274(Pt 1): 133243, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901507

RESUMO

To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/µL sodium heparin, 0.8 ng/µL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/µL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.

9.
J Microbiol Methods ; 223: 106981, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945305

RESUMO

In recent years, loop-mediated isothermal amplification (LAMP) has gained popularity for detecting various pathogen-specific genes due to its superior sensitivity and specificity compared to conventional polymerase chain reaction (PCR). The simplicity and flexibility of naked-eye detection of the amplicon make LAMP an ideal rapid and straightforward diagnostic tool, especially in resource-limited laboratories. Colorimetric detection is one of the simplest and most straightforward among all detection methods. This review will explore various colorimetric dyes used in LAMP techniques, examining their reaction mechanisms, advantages, limitations and latest applications.

10.
Diagnostics (Basel) ; 14(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38893719

RESUMO

Chagas disease is an inflammatory parasitic infection caused by Trypanosoma cruzi (T. cruzi). Early diagnosis is crucial in guiding treatment and slowing disease progression; however, current diagnostic methods have insufficient detection limits and often require skilled technicians. Molecular tests, especially isothermal nucleic acid assays, are advantageous due to their excellent sensitivity, specificity, speed, and simplicity. Here, we optimized a colorimetric loop-mediated isothermal amplification (LAMP) assay for T. cruzi. We can detect as few as 2 genomic copies/reaction using three different T. cruzi strains. We examined selectivity using other parasitic protozoans and successfully detected T. cruzi DNA extracted from parasites in human whole blood down to 1.2 parasite equivalents/reaction. We also performed a blinded study using canine blood samples and established a 100% sensitivity, specificity, and accuracy for the colorimetric LAMP assay. Finally, we used a heated 3D printer bed and an insulated thermos cup to demonstrate that the LAMP incubation step could be performed with accessible, low-cost materials. Altogether, we have developed a high-performing assay for T. cruzi with a simple colorimetric output that would be ideal for rapid, low-cost screening at the point of use.

11.
J Med Virol ; 96(6): e29721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899377

RESUMO

Globally, hepatitis B virus (HBV) affects over 250 million people, whereas hepatitis C virus (HCV) affects approximately 70 million people, posing major public health challenges. Despite the availability of vaccines and treatments, a lack of comprehensive diagnostic coverage has left many cases undiagnosed and untreated. To address the need for sensitive, specific, and accessible diagnostics, this study introduced a multiplex loop-mediated isothermal amplification assay with lateral flow detection for simultaneous HBV and HCV testing. This assay achieved exceptional sensitivity and was capable of detecting HBV and HCV concurrently in a single tube and on a single strip within 25 min, achieving the required clinical sensitivity (10 and 103 genomic copies/reaction for HBV and HCV, respectively). The method was validated in clinical samples of various viral genotypes, achieving an equivalent limit of detection. Additionally, a custom portable heating device was developed for field use. The assay developed here, capable of direct viral detection on the strip, shows promise in supplanting current methods that solely identify antibodies and necessitate additional qPCR for viral activity assessment. This economical and rapid assay aligns with point-of-care testing needs, offering significant advancements in enhancing viral hepatitis diagnostics in settings with limited resources.


Assuntos
Hepacivirus , Vírus da Hepatite B , Hepatite B , Hepatite C , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Hepatite B/diagnóstico , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepatite C/diagnóstico , Hepatite C/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentação , Genótipo
12.
Luminescence ; 39(6): e4795, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899381

RESUMO

We aimed to develop a novel diagnostic method called multiplex fluorescence of loop primer upon self-dequenching loop-mediated isothermal amplification (mFLOS-LAMP) for the rapid detection of Mycobacterium tuberculosis complex (MTBC). A set of specific primers was designed to target the detection of IS1081 and IS6110 genes, which are insertion sequences within the MTBC. The 110 sputum specimens collected were assessed using the established mFLOS-LAMP method, multiplex polymerase chain reaction, Xpert MTB/RIF, and smear microscopy. The optimal reaction temperature and duration for mFLOS-LAMP were determined to be 65°C and 30 min, respectively, by optimizing the entire system. The detection sensitivity of mFLOS-LAMP was 6.0 × 101 CFU/mL, by Bacillus Calmette-Guerin, and the mFLOS-LAMP sensitivity of M. tuberculosis H37Rv genomic DNA was 500 fg, and the specificity was 100%. The sensitivity of mFLOS-LAMP was 94.2% and the specificity was 96.6%, when Xpert MTB/RIF was used as the reference method. There was no statistically significant difference in their detection rate (χ2 = 0, P = 1.000), and the consistency was good (kappa = 0.909, P < 0.001). The receiver operating characteristic analysis yielded the maximum area under the curve of 0.954. The mFLOS-LAMP method demonstrated high sensitivity and specificity, allowing for swift and accurate detection of MTBC.


Assuntos
Corantes Fluorescentes , Mycobacterium tuberculosis , Técnicas de Amplificação de Ácido Nucleico , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Corantes Fluorescentes/química , Humanos , DNA Bacteriano , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular
13.
Front Vet Sci ; 11: 1389184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887539

RESUMO

Bovine mastitis is predominantly caused by intramammary infections with various Gram-positive and Gram-negative bacteria, requiring accurate pathogen identification for effective treatment and antimicrobial resistance prevention. Here, a novel diagnostic method was developed to detect mastitis pathogens in milk samples by combining loop-mediated isothermal amplification with a split enzyme biosensor whereby trehalase fragments were fused with a DNA-binding protein, SpoIIID. Three primer sets, LAMPstaph, LAMPstrep, and LAMPneg, harboring SpoIIID recognition sequences targeted Staphylococcus, Streptococcus, and Gram-negative pathogens, respectively. Limits of detection were determined for DNA extracted from bacterial culture and bacteria-spiked milk. The combined method detected as low as 2, 24, and 10 copies of genomic DNA of staphylococci, streptococci and Escherichia coli and 11 CFU/ml for milk spiked with Escherichia coli. Higher detection limits were observed for Gram-positive bacteria in spiked milk. When testing genomic DNA of 10 mastitis isolates at concentrations of 106 and 103 copies per reaction, no cross-reactivity was detected for LAMPstaph nor LAMPstrep, whereas the LAMPneg assay cross-reacted only with Corynebacterium sp. at the highest concentration. This combined method demonstrated the potential to distinguish mastitis pathogenic Gram types for a rapid decision of antimicrobial treatment without culturing.

14.
Foods ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38890864

RESUMO

Loop-mediated isothermal amplification, LAMP, is nowadays the most popular isothermal nucleic acid amplification technique, and as such, several commercial, ready-to-use master mixes have flourished. Unfortunately, independent studies to determine their performance are limited. The current study performed an independent evaluation of the existing ready-to-use commercial LAMP master mixes WarmStart® LAMP Kit, LavaLAMP™ DNA Master Mix, Saphir Bst Turbo GreenMaster, OptiGene Fast Master Mix ISO-004, and SynLAMP Mix. To reduce bias, three different genes, namely ttr (Salmonella spp.), rfbE (E. coli O157), and hly (Listeria monocytogenes), were targeted. The comparison was based on amplification speed, performance with decreasing DNA concentrations, and the effect of five typical LAMP reaction additives (betaine, DMSO, pullulan, TMAC, and GuHCl). Significant differences were observed among the different master mixes. OptiGene provided the fastest amplification and showed less detrimental effects associated with the supplements evaluated. Out of the chemicals tested, pullulan provided the best results in terms of amplification speed. It is noteworthy that the different additives impacted the master mixes differently. Overall, the current study provides insights into the performance of commercial LAMP master mixes, which can be of value for the scientific community to better select appropriate reagents when developing new methods.

15.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891961

RESUMO

Southern stem canker (SSC) of soybean, attributable to the fungal pathogen Diaporthe aspalathi, results in considerable losses of soybean in the field and has damaged production in several of the main soybean-producing countries worldwide. Early and precise identification of the causal pathogen is imperative for effective disease management. In this study, we performed an RPA-CRISPR/Cas12a, as well as LAMP, PCR and real-time PCR assays to verify and compare their sensitivity, specificity and simplicity and the practicality of the reactions. We screened crRNAs targeting a specific single-copy gene, and optimized the reagent concentrations, incubation temperatures and times for the conventional PCR, real-time PCR, LAMP, RPA and Cas12a cleavage stages for the detection of D. aspalathi. In comparison with the PCR-based assays, two thermostatic detection technologies, LAMP and RPA-CRISPR/Cas12a, led to higher specificity and sensitivity. The sensitivity of the LAMP assay could reach 0.01 ng µL-1 genomic DNA, and was 10 times more sensitive than real-time PCR (0.1 ng µL-1) and 100 times more sensitive than conventional PCR assay (1.0 ng µL-1); the reaction was completed within 1 h. The sensitivity of the RPA-CRISPR/Cas12a assay reached 0.1 ng µL-1 genomic DNA, and was 10 times more sensitive than conventional PCR (1.0 ng µL-1), with a 30 min reaction time. Furthermore, the feasibility of the two thermostatic methods was validated using infected soybean leaf and seeding samples. The rapid, visual one-pot detection assay developed could be operated by non-expert personnel without specialized equipment. This study provides a valuable diagnostic platform for the on-site detection of SSC or for use in resource-limited areas.


Assuntos
Ascomicetos , Sistemas CRISPR-Cas , Glycine max , Sistemas CRISPR-Cas/genética , Glycine max/microbiologia , Glycine max/genética , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase/métodos
16.
Plant Dis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885023

RESUMO

Dollar spot is a major fungal disease affecting turfgrass worldwide and can quickly destroy turfgrass swards. An assimilating probe-based loop-mediated amplification (LAMP) assay was developed to detect Clarireedia monteithiana and C. jacksonii, the causal agents of dollar spot within the continental US. Five LAMP primers were designed to target the calmodulin gene with the addition of a 6-carboxyl-fluorescein florescent assimilating probe and the temperature amplification was optimized for C. jacksonii and C. monteithiana identification. The minimum amount purified DNA needed for detection was 0.05 ng µL-1. Specificity assays against host DNA and other turfgrass pathogens were negative. Successful LAMP amplification was also observed for dollar spot infected turfgrass field samples. Further, a DNA extraction technique via rapid heat-chill cycles and visualization of LAMP results via a florescent flashlight was developed and adapted for fast, simple and reliable detection in 1.25 hours. This assimilating probe-based LAMP assay has proved successful as a rapid, sensitive, and specific detection of C. monteithiana and C. jacksonii in pure cultures and from symptomatic turfgrass leaves blades. The assay represents a promising technology to be used in the field for on-site, point-of-care pathogen detection.

17.
Diagn Microbiol Infect Dis ; 110(1): 116398, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38908041

RESUMO

Carbapenem-resistant significant members of Acinetobacter calcoaceticus-Acinetobacter baumannii (CR-SM-ACB) complex have emerged as an important cause of sepsis, especially in ICUs. This study demonstrates the application of loop-mediated-isothermal-amplification (LAMP) assay for detection of CR-SM-ACB-complex from patients with sepsis. Whole-blood and culture-broths(CB) collected from patients with culture-positive sepsis were subjected to LAMP and compared with PCR, and RealAmp. Vitek-2 system and conventional PCR results were used as confirmatory references. The sensitivity and specificity of LAMP(97 % & 100 %) and RealAmp(100 % & 100 %) for detection of CR-SM-ACB-complex from CB were better than PCR(87 % & 100 %). Diagnostic accuracy of LAMP, RealAmp, and PCR for detection of SM-ACB-complex from CB was 98.5 %, 100 %, and 88.5 % respectively. Turnaround time of Culture, LAMP, PCR, and RealAmp was 28-53, 6-20, 9-23, and 6-20hours, respectively. LAMP is a simple, inexpensive tool that can be applied directly to positive CB and may be customized to detect emerging pathogens and locally-prevalent resistance genes and to optimize antimicrobial use.

18.
Am J Vet Res ; : 1-5, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942062

RESUMO

OBJECTIVE: To improve the current recommendations for the diagnosis of canine heartworm (Dirofilaria immitis) disease. ANIMALS: Blood samples collected from 35 shelter dogs in the Republic of Korea. METHODS: Samples were tested for the presence of microfilaria using the modified Knott (MK) test and D immitis DNA using species-specific loop-mediated isothermal amplification (LAMP) PCR. The blood samples were additionally assessed for the presence of heartworm antigens using the Antigen Rapid Canine Heartworm AG Test Kit 2.0 (Bionote Co). The performance of the MK test and LAMP PCR was assessed through statistical analysis, with a paired McNemar test utilized for comparison. RESULTS: The heartworm antigen was detected in 28.5% of the subjects. Of the 10 positive animals, the MK test detected microfilaria in 4 of 35 (11.4%) animals, and LAMP PCR detected D immitis DNA in 6 of 35 (17.1%). The results of this study indicate that the LAMP PCR showed more positive results in samples compared to the conventional MK test. CLINICAL RELEVANCE: The D immitis-specific LAMP PCR assay has the potential to function as an alternative to current detection methods. It could complement the existing antigen detection tests in diagnosing canine heartworm infections.

19.
J Aquat Anim Health ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923038

RESUMO

OBJECTIVE: The World Organization for Animal Health still regulates the infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimp. The existing disease identification approach is time consuming, necessitates expensive equipment, and requires specialized expertise, thereby limiting the accessibility of shrimp disease screening on farms. Loop-mediated isothermal amplification (LAMP) is recognized for its ability to detect inhibitory substances with high sensitivity and specificity. METHODS: We developed a real-time triplex LAMP assay that combines the simplicity of point-of-care testing with the accuracy of a turbidimeter. Using a set of three LAMP primers, our technology enables rapid DNA amplification in a single reaction within 45 min and with a low detection limit (10 copies/reaction). RESULT: We tested 192 shrimp samples from different sources and demonstrated the clinical utility of our method, achieving 100% specificity (95% confidence interval = 93.40-100.00%), 100% sensitivity (97.36-100.00%), and 100% accuracy (98.10-100.00%) in detecting IHHNV DNA, with a high Cohen's kappa value (1) compared to the standard quantitative polymerase chain reaction assay. CONCLUSION: The high technology readiness level of our method makes it a versatile platform for any real-time LAMP assay, and its low cost and simplicity make it well suited for fast deployment and use in shrimp farming.

20.
Sci Rep ; 14(1): 14479, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914553

RESUMO

Nucleic acid amplification testing has great potential for point-of-need diagnostic testing with high detection sensitivity and specificity. Current sample preparation is limited by a tedious workflow requiring multiple steps, reagents and instrumentation, hampering nucleic acid testing at point of need. In this study, we present the use of mixed cellulose ester (MCE) paper for DNA binding by ionic interaction under molecular crowding conditions and fluid transport by wicking. The poly(ethylene) glycol-based (PEG) reagent simultaneously provides the high pH for alkaline lysis and crowding effects for ionic binding of the DNA under high salt conditions. In this study, we introduce Paper-based Abridged Solid-Phase Extraction with Alkaline Poly(ethylene) Glycol Lysis (PASAP). The anionic mixed cellulose ester (MCE) paper is used as solid phase and allows for fluid transport by wicking, eliminating the need for pipetting skills and the use of a magnet to retain beads. Following the release of DNA from the cells due to the lytic activity of the PASAP solution, the DNA binds to the anionic surface of the MCE paper, concentrating at the bottom while the sample matrix is transported towards the top by wicking. The paper was washed by dipping it in 40% isopropanol for 10 s. After air-drying for 30 s, the bottom section of the paper (3 mm × 4 mm) was snapped off using the cap of a PCR tube and immersed in the colourimetric loop-mediated isothermal amplification (cLAMP) solution for direct amplification and colourimetric detection. The total sample processing was completed in 15 min and ready for amplification. cLAMP enabled the detection of 102 CFU/mL of Escherichia coli (E. coli) from culture media and the detection of E. coli in milk < 103 CFU/mL (10 CFU) after incubation at 68 °C for 60 min, demonstrating applicability of the method to complex biological samples.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Papel , Técnicas de Amplificação de Ácido Nucleico/métodos , Colorimetria/métodos , DNA , Extração em Fase Sólida/métodos , Polietilenoglicóis/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/genética , Técnicas de Diagnóstico Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...