Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39337354

RESUMO

The limited supply of drinking water has aroused people's curiosity in recent decades. Adsorption is a popular method for removing hazardous substances from wastewater, especially heavy metals, as it is cheap, highly efficient, and easy to use. In this work, a new sludge-based activated carbon adsorbent (thickened samples SBAC1 and un-thickened samples SBAC2) was developed to remove hazardous metals such as cadmium (Cd+2) and lead (Pb+2) from an aqueous solution. The chemical structure and surface morphology of the produced SBAC1 and SBAC2 were investigated using a range of analytical tools such as CHNS, BET, FT-IR, XRD, XRF, SEM, TEM, N2 adsorption/desorption isothermal, and zeta potential. BET surface areas were examined and SBAC2 was found to have a larger BET surface area (498.386 m2/g) than SBAC1 (336.339 m2/g). While the average pore size was 10-100 nm for SBAC1 and 45-50 nm for SBAC2. SBAC1 and SBAC2 eliminated approximately 99.99% of Cd+2 and Pb+2 out the water under all conditions tested. The results of the adsorption of Cd+2 and Pb+2 were in good agreement with the pseudo-second-order equation (R2 = 1.00). Under the experimental conditions, the Cd+2 and Pb+2 adsorption equilibrium data were effectively linked to the Langmuir and Freundlich equations for SBAC1 and SBAC2, respectively. The regeneration showed a high recyclability for the fabricated SBAC1 and SBAC2 during five consecutive reuse cycles. As a result, the produced SBAC1 and SBAC2 are attractive adsorbents for the elimination of heavy metals from various environmental and industrial wastewater samples.


Assuntos
Cádmio , Carvão Vegetal , Chumbo , Reciclagem , Esgotos , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Cádmio/química , Cádmio/isolamento & purificação , Chumbo/química , Chumbo/isolamento & purificação , Águas Residuárias/química , Esgotos/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Carvão Vegetal/química , Reciclagem/métodos , Purificação da Água/métodos
2.
Heliyon ; 10(17): e36811, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281575

RESUMO

The apple processing industry generates large quantities of organic waste, presenting a major source of organic contamination. Consequently, finding an effective solution for valorizing this waste has become a pressing issue. This study aims to address two key concerns: (i) solving an agricultural problem by efficiently using agri-food residue, and (ii) removing lead, an extremely toxic element, from contaminated waters to mitigate environmental pollution. Two biosorbents were tested: raw apple waste (RA), obtained from a mixture of apple varieties, and the same material after extracting valuable bioactive and reusable components, extracted apple (EA). The study evaluated the influence of pH, initial biosorbent mass, adsorption kinetics, and equilibrium isotherms. The results are very promising, showing a lead removal efficiency of 82 % for RA and 100 % for EA at a low initial concentration of the solution of 20 mg Pb2⁺/L and an optimal pH of 5 ± 0.5. The Langmuir model predicted a maximum adsorption capacity of 44.6 mg/g for RA and 48.6 mg/g for EA. These findings demonstrate that apple waste, even after selective extraction of valuable bioactive components, can be effectively used for environmental remediation on a practical scale.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38717700

RESUMO

This study introduces a cost-effective approach to fabricating a porous and ionically surface-modified biochar-based alginate polymer networks composite (SBPC) through air drying. The study critically analyzes the role and concentrations of various components in the success of SBPC. Characterization techniques were employed to evaluate the microstructure and adsorption mechanism, confirming the ability of the adsorbent's carboxyl and hydroxyl groups to eliminate various heavy metal ions in water simultaneously. The SBPC demonstrated high copper binding capacities (937.4 mg/g and 823.2 mg/g) through response surface methodology (RSM) and column studies. It was also influential in single and natural systems, exhibiting competitive behavior and efficient removal of Cu2+. The Langmuir isotherm and pseudo-second-order kinetics strongly correlate with experimental data, with R2 values of 0.98 and 0.99, respectively. SBPC showed remarkable stability, up to 10 desorption cycles, and achieved 98% Cu2+ adsorption efficiency and 91.0% desorption. Finally, the cost analysis showed a cost of 125.68 INR/kg or 1.51 USD/kg, which is very low compared to the literature. These results highlight the potential of SPBC and show that it provides an efficient and cost-effective solution for removing Cu2+ from a real system.

4.
Water Environ Res ; 96(4): e11020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38636954

RESUMO

Antiretroviral drugs (ARVDs) have been extensively employed in health care to improve the quality of life and lifecycle longevity. However, overuse and improper disposal of ARVDs have been recognized as an emerging concern whereby wastewater treatment major recipients. Therefore, in this work, the activated macadamia nutshells (MCNs) were explored as low-cost adsorbents for the removal of ARVDs in wastewater samples. Fourier transform infrared spectroscopy (FTIR), Scanning Electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and Powder X-ray diffraction (PXRD). The highest removal efficiency (R.E) was above 86% for the selected analytes nevirapine, abacavir, and efavirenz. The maximum adsorption capacity of the functionalized MCN adsorbent was 10.79, 27.44, and 38.17 mg/g for nevirapine, abacavir, and efavirenz for HCl-modified adsorbent. In contrast, NaOH modified had adsorption capacities of 13.67, 14.25, and 20.79 mg/g. The FTIR showed distinct functional groups OH and CO, which facilitate the removal of selected ARVDs. From studying kinetics parameters, the pseudo-second-order (R2 = 0.990-0.996) was more dominant than the pseudo-first-order (R2 = 0.872-0.994). The experimental data was most fitted in the Freundlich model with (R2 close to 1). The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The study indicated that MCNs are an eco-friendly, low-cost, and effective adsorbent for the removal of nevirapine, abacavir, and efavirenz. PRACTITIONER POINTS: Modification macadamia nutshell with HCl and NaOH improved physio-chemical properties that yielded high removal efficiency compared with raw macadamia nutshells. Modification of macadamia by HCl showed high removal efficiency, which could be attributed to high interaction such as H-bonding that improves adsorption. The macadamia nutshell as an adsorbent showed so much robustness with regeneration studies yielding to about 69.64% of selected compounds.


Assuntos
Alcinos , Benzoxazinas , Ciclopropanos , Didesoxiadenosina/análogos & derivados , Infecções por HIV , Poluentes Químicos da Água , Águas Residuárias , Macadamia , Adsorção , Nevirapina , Qualidade de Vida , Hidróxido de Sódio , Termodinâmica , Cinética , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
5.
Biotechnol Bioeng ; 121(2): 434-455, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990982

RESUMO

Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.


Assuntos
Basidiomycota , Poluentes Ambientais , Lacase , Biotecnologia , Biomassa , Fungos
6.
Environ Sci Pollut Res Int ; 30(38): 88245-88271, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37440129

RESUMO

The impact of water pollution has led to the search for cost-effective and environmentally friendly treatment processes to alleviate the associated environmental hazards. Adsorption is identified as an advanced treatment technology that offers simplicity and cheap alternatives to water treatment technologies when low-cost adsorbents such as industrial by-products, waste, and agricultural waste are utilized. The utilization of these materials as low-cost adsorbents for the treatment of drinking water will bring them some value. Several practices have been done to improve the removal efficiencies of the low-cost adsorbents in order to achieve WHO standards of drinking water quality. The paper highlights some of the synthesis routes employed for the modification of low-cost adsorbents. This updated review provides information on the different applications of low-cost adsorbents in removing pollutants and their adsorption capacities in an attempt to deploy the recent sustainable low-cost adsorbents with high removal efficiencies for water treatment. Future research should focus on the fabrication of hybrid low-cost adsorbents with multifunctional and antimicrobial properties. In addition, life cycle assessment (LCA) should be conducted to reveal the environmental burdens associated with the modification of the low-cost adsorbent to improve their removal efficiencies.


Assuntos
Água Potável , Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Agricultura , Adsorção
7.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513275

RESUMO

The increasing consumption of phenoxyacetic acid-derived herbicides is becoming a major public health and environmental concern, posing a serious challenge to existing conventional water treatment systems. Among the various physicochemical and biological purification processes, adsorption is considered one of the most efficient and popular techniques due to its high removal efficiency, ease of operation, and cost effectiveness. This review article provides extensive literature information on the adsorption of phenoxyacetic herbicides by various adsorbents. The purpose of this article is to organize the scattered information on the currently used adsorbents for herbicide removal from the water, such as activated carbons, carbon and silica adsorbents, metal oxides, and numerous natural and industrial waste materials known as low-cost adsorbents. The adsorption capacity of these adsorbents was compared for the two most popular phenoxyacetic herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA). The application of various kinetic models and adsorption isotherms in describing the removal of these herbicides by the adsorbents was also presented and discussed. At the beginning of this review paper, the most important information on phenoxyacetic herbicides has been collected, including their classification, physicochemical properties, and occurrence in the environment.

8.
Appl Water Sci ; 12(8): 185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754932

RESUMO

The presence of lead compounds in the environment is an issue. In particular, supply water consumption has been reported to be a significant source of human exposure to lead compounds, which can pose an elevated risk to humans. Due to its toxicity, the International Agency for Research on Cancer and the US Environmental Protection Agency (USEPA) have classified lead (Pb) and its compounds as probable human carcinogens. The European Community Directive and World Health Organization have set the maximum acceptable lead limits in tap water as 10 µg/L. The USEPA has a guideline value of 15 µg/L in drinking water. Removal of lead ions from water and wastewater is of great importance from regulatory and health perspectives. To date, several hundred publications have been reported on the removal of lead ions from an aqueous solution. This study reviewed the research findings on the low-cost removal of lead ions using different types of adsorbents. The research achievements to date and the limitations were investigated. Different types of adsorbents were compared with respect to adsorption capacity, removal performances, sorbent dose, optimum pH, temperature, initial concentration, and contact time. The best adsorbents and the scopes of improvements were identified. The adsorption capacity of natural materials, industrial byproducts, agricultural waste, forest waste, and biotechnology-based adsorbents were in the ranges of 0.8-333.3 mg/g, 2.5-524.0 mg/g, 0.7-2079 mg/g, 0.4-769.2 mg/g, and 7.6-526.0 mg/g, respectively. The removal efficiency for these adsorbents was in the range of 13.6-100%. Future research to improve these adsorbents might assist in developing low-cost adsorbents for mass-scale applications.

9.
Polymers (Basel) ; 14(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35215695

RESUMO

Over the last few years, various industries have released wastewater containing high concentrations of dyes straight into the ecological system, which has become a major environmental problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries has created an alarming situation in which further deterioration to the environment has been caused due to substances being left in treated wastewater, including dyes. The application of activated carbon has recently been demonstrated to be a highly efficient technology in terms of removing methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood products, are excellent sources of bio-waste for MB remediation since they are extremely efficient, have high sorption capacities, and are renewable sources. Despite the fact that commercial activated carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of its comparatively high cost, which has prompted researchers to investigate alternative sources of adsorbents that are non-conventional and more economical. The goal of this review article was to critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for MB's removal, as well as related parameters influencing the performance of this process. The review also highlighted the processing methods developed in previous studies. Regeneration processes, economic challenges, and the valorization of post-sorption materials were also discussed. This review is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents, highlighting the accelerating need for the development of low-cost adsorbents and functioning as a precursor for large-scale system optimization.

10.
J Hazard Mater ; 424(Pt C): 127603, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34772553

RESUMO

Selenium (Se) has become an increasingly serious water contamination concern worldwide. It is an essential micronutrient for humans and animals, however, can be extremely toxic if taken in excess. Sorption can be an effective treatment for Se removal from a wide range of water matrices. However, despite the synthesis and application of numerous adsorbents for remediation of aqueous Se, there has been no comprehensive review of the sorption capacities of various natural and synthesized sorbents. Herein, literature from 2010 to 2021 considering Se remediation using 112 adsorbents has been critically reviewed and presented in several comprehensive tables including: clay minerals and waste materials (presented in Table 1); zero-valent iron, iron oxides, and binary iron-based adsorbents (Table 2); other metals-based adsorbents (Table 3); carbon-based adsorbents (Table 4); and other adsorbents (Table 5). Each of these tables, and their relevant sections, summarizes preparation/modification methods, sorption capacities of various Se adsorbents, and proposed model/mechanisms of adsorption. Furthermore, future perspectives have been provided to assist in filling noted research gaps for the development of efficient Se adsorbents for real-world applications. This review will help in preliminary screening of various sorbent media to set up Se treatment technologies for a variety of end-users worldwide.


Assuntos
Selênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Animais , Humanos , Água , Poluentes Químicos da Água/análise
11.
Chemosphere ; 287(Pt 1): 132114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34481171

RESUMO

The adsorption techniques are extensively used in dyes, metronidazole, aniline, wastewater treatment methods to remove certain pollutants. Furfural is organic in nature, considered a pollutant having a toxic effect on humans and their environment and especially aquatic species. Due to distinct characteristics of the adsorption technique, this technique can be utilized to adsorb furfural efficiently. As an environmentally friendly technique, the pomegranate peel was used to synthesized activated carbon and nanostructure of zerovalent iron impregnated on the synthesized activated carbon. The physicochemical and crystallinity characterization was done using Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and Field emission scanning electron microscopy (FESEM). The nanoparticles are porous in structure having 821.74 m2/g specified surface area. The maximum amount of the adsorbent pores in the range of 3.08 nm shows the microporous structure and enhancement in adsorption capacity. The effects of increment in concentration of adsorbent, pH, reaction contact time and adsorbent dose, isothermal and kinetic behaviour were investigated. At the UV wavelength of 227 nm furfural adsorption was detected. The separation of the furfural from the aqueous solution was calculated at the 1 h reaction time at the composite dosage of 4 g/L, 250 mg/L adsorbent concentration and pH kept at 7. The 81.87% is the maximum removal attained by the nanocomposite in comparison to the activated carbon is 62.06%. Furfural adsorption was also analyzed by using the equations of isothermal and kinetics models. The adsorption process analysis depends on the Freundlich isotherm and Intra-particle diffusion than the other models. The maximum adsorbent of the composite was determined by the Langmuir model which is 222.22 mg/g. The furfural removal enhances as the adsorbent dose enhances. The developed zerovalent iron nanoparticles incorporated on activated carbon (AC/nZVI) from pomegranate peel extract are feasible as an efficient and inexpensive adsorbent to eliminate furfural from a liquid solution.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Furaldeído , Humanos , Ferro , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
12.
J Environ Manage ; 290: 112527, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33895448

RESUMO

Produced water is responsible for the largest contribution in terms of waste stream volume associated with the production of oil and gas. Characterization of produced water is very crucial for the determination of its main components and constituents for optimal selection of the treatment method. This review aims to review and critically discuss various treatment options that can be considered cost-efficient and environmentally friendly for the removal of different pollutants from produced water. Great efforts and progresses were made in various treatment options, including batch adsorption processes, membrane filtration, advanced oxidation, biological systems, adsorption, coagulation, and combined processes. Chemical precipitation, membrane filtration, and adsorption have high removal efficiencies that can reach more than 90% for different produced water components. The most effective method among these methods is adsorption using different adsorbents media. In this review, date-pits activated carbons, microemulsions-modified date pits, and cellulose nanocrystals as low-cost adsorbents were thoroughly reviewed and discussed. Moreover, the potential of using biological treatments in the removal of various pollutants from produced water such as conventional activated sludge, sequential batch reactor, and fixed-film biological aerated filter reactors were systematically discussed. Generally, produced water can be utilized in various fields including habitat and wildlife, agricultural and irrigation sector, energy sector, fire control, industrial use also power regeneration. The degree of treatment will depend on the application that produced water is being reused in. For instance, to use produced water in oil and gas industries, water will require minimal treatment while for agricultural and drinking purposes high treatment level will be required. It can also be concluded that one specific technique cannot be recommended that will meet all requirements including environmental, reuse, and recycling for sustainable energy. This is because of various dominant factors including the type of field, platform type, chemical composition, geological location, and chemical composition of the production chemicals.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Águas Residuárias , Água , Poluentes Químicos da Água/análise
13.
J Environ Manage ; 286: 112246, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667817

RESUMO

This study tested the technical feasibility of pyrite and/or persulfate oxidation system for arsenic (As) removal from aqueous solutions. The effects of persulfate on As removal by the pyrite in the integrated treatment were also investigated. Prior to the persulfate addition into the reaction system, the physico-chemical interactions between As and the pyrite alone in aqueous solutions were explored in batch studies. The adsorption mechanisms of As by the adsorbent were also presented. At the same As concentration of 5 mg/L, it was found that As(III) attained a longer equilibrium time (8 h) than As(V) (2 h), while the pyrite worked effectively at pH ranging from 6 to 11. At optimum conditions (0.25 g/L of pyrite, pH 8.0 and 5 mg/L of As(III) concentration), the addition of persulfate (0.5 mM) into the reaction promoted a complete removal of arsenic from the solutions. Consequently, this enabled the treated effluents to meet the arsenic maximum contaminant limit (MCL) of <10 µg/L according to the World Health Organization (WHO)'s requirements. The redox mechanisms, which involved electron transfer from the S22- of the pyrite to Fe3+, supply Fe2+ for persulfate decomposition, oxidizing As(III) to As(V). The sulfur species played roles in the redox cycle of the Fe3+/Fe2+ of the pyrite by giving its electrons, while the As(III) oxidation to As(V) was attributed to the pyrite. Overall, this work reveals the applicability of the pyrite as an adsorbent for water treatment and the importance of persulfate addition to promote a complete As removal from aqueous solutions.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Concentração de Íons de Hidrogênio , Oxirredução , Água , Poluentes Químicos da Água/análise
14.
Chemosphere ; 271: 129861, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736203

RESUMO

This work incorporated technological values into Zn2Cr-layered double hydroxide (LDH), synthesized from unused resources, for removal of pyrophosphate (PP) in electroplating wastewater. To adopt a resource recovery for the remediation of the aquatic environment, the Zn2Cr-LDH was fabricated by co-precipitation from concentrated metals of plating waste that remained as industrial by-products from metal finishing processes. To examine its applicability for water treatment, batch experiments were conducted at optimum M2+/M3+, pH, reaction time, and temperature. To understand the adsorption mechanisms of the PP by the adsorbent, the Zn2Cr-LDH was characterized using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses before and after adsorption treatment. An almost complete PP removal was attained by the Zn2Cr-LDH at optimized conditions: 50 mg/L of PP, 1 g/L of adsorbent, pH 6, and 6 h of reaction. Ion exchange controlled the PP removal by the adsorbent at acidic conditions. The PP removal well fitted a pseudo-second-order kinetics and/or the Langmuir isotherm model with 79 mg/g of PP adsorption capacity. The spent Zn2Cr-LDH was regenerated with NaOH with 86% of efficiency for the first cycle. The treated effluents could comply with the discharge limit of <1 mg/L. Overall, the use of the Zn2Cr-LDH as a low-cost adsorbent for wastewater treatment has contributed to national policy that promotes a zero-waste approach for a circular economy (CE) through a resource recovery paradigm.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Difosfatos , Galvanoplastia , Concentração de Íons de Hidrogênio , Hidróxidos , Cinética , Metais Pesados/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Poluentes Químicos da Água/análise , Zinco
15.
Nanomaterials (Basel) ; 10(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825774

RESUMO

A new nanocomposite consisting of activated carbon (AC) from the Cortaderia selloana flower and copper-based metal-organic framework (HKUST-1) was synthesized through a single-step solvothermal method and applied for the removal of lead ions from aqueous solution through adsorption. The nanocomposite, AC/HKUST-1, was characterized by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Energy-Dispersive X-ray Spectroscopy (EDX) methods. The SEM images of both HKUST-1 and AC/HKUST-1 contain octahedral crystals. Different factors affecting adsorption processes, such as solution pH, contact time, adsorbent dose, and initial metal pollution concentration, were studied. The adsorption isotherm was evaluated with Freundlich and Langmuir models, and the latter was fitted with the experimental data on adsorption of lead ion. The adsorption capacity was 249.4 mg g-1 for 15 min at pH 6.1, which is an excellent result rivalling previously reported lead adsorbents considering the conditions. These nanocomposites show considerable potential for use as a functional material in the ink formulation of lead sensors.

16.
J Environ Manage ; 244: 257-264, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125876

RESUMO

Owing to the widespread occurrence and potential health effects, many treatment strategies have been developed across the world to remove the heavy metal contaminants in water. Developing affordable and sustainable nanoscale materials are the prime factors for the success of such treatment systems in the field. The present study explores the use of desiccant waste, exhausted after several cycles of dehumidification processes. The granulated composite desiccant is composed of boehmite nanoparticles reinforced with chitosan fibrils. The composite was synthesized via a simple and scalable one-pot sol-gel route at atmospheric pressure and room temperature. The desiccant was employed for dehumidification/regeneration cycles. The reuse potential of exhausted desiccant towards enhanced removal of metal ions was analyzed and demonstrated. After adsorption the nanocomposite was characterized to establish its chemical composition and structure. Batch and fixed-bed column adsorption experiments were performed to evaluate the removal efficiency of the nanocomposite and to assess the parameters that influence the adsorption process. The experimental evidences confirm the fast kinetics of adsorption/desorption and effective regeneration of the composite. The enhanced removal capacity, excellent reuse potential, high stable granules, eco-friendly synthesis approach makes the adsorbent an excellent candidate for the removal of wide range of heavy metals in water.


Assuntos
Quitosana , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Hidróxido de Alumínio , Óxido de Alumínio , Higroscópicos
17.
J Environ Manage ; 237: 526-533, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825785

RESUMO

Due to limited economic resources, which impede access to specific advanced technologies, many developing countries are still facing the challenge of reducing human exposure to heavy metals, which is primarily associated with the consumption of water contaminated through the discharge of poorly treated wastewater. In wastewater treatment technology, adsorption is sometime preferred to other approaches because of its high efficiency, easy handling, availability of different substrates and cost effectiveness. Moreover, increasing emphasis has recently been given to the use of low-cost adsorbents (generally solid wastes) for the treatment of polluted water, with a resulting double benefit for the environment. In this paper, the use of red mud and pyrolusite has been investigated for the removal of As and Mn from drinking water. Adsorption equilibrium data have been examined through the application of constant temperature models (isotherms), while batch and dynamic tests have been used to clarify the effects of pH, initial metal ion concentration and temperature on the adsorption performance, aiming at identifying the best conditions for the treatment. The combined use of the two adsorbents allows exploiting their properties synergistically, maximizing efficacy and sustainability without affecting process design and costs. In particular, 'clean' water (i.e. water with heavy metals contents below law limits) has been obtained even after the passage of a volume of solution higher than 40 bed volumes, and considering initial unrealistically high concentrations for the metals.


Assuntos
Água Potável , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Humanos , Compostos de Manganês , Óxidos , Águas Residuárias
18.
Chemosphere ; 222: 766-780, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30738319

RESUMO

Micropollutants, also called emerging contaminants, consist of an extensive group of synthetic and natural substances, including pharmaceuticals, personal care products, steroid hormones, and agrochemicals. Currently, the monitoring of residual pharmaceuticals in the environment has been highlighted due to the fact that many of these substances are found in wastewater treatment plants effluents and surface waters, in concentrations ranging from ng L-1 to µg L-1. Most of these compounds are discharged into the environment continuously through domestic sewage treatment systems. In the present work, it is presented an overview of water pollution by these pollutants, as well as a review of the recent literature about the use of low-cost adsorbents for the removal of the main pharmaceuticals found in surface water, focusing on municipal and agroindustrial wastes as precursors. It was possible to observe several examples of high adsorption capacities of these compounds with such materials, however other aspects must be considered in order to evaluate the real applicability in water and wastewater treatment, such as competition, recyclability and production cost.


Assuntos
Adsorção , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Monitoramento Ambiental , Esgotos , Águas Residuárias/química , Poluentes Químicos da Água/economia , Purificação da Água/economia
19.
Environ Sci Pollut Res Int ; 25(31): 31520-31534, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30203352

RESUMO

This study aimed at evaluation of air pollution control residues (APCR) and flue gas desulfurization residues (FGDR) from copper foundry in Southwestern Poland as adsorbents of Cu(II) and Pb(II) from simulated wastewater. Studies of the impact of pH and adsorbent dose, as well as sorption isotherms, and kinetic and thermodynamic studies were conducted in a series of batch experiments. The maximum adsorption capacities were equal to 42.9 mg g-1 Cu(II) and 124.4 mg g-1 Pb(II) for APCR and 98.8 mg g-1 Cu(II) and 124.7 mg g-1 Pb(II) for FGDR, which was comparable to mineral adsorbents examined in other studies. Adsorption isotherms followed the Langmuir model, except for Pb(II) for FGDR, which followed Freundlich model. Sorption kinetics for both materials was properly expressed by pseudo-second-order equation. Mean adsorption energy parameter suggested that the adsorption might have occurred via physical bonding. Thermodynamic study revealed that adsorption was spontaneous and endothermic for Cu(II) and not spontaneous and exothermic for Pb(II), with lower temperature favoring the process. The results suggested that both materials had high affinity towards Cu(II) and Pb(II) ions and could be conducted industrial scale research for consideration as potential adsorbents from aqueous solutions.


Assuntos
Cobre/isolamento & purificação , Chumbo/isolamento & purificação , Metalurgia , Eliminação de Resíduos Líquidos/métodos , Resíduos , Adsorção , Poluição do Ar/prevenção & controle , Cobre/química , Gases/química , Concentração de Íons de Hidrogênio , Cinética , Chumbo/química , Polônia , Soluções/química , Temperatura , Termodinâmica , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação
20.
Environ Sci Pollut Res Int ; 25(16): 15793-15801, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29582326

RESUMO

Adsorption on low-cost biochars would increase the affordability and availability of water treatment in, for example, developing countries. The aim of this study was to identify the precursor materials and hydrochar surface properties that yield efficient removal of compounds of environmental concern (CEC). We determined the adsorption kinetics of a mixture containing ten CECs (octhilinone, triclosan, trimethoprim, sulfamethoxasole, ciprofloxacin, diclofenac, paracetamol, diphenhydramine, fluconazole, and bisphenol A) to hydrochars prepared from agricultural waste (including tomato- and olive-press wastes, rice husks, and horse manure). The surface characteristics of the hydrochars were evaluated via diffuse reflectance infrared spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and N2-adsorption. Kinetic adsorption tests revealed that removal efficiencies varied substantially among different materials. Similarly, surface analysis revealed differences among the studied hydrochars and the degree of changes that the materials undergo during carbonization. According to the DRIFTS data, compared with the least efficient adsorbent materials, the most efficient hydrochars underwent more substantial changes during carbonization.


Assuntos
Carvão Vegetal/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Cinética , Eliminação de Resíduos Líquidos/instrumentação , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA