Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
2.
Clin Chim Acta ; : 119833, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955246

RESUMO

BACKGROUND: Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by the progressive accumulation of globotriaosylceramide (Gb3) leading to systemic manifestations such as chronic kidney disease, cardiomyopathy, and stroke. There is still a need for novel markers for improved FD screening and prognosis. Moreover, the pathological mechanisms in FD, which also include systemic inflammation and fibrosis are not yet fully understood. METHODS: Plasma and platelets were obtained from 11 ERT (enzyme-replacement therapy)-treated symptomatic, 4 asymptomatic FD patients, and 13 healthy participants. A comprehensive targeted lipidomics analysis was conducted quantitating more than 550 lipid species. RESULTS: Sphingadiene (18:2;O2)-containing sphingolipid species, including Gb3 and galabiosylceramide (Ga2), were significantly increased in FD patients. Plasma levels of lyso-dihexosylceramides, sphingoid base 1-phosphates (S1P), and GM3 ganglioside were also altered in FD patients, as well as specific plasma ceramide ratios used in cardiovascular disease risk prediction. Gb3 did not increase in patients' platelets but displayed a high inter-individual variability in patients and healthy participants. Platelets accumulated, however, lyso-Gb3, acylcarnitines, C16:0-sphingolipids and S1P. CONCLUSIONS: This study identified new aspects of the systemic and cellular lipid metabolism in FD, a possible involvement of platelets in FD, and potential novel markers for FD screening and monitoring.

3.
Mol Ther Methods Clin Dev ; 32(2): 101272, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38946937

RESUMO

Alpha-mannosidosis is caused by a genetic deficiency of lysosomal alpha-mannosidase, leading to the widespread presence of storage lesions in the brain and other tissues. Enzyme replacement therapy is available but is not approved for treating the CNS, since the enzyme does not penetrate the blood-brain barrier. However, intellectual disability is a major manifestation of the disease; thus, a complimentary treatment is needed. While enzyme replacement therapy into the brain is technically feasible, it requires ports and frequent administration over time that are difficult to manage medically. Infusion of adeno-associated viral vectors into the cerebrospinal fluid is an attractive route for broadly targeting brain cells. We demonstrate here the widespread post-symptomatic correction of the globally distributed storage lesions by infusion of a high dose of AAV1-feline alpha-mannosidase (fMANB) into the CSF via the cisterna magna in the gyrencephalic alpha-mannosidosis cat brain. Significant improvements in clinical parameters occurred, and widespread global correction was documented pre-mortem by non-invasive magnetic resonance imaging. Postmortem analysis demonstrated high levels of MANB activity and reversal of lysosomal storage lesions throughout the brain. Thus, CSF treatment by adeno-associated viral vector gene therapy appears to be a suitable complement to systemic enzyme replacement therapy to potentially treat the whole patient.

4.
Mol Genet Metab ; 142(3): 108512, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870773

RESUMO

The late-onset GM2 gangliosidoses, comprising late-onset Tay-Sachs and Sandhoff diseases, are rare, slowly progressive, neurogenetic disorders primarily characterized by neurogenic weakness, ataxia, and dysarthria. The aim of this longitudinal study was to characterize the natural history of late-onset GM2 gangliosidoses using a number of clinical outcome assessments to measure different aspects of disease burden and progression over time, including neurological, functional, and quality of life, to inform the design of future clinical interventional trials. Patients attending the United States National Tay-Sachs & Allied Diseases Family Conference between 2015 and 2019 underwent annual clinical outcome assessments. Currently, there are no clinical outcome assessments validated to assess late-onset GM2 gangliosidoses; therefore, instruments used or designed for diseases with similar features, or to address various aspects of the clinical presentations, were used. Clinical outcome assessments included the Friedreich's Ataxia Rating Scale, the 9-Hole Peg Test, and the Assessment of Intelligibility of Dysarthric Speech. Twenty-three patients participated in at least one meeting visit (late-onset Tay-Sachs, n = 19; late-onset Sandhoff, n = 4). Patients had high disease burden at baseline, and scores for the different clinical outcome assessments were generally lower than would be expected for the general population. Longitudinal analyses showed slow, but statistically significant, neurological progression as evidenced by worsening scores on the 9-Hole Peg Test (2.68%/year, 95% CI: 0.13-5.29; p = 0.04) and the Friedreich's Ataxia Rating Scale neurological examination (1.31 points/year, 95% CI: 0.26-2.35; p = 0.02). Time since diagnosis to study entry correlated with worsening scores on the 9-Hole Peg Test (r = 0.728; p < 0.001), Friedreich's Ataxia Rating Scale neurological examination (r = 0.727; p < 0.001), and Assessment of Intelligibility of Dysarthric Speech intelligibility (r = -0.654; p = 0.001). In summary, patients with late-onset GM2 gangliosidoses had high disease burden and slow disease progression. Several clinical outcome assessments suitable for clinical trials showed only small changes and standardized effect sizes (change/standard deviation of change) over 4 years. These longitudinal natural history study results illustrate the challenge of identifying responsive endpoints for clinical trials in rare, slowly progressive, neurogenerative disorders where arguably the treatment goal is to halt or decrease the rate of decline rather than improve clinical status. Furthermore, powering such a study would require a large sample size and/or a long study duration, neither of which is an attractive option for an ultra-rare disease with no available treatment. These findings support the development of potentially more sensitive late-onset GM2 gangliosidoses-specific rating instruments and/or surrogate endpoints for use in future clinical trials.


Assuntos
Progressão da Doença , Gangliosidoses GM2 , Qualidade de Vida , Humanos , Masculino , Feminino , Adulto , Estudos Longitudinais , Gangliosidoses GM2/terapia , Avaliação de Resultados em Cuidados de Saúde , Pessoa de Meia-Idade , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/fisiopatologia , Efeitos Psicossociais da Doença , Idade de Início , Adulto Jovem , Adolescente , Doença de Sandhoff/genética , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/patologia , Doença de Sandhoff/terapia , Doença de Sandhoff/fisiopatologia , Criança
5.
Anim Genet ; 55(4): 612-620, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866396

RESUMO

Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders that occur in humans, dogs, and several other species. NCL is characterised clinically by progressive deterioration of cognitive and motor function, epileptic seizures, and visual impairment. Most forms present early in life and eventually lead to premature death. Typical pathological changes include neuronal accumulation of autofluorescent, periodic acid-Schiff- and Sudan black B-positive lipopigments, as well as marked loss of neurons in the central nervous system. Here, we describe a 19-month-old Schapendoes dog, where clinical signs were indicative of lysosomal storage disease, which was corroborated by pathological findings consistent with NCL. Whole genome sequencing of the affected dog and both parents, followed by variant calling and visual inspection of known NCL genes, identified a missense variant in CLN6 (c.386T>C). The variant is located in a highly conserved region of the gene and predicted to be harmful, which supports a causal relationship. The identification of this novel CLN6 variant enables pre-breeding DNA-testing to prevent future cases of NCL6 in the Schapendoes breed, and presents a potential natural model for NCL6 in humans.


Assuntos
Doenças do Cão , Mutação de Sentido Incorreto , Lipofuscinoses Ceroides Neuronais , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/veterinária , Animais , Cães/genética , Doenças do Cão/genética , Proteínas de Membrana/genética , Masculino , Feminino
6.
Vet Res Commun ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758424

RESUMO

Lysosomal storage diseases are inherited or acquired disorders characterized by dysfunctional lysosomes that lead to intracytoplasmic accumulation of undegraded substrates, causing impaired cellular function and death. Many acquired lysosomal storage diseases are produced by toxic plants, which have indolizidine alkaloids, including swainsonine, that inhibits lysosomal α-mannosidase and Golgi α-mannosidase II. Swainsonine-induced nervous disease associated with various plants has been reported, including species of the genus Astragalus, Sida, Oxitropis, Swainsona, and Ipomoea. Two species of Astragalus (i.e. Astragalus garbancillo and Astragalus punae) have been found to cause neurologic disease in llamas. In addition, A. garbancillo was also associated with malformations in the offspring, and possibly abortions and neonatal mortality in llamas. The diagnosis of Astragalus spp. intoxication is established based on clinical signs, microscopic and ultrastructural findings, lectin histochemistry, abundance of these plants in the grazing area and determination of swainsonine in plant specimens.

7.
Orphanet J Rare Dis ; 19(1): 189, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715031

RESUMO

BACKGROUND: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare, autosomal recessive, debilitating, progressive lysosomal storage disease caused by reduced activity of ß-glucuronidase (GUS) enzyme. Vestronidase alfa (recombinant human GUS) intravenous enzyme replacement therapy is an approved treatment for patients with MPS VII. METHODS: This disease monitoring program (DMP) is an ongoing, multicenter observational study collecting standardized real-world data from patients with MPS VII (N ≈ 50 planned) treated with vestronidase alfa or any other management approach. Data are monitored and recorded in compliance with Good Clinical Practice guidelines and planned interim analyses of captured data are performed annually. Here we summarize the safety and efficacy outcomes as of 17 November 2022. RESULTS: As of the data cutoff date, 35 patients were enrolled: 28 in the Treated Group and seven in the Untreated Group. Mean (SD) age at MPS VII diagnosis was 4.5 (4.0) years (range, 0.0 to 12.4 years), and mean (SD) age at DMP enrollment was 13.9 (11.1) years (range, 1.5 to 50.2 years). Ten patients (29%) had a history of nonimmune hydrops fetalis. In the 23 patients who initiated treatment prior to DMP enrollment, substantial changes in mean excretion from initial baseline to DMP enrollment were observed for the three urinary glycosaminoglycans (uGAGs): dermatan sulfate (DS), -84%; chondroitin sulfate (CS), -55%; heparan sulfate (HS), -42%. Also in this group, mean reduction from initial baseline to months 6, 12, and 24 were maintained for uGAG DS (-84%, -87%, -89%, respectively), CS (-70%, -71%, -76%, respectively), and HS (+ 3%, -32%, and - 41%, respectively). All adverse events (AEs) were consistent with the known vestronidase alfa safety profile. No patients discontinued vestronidase alfa. One patient died. CONCLUSIONS: To date, the DMP has collected invaluable MPS VII disease characteristic data. The benefit-risk profile of vestronidase alfa remains unchanged and favorable for its use in the treatment of pediatric and adult patients with MPS VII. Reductions in DS and CS uGAG demonstrate effectiveness of vestronidase alfa to Month 24. Enrollment is ongoing.


Assuntos
Terapia de Reposição de Enzimas , Glucuronidase , Mucopolissacaridose VII , Proteínas Recombinantes , Humanos , Mucopolissacaridose VII/tratamento farmacológico , Glucuronidase/uso terapêutico , Glucuronidase/metabolismo , Masculino , Pré-Escolar , Feminino , Criança , Terapia de Reposição de Enzimas/métodos , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Lactente , Estudos Longitudinais , Adolescente
8.
Front Neurosci ; 18: 1392683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737101

RESUMO

GM1 gangliosidosis (GM1) is a rare but fatal neurodegenerative disease caused by dysfunction or lack of production of lysosomal enzyme, ß-galactosidase, leading to accumulation of substrates. The most promising treatments for GM1, include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), stem cell therapy and gene editing. However, effectiveness is limited for neuropathic GM1 due to the restrictive nature of the blood-brain barrier (BBB). ERT and SRT alleviate substrate accumulation through exogenous supplementation over the patient's lifetime, while gene editing could be curative, fixing the causative gene, GLB1, to enable endogenous enzyme activity. Stem cell therapy can be a combination of both, with ex vivo gene editing of cells to cause the production of enzymes. These approaches require special considerations for brain delivery, which has led to novel formulations. A few therapeutic interventions have progressed to early-phase clinical trials, presenting a bright outlook for improved clinical management for GM1.

9.
Mol Genet Metab ; 142(3): 108497, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763041

RESUMO

Krabbe disease (KD) is a rare inherited demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase. Most patients with KD exhibit fatal cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before the age of 2-4 years. We have previously reported that primary OLs isolated from the brains of twitcher (twi) mice, an authentic mouse model of KD, have cell-autonomous developmental defects and undergo apoptotic death accompanied by abnormal accumulation of psychosine, an endogenous cytotoxic lyso-derivative of GalCer. In this study, we aimed to investigate the effects of the preclinical promyelinating drugs clemastine and Sob-AM2 on KD OL pathologies using primary OLs isolated from the brains of twi mice. Both agents specifically prevented the apoptotic death observed in twi OLs. However, while Sob-AM2 showed higher efficacy in restoring the impaired differentiation and maturation of twi OLs, clemastine more potently reduced the endogenous psychosine levels. These results present the first preclinical in vitro data, suggesting that clemastine and Sob-AM2 can act directly and distinctly on OLs in KD and ameliorate their cellular pathologies associated with myelin degeneration.


Assuntos
Apoptose , Clemastina , Modelos Animais de Doenças , Leucodistrofia de Células Globoides , Oligodendroglia , Psicosina , Animais , Leucodistrofia de Células Globoides/patologia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/tratamento farmacológico , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Camundongos , Clemastina/farmacologia , Apoptose/efeitos dos fármacos , Psicosina/análogos & derivados , Psicosina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Células Cultivadas
10.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796704

RESUMO

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Mucolipidoses , Neuraminidase , Animais , Dependovirus/genética , Terapia Genética/métodos , Mucolipidoses/terapia , Mucolipidoses/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Humanos , Lisossomos/metabolismo , Camundongos Knockout , Transdução Genética , Expressão Gênica
11.
Orphanet J Rare Dis ; 19(1): 181, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689282

RESUMO

BACKGROUND: Fabry disease (FD) is a rare lysosomal storage disease associated with glycolipid accumulation that impacts multiple physiological systems. We conducted a systematic literature review (SLR) to characterize the humanistic (quality of life [QoL]) and economic burden of FD. METHODS: Searches were conducted in the Embase, MEDLINE®, and MEDLINE® In-Process databases from inception to January 19, 2022. Conference abstracts of specified congresses were manually searched. Additional searches were performed in the Cochrane and ProQuest databases for the humanistic SLR and the National Health Service Economic Evaluations Database for the economic SLR. Studies of patients with FD of any sex, race, and age, and published in the English language were included. There was no restriction on intervention or comparator. For the humanistic SLR, studies that reported utility data, database/registry-based studies, questionnaires/surveys, and cohort studies were included. For the economic SLR, studies reporting economic evaluations or assessing the cost of illness and resource use were included. RESULTS: Of the 1363 records identified in the humanistic search, 36 studies were included. The most commonly used QoL assessments were the 36-item Short-Form Health Survey (n = 16), EQ-5D questionnaire descriptive system or visual analog scale (n = 9), and the Brief Pain Inventory (n = 8). Reduced QoL was reported in patients with FD compared with healthy populations across multiple domains, including pain, physical functioning, and depressive symptoms. Multiple variables-including sex, age, disease severity, and treatment status-impacted QoL. Of the 711 records identified in the economic burden search, 18 studies were included. FD was associated with high cost and healthcare resource use. Contributors to the cost burden included enzyme replacement therapy, healthcare, and social care. In the seven studies that reported health utility values, lower utility scores were generally associated with more complications (including cardiac, renal, and cerebrovascular morbidities) and with classical disease in males. CONCLUSION: FD remains associated with a high cost and healthcare resource use burden, and reduced QoL compared with healthy populations. Integrating information from QoL and economic assessments may help to identify interventions that are likely to be of most value to patients with FD.


Assuntos
Efeitos Psicossociais da Doença , Doença de Fabry , Qualidade de Vida , Doença de Fabry/economia , Humanos , Masculino
12.
Int J Biol Sci ; 20(6): 2111-2129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617529

RESUMO

Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme ß-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Glucosilceramidase/genética , Doença de Gaucher/genética , Doença de Gaucher/terapia , RNA Mensageiro/genética , Vacinas contra COVID-19 , Qualidade de Vida
13.
Front Genet ; 15: 1377743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680422

RESUMO

Background: Bibliometrics can trace general research trends in a particular field. Mucopolysaccharidoses (MPS), as a group of rare genetic diseases, seriously affect the quality of life of patients and their families. Scholars have devoted themselves to studying MPS's pathogenesis and treatment modalities and have published many papers. Therefore, we conducted a bibliometric and visual study of the top 100 most highly cited articles to provide researchers with an indication of the current state of research and potential directions in the field. Methods: The Web of Science Core Collection was searched for articles on MPS from 1 January 1900, to 8 November 2023, and the top 100 most cited articles were screened. The title, year of publication, institution, country, and first author of the articles were extracted and statistically analyzed using Microsoft Excel 2007. Keyword co-occurrence and collaborative networks were analyzed using VOSviewer 1.6.16. Results: A total of 9,273 articles were retrieved, and the top 100 most cited articles were filtered out. The articles were cited 18,790 times, with an annual average of 188 citations (122-507). Forty-two journals published these articles, with Molecular Genetics and Metabolism and Proceedings of the National Academy of Sciences of the United States being the most published journal (N = 8), followed by Pediatrics (N = 7), Blood (N = 6). The United States (N = 68), the UK (N = 25), and Germany (N = 20) were the top contributing countries. The Royal Manchester Children's Hospital (N = 20) and the University of North Carolina (N = 18) were the most contributing institutions. Muenzer J was the most prolific author (N = 14). Conclusion: We conducted a bibliometric and visual analysis of the top 100 cited articles in MPS. This study identifies the most influential articles currently available in the field of MPS, which provides a good basis for a better understanding of the disease and informs future research directions.

14.
Cell Rep ; 43(5): 114117, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38630590

RESUMO

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.


Assuntos
Sinalização do Cálcio , Retículo Endoplasmático , Gangliosídeo G(M1) , Gangliosidose GM1 , Receptores de N-Metil-D-Aspartato , Animais , Humanos , Camundongos , Cálcio/metabolismo , Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Gangliosídeo G(M1)/metabolismo , Gangliosidose GM1/metabolismo , Gangliosidose GM1/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Masculino , Feminino
15.
Diagnostics (Basel) ; 14(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472963

RESUMO

Gangliosidosis (ORPHA: 79255) is an autosomal recessive lysosomal storage disease (LSD) with a variable phenotype and an incidence of 1:200000 live births. The underlying genotype is comprised GLB1 mutations that lead to ß-galactosidase deficiency and subsequently to the accumulation of monosialotetrahexosylganglioside (GM1) in the brain and other organs. In total, two diseases have been linked to this gene mutation: Morquio type B and Gangliosidosis. The most frequent clinical manifestations include dysmorphic facial features, nervous and skeletal systems abnormalities, hepatosplenomegaly, and cardiomyopathies. The correct diagnosis of GM1 is a challenge due to the overlapping clinical manifestation between this disease and others, especially in infants. Therefore, in the current study we present the case of a 3-month-old male infant, admitted with signs and symptoms of respiratory distress alongside rapid progressive heart failure, with minimal neurologic and skeletal abnormalities, but with cardiovascular structural malformations. The atypical clinical presentation raised great difficulties for our diagnostic team. Unfortunately, the diagnostic of GM1 was made postmortem based on the DBS test and we were able to correlate the genotype with the unusual phenotypic findings.

16.
Orphanet J Rare Dis ; 19(1): 125, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500130

RESUMO

BACKGROUND: CLN3 disease (also known as CLN3 Batten disease or Juvenile Neuronal Ceroid Lipofuscinosis) is a rare pediatric neurodegenerative disorder caused by biallelic mutations in CLN3. While extensive efforts have been undertaken to understand CLN3 disease etiology, pathology, and clinical progression, little is known about the impact of CLN3 disease on parents and caregivers. Here, we investigated CLN3 disease progression, clinical care, and family experiences using semi-structured interviews with 39 parents of individuals with CLN3 disease. Analysis included response categorization by independent observers and quantitative methods. RESULTS: Parents reported patterns of disease progression that aligned with previous reports. Insomnia and thought- and mood-related concerns were reported frequently. "Decline in visual acuity" was the first sign/symptom noticed by n = 28 parents (70%). A minority of parents reported "behavioral issues" (n = 5, 12.5%), "communication issues" (n = 3, 7.5%), "cognitive decline" (n = 1, 2.5%), or "seizures" (n = 1, 2.5%) as the first sign/symptom. The mean time from the first signs or symptoms to a diagnosis of CLN3 disease was 2.8 years (SD = 4.1). Misdiagnosis was common, being reported by n = 24 participants (55.8%). Diagnostic tests and treatments were closely aligned with observed symptoms. Desires for improved or stabilized vision (top therapeutic treatment concern for n = 14, 32.6%), cognition (n = 8, 18.6%), and mobility (n = 3, 7%) dominated parental concerns and wishes for therapeutic correction. Family impacts were common, with n = 34 (81%) of respondents reporting a financial impact on the family and n = 20 (46.5%) reporting marital strain related to the disease. CONCLUSIONS: Collectively, responses demonstrated clear patterns of disease progression, a strong desire for therapies to treat symptoms related to vision and cognition, and a powerful family impact driven by the unrelenting nature of disease progression.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Lipofuscinoses Ceroides Neuronais/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/uso terapêutico , Glicoproteínas de Membrana/genética , Pais , Progressão da Doença , Inquéritos e Questionários
17.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L713-L726, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469649

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.NEW & NOTEWORTHY Heparan sulfate storage in the lungs of mucopolysaccharidosis type IIIA (MPS IIIA) mice leads to changes in lung function consistent with those of an obstructive lung disease and includes an increase in lung compliance and airway resistance and a decrease in tissue elastance. In addition, diaphragm muscle contractile strength is reduced, potentially further contributing to lung function impairment. However, no changes in parenchymal lung structure were observed in mice at 20 wk of age.


Assuntos
Resistência das Vias Respiratórias , Diafragma , Mucopolissacaridose III , Alvéolos Pulmonares , Animais , Diafragma/fisiopatologia , Diafragma/patologia , Diafragma/metabolismo , Complacência Pulmonar , Camundongos , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Alvéolos Pulmonares/metabolismo , Mucopolissacaridose III/patologia , Mucopolissacaridose III/fisiopatologia , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/genética , Contração Muscular/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Força Muscular , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/metabolismo , Masculino
18.
Adv Biomed Res ; 13: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525388

RESUMO

Background: Nephropathic cystinosis (NC) is an uncommon autosomal recessive disease with abnormality in lysosomal storage that appearances in patients with mutations in the CTNS gene encoding a lysosomal transporter cystinosin. Disrupted function of this transporter is followed by accumulation of cysteine crystals in cells of many various organs. This study aimed to investigate the mutations of the CTNS gene in 20 Iranian patients suffering from NC. Materials and Methods: Twenty Iranian cystinosis patients referring to Imam Hossein Hospital of Isfahan were employed in this case-series study. After extraction of genomic DNA, the promoter and entire coding regions of CTNS were analysed using sanger sequencing in all patients. Gap-Polymerase Chain Reaction was used to detect 57 kb deletion in the CTNS gene. In silico study was performed to analyse variants. Results: The large deletion was not seen in any NC patients. Molecular analysis which conducted to screen the CTNS gene of patients, identified eight different mutations, including two new mutations, c.971_972insC and c.956_956delA, which have not been reported before, and c.681G>A mutation, which was identified as a frequently founded mutation in the Middle East and was observed in 35% of patients. In this study, five other mutations including c.1015G>A, c.922G>A, c.323_323delA, c.433C>T, and c.18_21delGACT were also observed, which have been reported in previous studies. Conclusion: The mutational spectrum in the Iranian patients is the same as previously reported mutations except that two new mutations were found. The present findings will present suggestions for regular molecular diagnosis of cystinosis in Iran.

19.
Mol Cell ; 84(7): 1354-1364.e9, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447580

RESUMO

Batten disease, the most prevalent form of neurodegeneration in children, is caused by mutations in the CLN3 gene, which encodes a lysosomal transmembrane protein. CLN3 loss leads to significant accumulation of glycerophosphodiesters (GPDs), the end products of glycerophospholipid catabolism in the lysosome. Despite GPD storage being robustly observed upon CLN3 loss, the role of GPDs in neuropathology remains unclear. Here, we demonstrate that GPDs act as potent inhibitors of glycerophospholipid catabolism in the lysosome using human cell lines and mouse models. Mechanistically, GPDs bind and competitively inhibit the lysosomal phospholipases PLA2G15 and PLBD2, which we establish to possess phospholipase B activity. GPDs effectively inhibit the rate-limiting lysophospholipase activity of these phospholipases. Consistently, lysosomes of CLN3-deficient cells and tissues accumulate toxic lysophospholipids. Our work establishes that the storage material in Batten disease directly disrupts lysosomal lipid homeostasis, suggesting GPD clearance as a potential therapeutic approach to this fatal disease.


Assuntos
Glicoproteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Camundongos , Animais , Criança , Humanos , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Lisossomos/metabolismo , Fosfolipases/metabolismo , Glicerofosfolipídeos/metabolismo , Fosfolipídeos/metabolismo
20.
Clin Chim Acta ; 557: 117889, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38531466

RESUMO

Fabry disease (FD), an X-linked disorder resulting from dysfunction of α-galactosidase A, can result in significant complications. Early intervention yields better outcomes, but misdiagnosis or delayed diagnosis is common, impacting prognosis. Thus, early detection is crucial in the clinical diagnosis and treatment of FD. While newborn screening for FD has been implemented in certain regions, challenges persist in enzyme activity detection techniques, particularly for female and late-onset patients. Further exploration of improved screening strategies is warranted. This study retrospectively analyzed genetic screening results for pathogenic GLA variants in 17,171 newborns. The results indicated an estimated incidence of FD in the Nanjing region of China of approximately 1 in 1321. The most prevalent pathogenic variant among potential FD patients was c.640-801G > A (46.15 %). Furthermore, the residual enzyme activity of the pathogenic variant c.911G > C was marginally higher than that of other variants, and suggesting that genetic screening may be more effective in identifying potential female and late-onset patients compared to enzyme activity testing. This research offers initial insights into the effectiveness of GLA genetic screening and serves as a reference for early diagnosis, treatment, and genetic counseling in FD.


Assuntos
Doença de Fabry , Humanos , Recém-Nascido , Feminino , Doença de Fabry/diagnóstico , Doença de Fabry/genética , Estudos Retrospectivos , Triagem Neonatal/métodos , Mutação , Testes Genéticos , alfa-Galactosidase/genética , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...